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The doublet-lattice method (DLM) is in use worldwide for � utter and dynamic response analyses of
aircraft at subsonic speeds. The present paper develops a further re� nement to extend its frequency limits
for applications to higher frequency � utter, e.g., for aeroservoelastic systems with high-frequency control
surfaces, and dynamic response, e.g., for short wavelength gusts. The DLM is an aerodynamic � nite
element method for modeling oscillating interfering lifting surfaces in subsonic � ows. It reduces to the
vortex-lattice method at zero-reduced frequency. The number of � nite elements (boxes) required for
accurate results depends on aspect ratio and reduced frequency, among other parameters. At high reduced
frequency, the chordwise dimension of the boxes must be small. However, an approximation in the
method, viz., that the variation of the numerator of the incremental oscillatory kernel function is parabolic
across the span of the box bound vortex, restricts the box aspect ratio to about 3. Hence, high-frequency
requirements bring an associated requirement for a large number of boxes in the aerodynamic ideali-
zation. If a higher-order approximation is used for the spanwise variation of the numerator of the incre-
mental oscillatory kernel, the limitation on box aspect ratio can be relaxed and the number of spanwise
divisions required in high-frequency analyses will be reduced signi� cantly, leading to a reduction in the
total number of boxes. This paper replaces the original parabolic approximation by a quartic approxi-
mation. The quartic curve-� tting coef� cients are determined for the planar and nonplanar kernels, and
the new integrals for the planar and nonplanar normalwash factors are evaluated. The re� nement is
incorporated into a DLM code previously known as N5KA, and convergence studies on typical con� gu-
rations are presented that attempt to specify a higher limit for practical box aspect ratios.

Nomenclature
A, B, C, D, E = coef� cients in quartic approximations to

kernel numerators
br = reference semichord
CL = total lift coef� cient
Drs = normalwash factor
D0rs = steady normalwash factor
D1rs, D2rs = incremental oscillatory planar and

nonplanar normalwash factors,
respectively

e = box semiwidth
F = integral in Eq. (21)
K = kernel function
K1, K2 = factors in numerators of planar and

nonplanar parts of kernel, respectively
kr = reference reduced frequency, vbr/U
M = Mach number
N = number of lifting surfaces
p = lifting pressure coef� cient
Q(h̄) = quartic approximation to kernel numerator
Q1, Q2 = approximations for planar and nonplanar

numerators, respectively
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r = cylindrical radius from sending doublet
Sn = area of nth lifting surface
s = semispan
T = direction cosine function
T1, T *2 = functions for planar and nonplanar parts of

kernel, respectively
U = freestream velocity
w = dimensionless normalwash
x̄ = streamwise distance between an arbitrary

point on the sending line and receiving
point

x0, y0, z0 = Cartesian coordinates of receiving point
relative to midpoint of sending line (bound
vortex)

ȳ, z̄ = coordinates of receiving point relative to
midpoint of sending line parallel and
perpendicular to sending box, respectively

g = dihedral angle
gr, gs = dihedral angles of receiving and sending

boxes, respectively
ḡr = relative dihedral angle between receiving

and sending boxes, gr 2 gs

Dxs = centerline chord of sending box
« = parameter de� ned in Eq. (24)
h̄ = spanwise coordinate, in an element plane
ls = sweepback angle of sending box one-

quarter-chord line
v = circular frequency

Subscripts
1, 2 = planar and nonplanar parts of kernel,

respectively
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Fig. 2 Idealization of lifting surface using trapezoidal boxes.

Fig. 1 Lifting surface coordinate system.

Introduction

T HE doublet-lattice method (DLM)1 is a � nite element
method for the solution of the oscillatory subsonic pres-

sure– normalwash integral equation for multiple interfering
surfaces

N
1

w(x, s) = K(x, j; s, s )p(j , s ) dj ds (1)O EE8p n=1
Sn

where (x, s) are the orthogonal coordinates on the nth surface
Sn such that the undisturbed stream is parallel to the x axis,
and K is the complex acceleration potential kernel for oscil-
latory subsonic � ow. The original DLM algorithm was pre-
sented at the same time as the lifting line element method
(LLEM) of Landahl and Stark.2 Although numerous compari-
sons2,3 with experiments were shown at the time, the complete
details of the LLEM were never published. Stark has written
a note on the LLEM, and this was included in Ref. 4 as Ap-
pendix A.

A re� nement to the expressions for the kernel given by Ro-
demich in Ref. 5, and Landahl6 was presented by Rodden et
al.7 in the form

2 4K = (K T /r 1 K T * /r )exp(2ivx̄ /U ) (2)1 1 2 2

to analyze nonplanar interference correctly. K1 and K2 are the
planar and nonplanar parts of the kernel numerator, respec-
tively,

T = cos(g 2 g ) (3)1 r s

T * = (z cos g 2 y sin g )(z cos g 2 y sin g ) (4)2 0 r 0 r 0 s 0 s

2 2 2r = z 1 y (5)0 0

The coordinate system is illustrated in Fig. 1. The description
of K1 and K2 as the planar and nonplanar parts of the kernel
numerator is a convenience because both are obviously non-
planar in general. The re� nement in Eq. (2) is in the second
term; this was found to be necessary so that the DLM could
predict the interference between a nearly planar wing and hor-
izontal tail.7 The re� nement retained the original primary ap-
proximation,1 i.e., that the incremental oscillatory normalwash
factors are obtained by integrating the difference between the
oscillatory and steady kernels over the length of the bound
vortex assuming a quadratic (parabolic) variation in the nu-
merator of the difference. The total normalwash factor is then
the sum of the incremental oscillatory normalwash factor and

the steady normalwash factor obtained from the expressions
for a horseshoe vortex, e.g., the vortex-lattice method (VLM)
of Hedman.8 In this way, the DLM converges to the VLM at
zero reduced frequency, and the error in the parabolic approx-
imation of the kernel numerator difference is small at low re-
duced frequencies but increases with reduced frequency.

Extensive experience with the VLM and DLM has led to
guidelines for the idealization of lifting surfaces into � nite el-
ement models. It is assumed that each surface can be approx-
imated by segments of planes. The surface is divided into small
trapezoidal panels (boxes) in a manner such that the boxes are
arranged in strips parallel to the freestream (Fig. 2) and surface
edges and fold lines lie on box boundaries. Boxes should be
concentrated near wing edges and hinge lines or any other
place where downwash is discontinuous and pressures have
large gradients. (The usual practice is not to concentrate boxes
near hinge lines because viscous effects, which dominate trail-
ing-edge control-surface aerodynamics, reduce hinge moments
from potential theory results, so that more chordwise boxes
tend to overpredict hinge moments.) The chord lengths of ad-
jacent boxes in the streamwise direction should only change
gradually. If a surface lies in (or nearly in) the plane of another
surface, the spanwise divisions of the downstream surface
should lie along the spanwise divisions of the upstream sur-
face. Strips at the intersection of lifting surfaces should have
approximately equal widths.

The foregoing qualitative modeling recommendations have
been quanti� ed (the guidelines have been summarized by Rod-
den and Johnson9) as follows. The aspect ratio of the boxes
should be less than three. The chord length of the boxes should
be less than 0.08 times the minimum velocity divided by the
maximum frequency (in Hz) of interest, i.e., Dx < 0.08U / f (this
is a requirement for approximately 12 boxes per minimum
wave length; however, no less than four boxes per chord
should be used). The limitation of box aspect ratio to three is
a consequence of the DLM assumption of a parabolic variation
in the incremental kernel numerator. The variation of the real
part of the incremental kernel numerator along the box quarter-
chord is shown in Fig. 3 for an aspect ratio of 2.

Aeroservoelastic analyses frequently deal with high frequen-
cies in control-system components, and new design criteria for
short wavelength gusts, e.g., the tuned discrete gust requires a
minimum gradient distance of 30 ft be analyzed,10,11 also re-
quire that higher reduced frequencies be considered. The com-
bination of the box chord length limitation and the box aspect
ratio limitation can result in a requirement for a large number
of aerodynamic boxes. A higher-order (higher than quadratic)
approximation to the numerator of the incremental oscillatory
kernel will increase the limit on box aspect ratio for accurate
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Fig. 3 Variation of incremental kernel along box quarter-chord,
aspect ratio = 2.0.

oscillatory aerodynamic analysis. This paper considers a fur-
ther re� nement to the DLM in a quartic approximation and
then attempts to determine a new practical limit on maximum
box aspect ratio.

New Re� nement
The original method for determining the in� uence of an os-

cillating lifting surface element at a point was based on the
assumption that the lifting pressure could be concentrated
along a line. The line is located at the one-quarter-chord line
of the element (Fig. 2). The lifting load line is represented by
a horseshoe vortex for its steady effects and a line of doublets
for its incremental oscillatory effects. The surface boundary
condition is a prescribed normalwash at the control point of
each box that is located at the three-quarter-chord point along
the centerline of each box. The numerical form of the integral
equation, Eq. (1), in matrix notation becomes

{w} = [D]{p} (6)

where the elements of the normalwash factor matrix [D] are

1e
Dxs

D = K dh̄ (7)rs E8p 2 e

Here the streamwise integration of the kernel has been per-
formed by concentrating the lifting pressure at the one-quarter-
chord load line.

The evaluation of the normalwash factor, Eq. (7), in element
coordinates gives

1e
Dx K T K T* (x 2 h̄ tan l )s 1 1 2 2 0 sD = 1 exp 2iv dh̄rs E S D F G2 48p r r U

2 e

(8)

where r2 = ( ȳ 2 )2 1 z̄2 and ls is the sweep of the one-h̄
quarter-chord line of the sending box. The normalwash factor
is evaluated as before by adding and subtracting the steady
values of K1 and K2, denoted by K10 and K20, respectively, from
their oscillatory counterparts. Then, Eq. (8) becomes

D = D 1 D 1 D (9)rs 0rs 1rs 2rs

where
1e

Dx K T K T *s 10 1 20 2
D = 1 dh̄ (10)0rs E S D2 48p r r

2 e

(x 2 h̄ tan l )0 s
K exp 2iv 2 K T1 10 1H F G J1 e UDxs

D = dh̄1rs E 28p r
2e

(11)

(x 2 h̄ tan l )0 s
K exp 2iv 2 K T *2 20 2H F G J1 e UDxs

D = dh̄2rs E 48p r
2e

(12)

Equation (10) is the steady normalwash factor and is more
conveniently derived from horseshoe vortex considerations
than by evaluating the integral. The steady normalwash factor
has been given by Hedman.8 We may evaluate the incremental
oscillatory normalwash factors [Eqs. (11) and (12)] in closed
form by approximating the numerators as quartics in . Weh̄
rewrite Eq. (11) as

1 e
Dx Q (h̄)s 1

D = dh̄ (13)1rs E 2 28p ( ȳ 2 h̄) 1 z̄
2e

where is the quartic approximationQ (h̄)1

2 3 4Q (h̄) = A h̄ 1 B h̄ 1 C 1 D h̄ 1 E h̄1 1 1 1 1 1

’ {K exp[2iv(x 2 h̄ tan l )/U ] 2 K }T (14)1 0 s 10 1

If we denote the inboard, inboard intermediate, center, out-
board intermediate, and outboard values of , respectively,Q (h̄)1

by Q1(2e), Q1(2e/2), Q1(0), Q1(e /2), and Q1(e), the quartic
coef� cients are

2A = 2(1/6e )[Q (2e) 2 16Q (2e /2) 1 30Q (0)1 1 1 1

2 16Q (e/2) 1 Q (e)] (15)1 1

B = (1/6e)[Q (2e) 2 8Q (2e /2) 1 8Q (e /2) 2 Q (e)] (16)1 1 1 1 1

C = Q (0) (17)1 1

3D = 2(2/3e )[Q (2e) 2 2Q (2e /2) 1 2Q (e /2) 2 Q (e)]1 1 1 1 1

(18)

4E = (2/3e )[Q (2e) 2 4Q (2e/2) 1 6Q (0) 2 4Q (e/2)1 1 1 1 1

1 Q (e)] (19)1

Then the planar downwash factor becomes

Dxs 2 2 2 2D = [( ȳ 2 z̄ )A 1 ȳB 1 C 1 ȳ( ȳ 2 3z̄ )D1rs 1 1 1 1H8p

14 2 2 41 ( ȳ 2 6ȳ z̄ 1 z̄ )E ]F 1 ȳA 1 B1 1 1F 2
2 21 ( ȳ 2 e) 1 z̄2 2 2 21 (3ȳ 2 z̄ )D 1 2ȳ( ȳ 2 z̄ )E log1 1G 2 22 ( ȳ 1 e) 1 z̄

12 2 21 2e A 1 2ȳD 1 3ȳ 2 z̄ 1 e E (20)1 1 1F S D GJ3

where the integral
1 e

dh̄
F = E 2 2( ȳ 2 h̄) 1 z̄

2e

1 2e u z̄ u
= atan (21)S D2 2 2u z̄ u ȳ 1 z̄ 2 e
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is evaluated as before.7 The integral F may be rewritten as

22e z̄ p
F = d 1 2 « 1 d (22)1 2S D2 2 2 2ȳ 1 z̄ 2 e e u z̄ u

where

2 2 2d = 1, d = 0 for ȳ 1 z̄ 2 e > 01 2

1 2 2 2d = 1, d = for ȳ 1 z̄ 2 e = 0 (23)1 2
2

2 2 2d = 1, d = 1 for ȳ 1 z̄ 2 e < 01 2

to place the arctangent in the correct quadrant, and

2 2 2 2e ȳ 1 z̄ 2 e 2e u z̄ u
« = 1 2 atan (24)F S DG2 2 2 2z̄ 2e u z̄ u ȳ 1 z̄ 2 e

When u2ez̄ /( ȳ2 1 z̄2 2 e2) u # 0.3, the following series expan-
sion is used

2n2 474 n4e (21) 2e u z̄ u
« = (25)O S D2 2 2 2 2 2 2( ȳ 1 z̄ 2 e ) 2n 2 1 ȳ 1 z̄ 2 en=2

It is immediately seen that for cases ȳ2 1 z̄2 2 e2 # 0, that F
becomes singular like p/ u z̄ u and p/2 u z̄ u, respectively. How-
ever, it can be shown that a similar contribution (of opposite
sign) arises from the nonplanar part that exactly cancels this
singular term. Thus, the usual practice for planar cases is to
evaluate the Mangler principal part of F, where these two sin-
gularities are canceled analytically.12

The incremental nonplanar oscillatory normalwash factor is
approximated by

1 e
Dx Q (h̄)s 2

D = dh̄ (26)2rs E 2 2 28p [( ȳ 2 h̄) 1 z̄ ]2e

where is another quartic approximationQ (h̄)2

2 3 4Q (h̄) = A h̄ 1 B h̄ 1 C 1 D h̄ 1 E h̄2 2 2 2 2 2

’ {K exp[2iv(x 2 h̄ tan l )/U ] 2 K }T* (27)2 0 s 20 2

Letting Q2(2e), Q2(2e /2), Q2(0), Q2(e/2), and Q2(e) denote
the inboard, inboard intermediate, center, outboard intermedi-
ate, and outboard values of , respectively, we haveQ (h̄)2

2A = 2(1/6e )[Q (2e) 2 16Q (2e /2) 1 30Q (0)2 2 2 2

2 16Q (e /2) 1 Q (e)] (28)2 2

B = (1/6e)[Q (2e) 2 8Q (2e/2) 1 8Q (e/2) 2 Q (e)] (29)2 2 2 2 2

C = Q (0) (30)2 2

3D = 2(2/3e )[Q (2e) 2 2Q (2e /2) 1 2Q (e/2) 2 Q (e)]2 2 2 2 2

(31)

4E = (2/3e )[Q (2e) 2 4Q (2e/2) 1 6Q (0) 2 4Q (e/2)2 2 2 2 2

1 Q (e)] (32)2

The nonplanar downwash factor is then given by Eq. (33):

Dxs 2 2 2 2D = [( ȳ 1 z̄ )A 1 ȳB 1 C 1 ȳ( ȳ 1 3z̄ )D2rs 2 2 2 2S216pz̄

14 2 2 4 2 21 ( ȳ 1 6ȳ z̄ 2 3z̄ )E ]F 1 {[( ȳ 1 z̄ ) ȳ2 2 2( ȳ 1 e) 1 z̄
2 2 2 21 ( ȳ 2 z̄ )e]A 1 ( ȳ 1 z̄ 1 ȳe)B 1 ( ȳ 1 e)C2 2 2

4 4 2 2 4 2 2 41 [ ȳ 2 z̄ 1 ( ȳ 2 3z̄ ) ȳe]D 1 [( ȳ 2 2ȳ z̄ 2 3z̄ ) ȳ2

14 2 2 4 2 21 ( ȳ 2 6ȳ z̄ 1 z̄ )e]E } 2 {[( ȳ 1 z̄ ) ȳ2 2 2( ȳ 2 e) 1 z̄
2 2 2 22 ( ȳ 2 z̄ )e]A 1 ( ȳ 1 z̄ 2 ȳe)B 1 ( ȳ 2 e)C2 2 2

4 4 2 2 4 2 2 41 [ ȳ 2 z̄ 2 ( ȳ 2 3z̄ ) ȳe]D 1 [( ȳ 2 2ȳ z̄ 2 3z̄ ) ȳ2

2 2( ȳ 2 e) 1 z̄4 2 2 4 22 ( ȳ 2 6ȳ z̄ 1 z̄ )e]E } 1 z̄ log D2 2F G2 2( ȳ 1 e) 1 z̄
2 2( ȳ 2 e) 1 z̄21 4z̄ e 1 ȳ log E (33)2F G D2 2( ȳ 1 e) 1 z̄

eDx 1s
D =2rs H2 2 2 2 2 2 28p( ȳ 1 z̄ 2 e ) [( ȳ 1 e) 1 z̄ ][( ȳ 2 e) 1 z̄ ]

2 2 2 2 2 4 2 23 [2( ȳ 1 z̄ 1 e )(e A 1 C ) 1 4ȳe B 1 2ȳ( ȳ 2 2e ȳ2 2 2

2 2 4 2 2 4 6 2 4 4 21 2ȳ z̄ 1 3e 1 2e z̄ 1 z̄ )D 1 2(3ȳ 2 7e ȳ 1 5ȳ z̄2

4 2 2 2 2 2 4 6 2 4 4 21 6e ȳ 1 6e ȳ z̄ 2 3e z̄ 2 z̄ 1 ȳ z̄ 2 2e z̄ )E ]2

(d « 1 D)1 2 2 2 22 [( ȳ 1 z̄ )A 1 ȳB 1 C 1 ȳ( ȳ 1 3z̄ )D2 2 2 22e
2 2Dx D ( ȳ 2 e) 1 z̄s 24 2 2 41 ( ȳ 1 6ȳ z̄ 2 3z̄ )E ] 1 log2 J H 2 28p 2 ( ȳ 1 e) 1 z̄

2 2( ȳ 2 e) 1 z̄
1 2 e 1 ȳ log E (34)2F G J2 2( ȳ 1 e) 1 z̄

where

2
2 2 2e p ȳ 1 z̄ 2 e

D = 1 2 d 2 d (35)1 2S D F S DGu z̄ u u z̄ u 2e

The simpli� cation of Eq. (33) via Eq. (22) leading to Eq. (34)
is tedious but results in the more accurate form in which « is
again given by Eq. (24). Equation (34) has been used in gen-
eral, except when u ( ȳ2 1 z̄2 2 e2)/2ez̄ u # 0.1, in which case
Eq. (33) is used.

Two integrals are involved in the evaluation of the kernel
function that have utilized approximations to the function 1 2

. The original work1 used an approximation de-2u / (1 1 u )Ï
veloped by Watkins et al.13 and later work14 used a more ac-
curate approximation of Laschka.15

An improved approximation developed by Desmarais16 has
the form

n
u k/m1 2 = a exp[2(2 )bu] (36)kO2(1 1 u ) k=1Ï

and Desmarais has obtained the coef� cients b and ak corre-
sponding to various values of m and n for n varying from 8
to 72. The 12-term approximation D12.1 has also been used
here and its parameters are shown next:

a = 0.000319759140, a = 20.0000554614711 2

a = 0.002726074362, a = 0.0057495515663 4

a = 0.031455895072, a = 0.1060311262125 6

a = 0.406838011567, a = 0.7981123571557 8

a = 20.417749229098, a = 0.0774807138949 10

a = 20.012677284771, a = 0.00178703296011 12

(n = 12, m = 1, and b = 0.009054814793)

Table 1 compares results following Ref. 7 based on the par-
abolic � tting of the kernels and Laschka’s approximation (re-
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Table 1 Comparison of lift coef� cients, CL/ ik(h /s) for plunging of AGARD wing– tail

Boxesa
Parabolic
with L11

Parabolic
with D12.1 Boxesb

Quartic
with L11

Quartic
with D12.1

108 3.7921i2.955 3.7701i2.965 72 3.7511i2.932 3.7241i2.935
132 3.9611i2.963 3.9381i2.974 88 3.9131i2.928 3.8841i2.932
168 4.1601i2.974 4.1361i2.986 112 4.0981i2.952 4.0691i2.957
216 4.2991i2.960 4.2741i2.973 144 4.2511i2.966 4.2191i2.972
264 4.3591i2.955 4.3331i2.969 176 4.3411i2.969 4.3091i2.975
a
Twelve spanwise strips.

b
Eight spanwise strips.

Fig. 4 Variation of incremental kernel along box quarter-chord,
aspect ratio = 5.0.

Fig. 5 Re(CLa) vs kr, aspect ratio = 20 wing, Mach = 0.0.

ferred to as L11) and Desmarais’ approximation (referred to
as D12.1), and also the quartic � ts with both L11 and D12.1.

Applications
Figures 3 and 4 show the variation of the real part of the

incremental kernel numerator along the box quarter-chord for
two aspect ratios for a rectangular box with a unit Dx. The
receiving point is on the box itself. The Mach number is M =
0.8 and the reduced frequency is kr = 1.0 based on the box
semichord of 0.5. The improved performance of the quartic
approximation is evident in the two � gures and clearly superior
with a box aspect ratio of 5.

Three examples are now considered to illustrate the im-
proved convergence characteristics of the quartic approxima-
tion. Each example has been investigated in earlier studies. The
� rst two examples are planar: A high-aspect ratio rectangular
wing and a wing– tail combination. The third example is a
simpli� ed rectangular T-tail.

High-Aspect Ratio Rectangular Wing

A high-aspect ratio, unswept, untapered rectangular wing
can be used conveniently to investigate the requirements for
box shapes (aspect ratio) and sizes (number of boxes on a
chord). At a Mach number of zero, the calculated loads can
also be compared to classical two-dimensional solutions if the
aspect ratio is high enough, although it should be noted that
there are quantitative differences between pressures at cross
sections of a wing with a � nite aspect ratio (however large)
and a two-dimensional airfoil.

An aspect ratio of 20 is selected, and the symmetric motion
of pitching about the midchord is investigated.

Figures 5 and 6 show the real and imaginary parts, respec-
tively, of the lift due to pitch about the midchord. The numbers
in the legend, e.g., 10 3 20, refer to the number of chordwise
and spanwise boxes, respectively. The results show that the
quartic solution with 20 spanwise strips is closer to the con-
verged solution than the parabolic solution with 40 spanwise
strips. In fact, the quartic solution with 10 spanwise boxes has
acceptable accuracy up to a reduced frequency of 3.

Figures 7 and 8 show the effect of box aspect ratio on con-
vergence for the same wing. Additional cases were calculated
with � ve chordwise boxes. The real part converges more
slowly than the imaginary part; however, the quartic is closer
to convergence with far fewer boxes than the parabolic ap-
proximation. The immediate implications of this are that ex-
isting models are accurate to a higher reduced frequency with-
out any change. Conversely, smaller models can be generated
to give the same accuracy as the parabolic approximation.

Wing/Horizontal-Stabilizer Combination

This con� guration is one of those selected by the AGARD
Structures and Materials Panel for comparison of methods used
in interfering lifting surface theories. The planar con� guration
is shown in Fig. 9 with its span divided into 12 strips. The
convergence characteristics of the original DLM were studied
on this con� guration by Rodden et al.7 with a number of dif-
ferent chordwise box divisions on the wing and tail. The num-
ber of boxes with equal chordwise fractions on the wing and
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Fig. 6 Im(CLa) vs kr, aspect ratio = 20 wing, Mach = 0.0.

Fig. 7 Effect of box aspect ratio on convergence, aspect ratio =
20 wing, Mach = 0.0, kr = 5.0.

Fig. 10 Rectangular T-tail con� guration.

Fig. 9 Wing/horizontal tail con� guration.

Fig. 8 Effect of box aspect ratio on convergence, aspect ratio =
20 wing, Mach = 0.0, kr = 5.0.

tail, respectively, were 5 and 4, 6 and 5, 8 and 6, 10 and 8,
and 12 and 10.

The 12 spanwise strips were the same for all combinations
of boxes, and so the total number of boxes in the various
idealizations were 108, 132, 168, 216, and 264. The lift co-
ef� cient for oscillatory plunging was obtained at a Mach num-
ber of 0.8 and a reduced frequency of k = vs/V = 1.5, where
s is the semispan (based on br = 0.8, kr = 1.2), and the results
are shown in Table 1 with both the Laschka (L11) and Des-
marais (D12.1) approximations. (The values labeled ‘‘Para-
bolic’’ have been recalculated using slightly different strip
widths scaled from Fig. 2 of Ref. 7; the actual widths were
not reported other than in the � gure shown.) The new results
with the quartic approximation have been added to Table 1 for

an idealization with the same number of chordwise boxes but
with only eight spanwise strips (with divisions at 0.0, 0.1667,
0.333, 0.5, 0.6667, 0.8333, 0.9, 0.96, and 1.0 fractions of the
span), leading to a total number of boxes of 72, 88, 112, 144,
and 176 for the different chordwise divisions. Again, both L11
and D12.1 results are shown. A perusal of Table 1 shows that
the quartic approximation with fewer spanwise strips has the
same accuracy as the earlier parabolic approximation. The con-
vergence of both sets of results with increasing number of
chordwise boxes shows the importance of a suf� cient number
of chordwise boxes per wavelength: 12 as suggested in the
published guidelines.9 The performance of the quartic approx-
imation in this example suggests an increase in the guideline
box aspect ratio limit of 3, established for the parabolic ap-
proximation, to perhaps 5 for the quartic approximation.
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Fig. 12 Effect of number spanwise boxes on Cl, T-tail.

Fig. 11 Rolling moment coef� cient vs kr for T-tail.

Rectangular T-Tail

The rectangular T-tail that was tested by Clevenson and
Leadbetter17 has also been the subject of previous studies. The
wind-tunnel tests were performed at low speed and the model
was oscillated about the � n midchord as shown in Fig. 10. The
lattice idealization in the earlier study7 is also shown in the
� gure. The present study uses equal rectangular boxes chord-
wise and equal spanwise on the vertical tail and equal boxes
chordwise on the horizontal tail. The spanwise variation in
fraction of semispan is 0.0, 0.05, 0.17, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, and 1.0, with the spacing at the inboard edge to give
comparable strip widths on the vertical and horizontal tail at
the intersection. The earlier study7 and experiment17 nondi-

mensionalized the coef� cients in nonstandard ways. The pres-
ent study uses a reference semichord of br = c/2 = 0.5 ft, � n
area to normalize the forces and � n span to normalize the
moments. Figure 11 shows the variation with reduced fre-
quency of the magnitude and phase angle of the rolling mo-
ment (about an axis 0.5 ft below the base of the � n) due to an
oscillatory rigid body yawing of the � n about its midchord.
The quartic approximation gives the same results as the orig-
inal study for these low reduced frequencies.7 Figure 12 shows
that a reduction in the number of spanwise strips from 10 to
5 indicates the quartic approximation to have the same accu-
racy as the earlier study.7

Concluding Remarks
A re� nement to the doublet-lattice subsonic lifting surface

method has been formulated and implemented. The quartic ap-
proximation to the kernel function allows either an increase in
accuracy for current box schemes, or a reduction in the number
of boxes (and subsequently the storage requirements) for the
same accuracy. From the results presented, the limit on box
aspect ratio (formerly 3 with the original method) can now be
relaxed to 5. This also allows a little more � exibility in mod-
eling because boxes tend to have a higher aspect ratio near the
tips of tapered surfaces.

The present study has only considered rigid body modes at
a small number of Mach numbers and reduced frequencies.
Further analyses are needed to more accurately establish the
maximum value of box aspect ratio, tentatively proposed at 5.
Another guideline is also needed because a minimum number
of spanwise strips has never been established for the previous
DLM. This would be a function of the aspect ratio of the lifting
surface and its vibration modeshapes, i.e., the number of node
lines across the span. Further studies are planned on more
practical con� gurations and the convergence characteristics of
the new DLM will be investigated in future � utter and gust
response analyses.

A computer program now called N5KQ incorporates the
quartic feature of this paper and the Desmarais D12.1 approx-
imation, and is available from the authors, and will be avail-
able in a forthcoming release of MSC/NASTRAN.
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the Nonplanar Aspects of the Subsonic Doublet-Lattice Lifting Sur-
face Method,’’ Journal of Aircraft, Vol. 9, No. 1, 1972, pp. 69– 73.

8Hedman, S. G., ‘‘Vortex Lattice Method for Calculation of Quasi



RODDEN, TAYLOR, AND MCINTOSH 727

Steady State Loadings on Thin Elastic Wings,’’ Aeronautical Research
Inst. of Sweden, Rept. 105, Stockholm, Sweden, 1967.

9Rodden, W. P., and Johnson, E. H., ‘‘MSC/NASTRAN Aeroelastic
Analysis User’s Guide,’’ The MacNeal-Schwendler Corp., 1994.

10Anon., ‘‘Federal Aviation Regulations—Part 25—Airworthiness
Standards: Transport Category Airplanes,’’ Dept. of Transportation,
Federal Aviation Administration, Washington, DC.

11Anon., ‘‘Joint Airworthiness Requirements—JAR 25, Large Air-
planes,’’ Civil Aviation Authority, Cheltenham, England, UK.

12Mangler, K. W., ‘‘Improper Integrals in Theoretical Aerodynamics,’’
Royal Aircraft Establishment, Rept. Aero 2424, C.P. No. 94, 1951.

13Watkins, C. E., Woolston, D. S., and Cunningham, H. J., ‘‘A Sys-
tematic Kernel Function Program for Determining Aerodynamic
Forces on Oscillating or Steady Finite Wings at Subsonic Speeds,’’

NASA R-48, 1959.
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