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SECTION1I

Introduction

Aircraft flutter is a destructive phenomenon which requires special attention in
the design process. The elements of flutter are structural dynamics and unsteady
aerodynamics. Of these, it is generally recognized that unsteady aerodynamics
are the more difficult to model and the least reliable. In 1935, Theodorsen was
the first to develop a practical unsteady incompressible aerodynamic formulal
for a flutter analysis of a two dimensional airfoil. It was fifty years ago that
Smilg and Wasserman of the Aircraft Laboratory of the Wright Air Development
Center wrote their landmark report on flutter clearance using the K-method and
strip theory. Of course such methods can be addressed with manual calculations.
Compressibility is normally associated with the flutter of high speed aircraft. It
is impractical to solve the compressible unsteady aerodynamic equations by
hand. The doublet lattice method® was developed along with improvements in
digital computer technology. Hopefully, the doublet lattice method represents
the most rudimentary unsteady aerodynamic technique in practice where
subsonic compressible flow is a consideration. With the introduction of today’s
supercomputers, non-linear acrodynamics are now heing addressed, in spite of
the high cost. It is because of the high cost w.d vichascal complications
associated with non-lincar Computational Fluid Dynamics (CFD) that the
doublet lattice method is still used almost exclusively for the subsonic flutter
clearance of flight vehicles being designed today. It is difficult to imagine the
day when non-lincar CFD will replace the doublet lattice method in the
preliminary design environment.

1. Section 5-6 of the wock by Bisplinghoff at. al. contains an explanation of Thaodossen's foczpula,
2. Giesing, Kalman and Rodden




Introduction

While this document is not a survey report, it is appropriate to acknowledge the
original authors of the doublet lattice method, Dr. Edward Albano and Dr.
William P. Rodden. The subsequent work of Mr. Joseph P. Giesing, Mrs. Terez P.
Kalman, and Dr. William P. Rodden of the Douglas Aircraft Company was
sponsored by the Air Force Flight Dynamics Laboratory under the guidance of
Mr. Walter J. Mykytow. The two computer codes which resulted from this
contractual effort are HYWC! and following that, N5KAZ?. These codes are still
the de facto standard where the flutter clearance of military aircraft is involved.
The geometric options offered in these codes are extensive, including multiple
surfaces and slender bodies. The purpose of this document is to derive the
fundamental formulae of the doublet lattice method. In order to keep focused on
the fundamentals, the formulae derived in this report are restricted to planar
wings. The additional work to extend the formulae to wings with dihedral is not
conceptually significant. Unsteady aerodynamics over slender bodies is not
addressed here.

The mathematical background leading to the doublet lattice method is found
among many documents and texts. Considering the importance of the doublet
lattice method, it seems surprisiiig that we lack a single consistent derivation.
This document attempts to answer the need for a unified derivation of all the
important formulae from first principles to the integral formula and also includes
a simple doublet lattice source code. The target audience 1s the graduate student
or engineer who has had a first course in aeroelasticity and would like to focus
on the mathematics of the doublet lattice method. The author has assumed the
reader has a familiarity with the classical topics of potential aerodynamics and
linear boundary value problems.

The author takes no credit for developing the formulae. All the work presented
here was compiled from many references to create a unified derivauon. The
author does take credit for any additional illumination which he may cast on

1. Giesing et al, AFFDL-71-5, Vol 11, Pant 1is the original pilot code. i uses doubdlet pancls (o model bodics e annular wings.

2. See Gieting 8 o), AFFDL-71.5, Vol I1. Pant 11 is the final deliverable code and uses axsai doublets and interference panels
for bodics az well us the method of images.




Introduction

these derivations. The main contribution of this report is that all these
derivations are presented in a logical sequence in a single document not
available elsewhere. The hope is that the reader will gain an accurate
appreciation of the doublet lattice method by following this single derivation.

This report focuses on presenting the general mathematical procedure behind the
doublet lattice method. Such mathematics do not make easy reading. The task of
making these mathematical derivations pleasurable may be impossible. Learning
these mathematics requires that one take pen and paper in hand and derive
unfamiliar formulae. The integral formulae of Sections XII and XIII may seem
excessively complicated. However, this complication is a matter of bookkeeping
and not a matter of high level mathematics beyond undergraduate calculus.

In short, the doublet lattice method is based on the integral equation (276). The
integrand of this equation models the effect of the pressure difference (across the
plane of the wing) at one wing location on the induced upwash (component of
velocity which is normal to the plane of the wing) at another wing location. In a
sense, it can be said that equation (276) is entircly equivalent to the linear
aerodynamic potential equation (42) and the linearized pressure equation (52).
While equation (276) is a specialization of equations (42) and (52), no
approx;mations were assummed in its derivaton from the Euler equations.

Euler’s five differential equations of inviscid flow are the starting basis for all
derivations in this report. These five equations are comprised of one equation of
continuity, three equations of momentum and one equation of state. The
equations of momentum model pressure equilibrium in each of three coordinate
directions. The inviscid restriction of Euler’s equations means the momentum
equations lack terms of shear force. With no shear force on a fluid, no vorticity
(flow rotation) can be developed. While the Euler equations are restricted from
generating rotation, they are not restricted from convecting rotation if rotation
exists in the initial or boundary conditions to Euler’s differential equations. This
is the starting assumption in all the subsequent mathematical developments.
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The solution to a boundary value problem satisfies both the coupled partial
differential equations and the associated boundary condition equations. When a
single unique solution exists, the number of variables equals the number of
partial differential equations. For the Euler equations, we have five variables and
five differential equations. These five equations describe the flow within the
domain. The boundary condition is a description of the flow on the boundary of
the domain. The important point here is that once Euler’s boundary value
problem has been stated, all that remains is the mathematical solution. After a
general mathematical procedure has been identified, engineers can proceed to
make automated applications to their design procedures.

Section II starts with Euler’s differential equations with five unknown variables
representing flow density, pressure and three components of velocity. Euler’s
equations are non-linear. The doublet lattice method is linear. The objective of
Section I is to reduce Euler’s non-linear boundary value problem (five differen-
tial equations and associated boundary conditions with five unknown variables)
to a linear boundary value problem (one linear differential equation (42) with
linear boundary conditions in terms of one unknown vanable, the velocity
potential). The derivation of this linear (potential) equation follows the approach
taken in the text by Bisplinghoff, Ashley and Halfman. The text by Karamchet
provides an excellent explanation of the velocity potential. Equation (42) and the
boundary conditions developed in Section IV are suffictent for generating a
unique solution for the velocity potential.

Section III assumes the velocity potential of Section Il is now a known quantity.
The objective of Section I is to develop a single linear differential equation for
the unknown pressure variable. After all, the aerodynamicist is interested in the
pressure loads on the aircraft, not the velocity potential. The desired linear for-
mula is equation (52). The remainder of Section Il provides the derivation of
the reverse relation. In other words, given the pressure over the domain, what is
the potential over the domain. This relation is equation (73).
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If one accepts the linear differential equations (42) and (52) as a linear model for
the flow, then Euler’s non-linear differential equations are somewhat irrelevant
to the subsequent mathematical development of the doublet lattice method.
Again, all that remains is the identification of a solution which satisfies the aero-
dynamic potential equation (42) and the boundary condition.

In Section IV, the non-linear tangential flow boundary condition for Euler’s
boundary value problem are stated and then linearized The linear boundary
condition, together with the linear aerodynamic potential equation (42) form the
boundary value problem that will be solved by the doublet lattice method.
Finally, the special case of the boundary condition on an oscillating wing is
presented. The form of the doublet lattice method presented here assumes the
wing, and therefore the flow, oscillate harmmonically. Complex notation is
assumed here and the reader must be familiar with solving complex algebra
problems.

At this point, all the preliminary aspects leading to the doublet lattice method
have been completed. The linear boundary value problem has been completely
described. The solution procedure begins to take shape in Section V.
Mathematicians will typically solve simple linear boundary value problems
using the method of separation of variables. This approach is not at all pracucal
for solving the flow over even simple wing planforms. Another methed is to
identify a set of solutions to the linear acrodynamic potential equation (42). If
these solutions can be linearly supenmposed such that the beundary conditions
are at least approximately satisfied, then the solution is complete.

Simple solutions to the aerodynamic potential equation are not easily identified.
This is the motivation for Section V in which we transform the aerodynamic
potential equation to the well known acoustic potential equation. We will
identify an elementary source solution to this acoustic equation in Section VI
Finally, this solution is modified and transformed back to the coordinates of the
acrodynamic potential equation in Sections VI, VII and VIII. Equation (152) is
the elementary source solution ¢ s (60260, 81 o the aerodynamic
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potential equation. The definitions for R and T, found in equation (152) are
given in equations (149) and (151). The arguments x, y, - and ¢ in the function
¢ , are identical to the arguments of the potential o (x, ¥, 2, t) . The arguments &,
n and { represent the x, y and z coordinates of the reference point which labels
the elementary source solution. In other words, each source solution
&; (XY 2, &, M, §, 1) represents the potential at coordinates (x,y, z, ) dueto a
spherically symmetric flow originating from a point located at &, 1 and {.

Clones of the elementary source solutions can be placed throughout the flow
domain. The resulting potential field is a superposition of the potential arising
from each point source as given by equation (152). It tumns out that the point
sources are placed at coordinates £, 1, { on the boundary of the vehicle. If
insufficient point sources are used, the approximating composite potential
solution will be “bumpy”. In order to provide sufficient smoothness, the
approximating solution requires sufficient point sources on the surface. As a
matter of fact, one can take the limiting case of a continuum of point sources on
the surface. Each differential area of the aerodynamic boundary (excluding the
far field boundary) contains a coordinate point identifying another clone of the
elementary solution with its own strength. The linearized aerodynamic boundary
on a wing is a two dimensional plane or sheet.

Section IX describes a continuous source sheet. A source sheet is a two
dimensional surface which has been partitioned into differential areas. Each
differential area is assigned a point sour ~e of varying flow rate (or strength). In
the limit, as the partition is infinitely refined, 2 continuous source sheet is
formed. This purpose of this section is for illustration only. A source sheet will
not solve all the boundary conditions for low over a wing. The potential field
associated with a source sheet is the same above and below the plane of the
sheet. The pressure field is entirely dependent on the potential field. If the
potentiai is the same above and below, then it is not possible for a single source
sheet to gencrate a pressurc difference. However, two opposing source sheets
can generatc a pressure difference.
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Section X describes a continuous doublet sheet. This is the limiting condition as
two source sheets are brought together. Each sheet has an opposite strength
proportional to the inverse of the distance between them. A single doublet sheet
can be used to mathematically model the pressure difference between the upper
and lower surfaces of a thin wing. One could use this doublet formulation to
solve a boundary value problem for flow over a thin wing. However, this doublet
sheet formula is in terms of the (velocity) potential. We are really interested in
the pressure load. Therefore, given the solution for the potential, we then have to
solve a second problem using differential equation (52) to obtain the pressure
field from the potential field. A more direct approach is taken in the remaining
sections. Unfortunately, this direct approach increases the complexity of the
formulation.

In Section XI, the pressure potential and the acceleration potential are
introduced. The pressure potential is the unknown variable of the pressure
potential equation (185). The pressure potenudl equation arises as a direct
consequence of the aerodynamic potential equation (42) and the pressure
formula (52). The form of the pressure potential equation is identical to the
aerodynamic potential equation. Therefore, any elementary solution to the
aerodynanuc potential equation 15 also a solution to the pressure potential
equation. Therefore, the elementary solution to equation (185) is a source
function. Again, the pressure source sheet is symumetric and cannot generate a
pressure difference above and below its plane. A pressure doublet solution for
oscillatory flow, otherwise known as the acceleration potential ¥, is deveioped
in equation (191). A pressure doublet sheet can generate a pressure difference.
Now that an elementary pressure doublet solution has been identified, it is
necessary to formulate the potential field (and then the velocity at the wing
boundary) which arises with this pressure. This is given in equation (197).

In Section XII, we use the point pressure doublet solution of Section XI to create
a pressure doublet sheet using the same approach taken earlier to expand the
point source to a source sheet. This results in integral equation (203) which
describes the acceleration potential (pressure) which arises from a pressure
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doublet sheet. What we really need and subsequently derive is Equation (224)
which is the w component of velocity which arises with a pressure doublet sheet.
This is the integral formula of Section XII. If one determines a pressure doublet
distribution which satisfies the tangential flow boundary conditions using this
integral formula, then the boundary value problem has been solved. In a sense,
the linear boundary value problem and the specialized integral formula are
equivalent. While the concept is simple enough, the procedure for determining
the distributed strength of the pressure doublet is not immediately obvious.

Within the integral formula is the kernel function. The kernel function is highly
singular (division by zero valued variables of power higher than one) at the
surface of the pressure doublet sheet. The purpose of Section XIII is to reduce
the severity of the singularity and to put the kernel function in a form which
lends itself to numerical evaluation with a computer. (Note: the singularity of the
integral formula is not entirely removed.) Section XIII is very detailed and
inherently difficult to follow with all the variable substitutions. The kernel
function for a planar wing is simply summarized in the following section as
equation (277) with supporting equations (278) through equation (281).

The doublet lattice methed is 2 solution procedure for the integral formula. The
normal velocity component w is the known boundary condition. What we don’t
know is the pressure difference Ap across the thin wing. Unfortunately, the
unknown pressure falls within the integrand. In the doublet lattice method, the
pressure doublet sheet is divided into trapezoidal areas. Within each trapezoid,
the unknown pressure function is assumed to take a form with unknown constant
coefficients. More specifically, the pressure is assumed spatially constant within
the. irapezoidal arca. The integral formula is evaluated over each trapezoidal area
independently, The unknown constant coefficients come out from under the
integrand. Some ¢f the remaining singularities in the integrand are avoidea by
replacing the pressure doublet sheet with a pressure doublet line. Remaining
singularities in the resulting line integial (over the doublet line) are addressed
using the concept of principle values.
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The formulae of Section XIV are encoded in the doublet lattice program of
Appendix A as described in Section XV, The reade: must keep in mind that the
solutions obtained here will not agree exactly with the results of Giesing et. al.
because in this report, there have been no steady state coirections. Furthermore,
the formulae of Section XIV are restricted to a single wing in the (x, y) plane.

One misconception about the doublet lattice method is that the formulae are
made non-singular by replacing the doublet sheet with a lattice structure. This is
not the case. The doublet lattice method is made non-singular only by using the
concept of principle values. Tt:e appeal of the doublet lattice method is solely in
its programming simplicity. The assumed form of the pressure function would
normally change according to the proximuty to the edges of the wing. With the
doublet lattice method, the form is the same for all elements. This is a major sim-
plification.

In providing this overview of the doublet lattice method, the reader will
hopefully be better prepared to investigate the mathematical details of the
following report. Again, the interested reader will find that by using pen and
paper while reading this report, he will obtain a special level of ownership of the
material presented here. There 1eally is no other way to learn.




SECTION II

From First Principles to the Linearized Aerodynamic Potertial Equation

The equations describing an inviscid fluid flow over a solid body will be
desczibed in a frame of reference that is attached to the body and travels with it.
Here, the three cariesian components are indicated by x,y and z. Time ¢ is a
fourth coordinate or dimension. The five state variables are pressure,
p(x,y2,¢), density, p(x,y21¢), and the three cartesian components of the
velocity with respect to the frame, u(x,y, z,£), v(x,y, 2, 1), and w(x, y,z,1).
A control volume is identied and five appropriate equations are formulated to
solve for the five state variables. These are the partial differential equation of
continuity, three partial differential equations of momenturn and an equation of
state. These formulae are presented here without derivation’.

The continuity equation is given as

ap+3(pu) +a(pv) L 3ew)

o Yy e =0 1)

The three components of the momentun equations are given here. For momen-
wm in the x,y and z directions

ou oOu ou oJu ~}oPF

g;*‘llé}"'\)g}"‘%’a = "5‘3‘; (2)
a\'+ 8v+ 8v+ ’aV - -1 oP (3)
FT TR TR PR

1. One is dirccted to either Chypter § of Karumsheti o Appantix 3 of Kuethe and Chow, In the latizs, ths full Navier-Stokes
equations are derived from which the Euler oquations are obiained by setiing 'he “iscous temms to 2ero.

11
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From First Principles tc the Linearized Aerodynamic Potential Equation
aw+ 8w+vaw+ ow _ ~10P 4
FTRY PR I i 7 “)

With the following isentropic relation', we complete the desired set of five equa-
tions which we use to solve for the five unknown state variables u, v w, p and

p.

)

.l
I
kS

The constant ¥ is the ratio of specific heats. The variables p, and p , are
constant referer & values of pressure and density. This ratio of pressure and
density is constant for any element of fluid. If the entire fluid field originates
from a single static reservoir thsn the ratio of equation (5) is constant for the
entire fluid field. The formula for the speed of sound is also presented here
without developmentz.

a = -= (6)

As a first step in veducing the problem, we denne the fluid velocity vector

G = ul+vj+wk

0
The condition of irrotationality, Vx§ = 0, allows us to introduce the velocity
potential ¥ (z, y, 2, k), a new state variable. ‘the relationship between the velow.-
ity potential and the three unknown velocity components is presented here with-
out further explanation’.

1. Egquation (5} is the clasdial aqastion of state restricted to isotrooik conditions. Such Buid flow is called barotropic. Sec
page 50 of Liepenann and Roshko.

2. See chapter 2.8 of Livpa.ai aud Reshko. Altematively, sec chapler 9.2 of Kuethe and Chow.

3. See page 244 of Karsmchetl,

12




From First Principles to the Linearized Aerodynamic Potential Equation

. »0® 0D .0®

q—V(D=z§3C~+J-a-)7+k—a; 8
With the velocity potential, we can reduce our five equations and five unknowns
to three equations and three unknowns. The three unknowns are @, p and p.
These three equations will be (23), (18) and (5).

We denote the magnitude of the velocity as ¢. It should now be clear from equa-
tions (7) and (8) that the relationship between the velocity magnitude and the
velocity potential is

2,2, .2 2, m2 . 2
qg = ,/17+v +w = f¢x+¢y+¢z 9)

We can explicitly state the basis for the irrotational condition Vx g = 0 in
terms of the following three relations. This is obtained using the components of
g given in equation (7) or equation (8).

%;-’ =¥ (10)
ow 3
v 2
5 (12)

The remainder of this section elaborates on chapter 5.1 of the work by Bispling-
hoff Ashley and Halfman (or Dowell et. al.). The three momentum equations (2)
- (4) can be put into a single vector equation.

94

R . =V
‘a—r*‘[Q‘V]q B4

(13)
We now substitute for § with the gradient of the velocity potential @ as defined

in equation (8). In addition, equations (10), (11) and (12) are used to obtain
equation (14) from equation (13).

13




From First Principles to the Lineatized Aerodynamic Potential Equation

2
F) [f_] Ml
5 [VD] +V 5 5 (14)
It is desirable to express the right hand side of equation (14) putely in terms of a
gradient operator. As an intermediate step we may see that

Vp £ an
DR OC) s

where A is the dummy or umbral variable of integration. If this is not cledr, the
explanation follows here. From equation (5) we see that density p can be
evaluated as a function of pressure alone (independently of x, y, z or t) such that
p = p (p) explicitly. The lower limit of integration, p,(¢) is not spatially
variable. The upper limit is p (x, y, z, t) . How do we prove that equation (15) is
correct? This is shown by using Leibnitz’s Rule! on the right hand side of
equation (15), to obtain the left hand side. Equation (15) is often written in a less
rigorous form

Vp dp
L =V}|X 16
P j’ P (16)
Substitute equation (16) into the right hand side of equation (14). Next, reverse

the order of integration with respect to time and space on the left hand side of
equation (14). Combining all the terms gives

@ ¢ tdp] _
v[37+-2-+j-p-] =0 (17)

1. Leibaitz’s Rule is given here. Keop in mind that A is an umbral variable and will not be treatad as a function of x
Seo page (365) of Hildebrand.

P O Sy dB A
;A (] )m.xm - ) (j ) —— A1 B) - [ A
P 4 &)

14




From First Principles to the Lineatized Aerodynamic Potential Equaiion

We can interpret equation (17) as a single vector equation with three components
or as three scalar equations. The differentiated quantity in each of the three sca-
lar equations is identical. Clearly, the three derivatives are zero and therefore, the
differentiated quantity is independent of x, y and z. We can obtain a single
expression which states this more directly. Integrate each of the three vector
components of equation (17) with respect to x, y and z independently. In each
case, a constant of integration is added which is independent of x, y and z
respectively. Since the same quantity must result from the integration of each of
the three vector components, the constant of integration must be independent of
x, y and z. The only variable left is ¢ and the constant of integration is a function
of time alone. Thus, the integration of (17) leads to the well known Kelvin’s (the
unsteady version of Bernoulili’s) equation.

2
%?+%+J’%B=F(:) (18)
We are left with the task of determining the meaning of the function F (¢) which
arose as a result of mathematical manipulation and without physical insight.
Now, equation (18) must be applicable to the whole flow field and to any part of
it. We now specify a far field condition (the region far from the disturbance).
Here, the flow is steady and the streamlines are straight Thus, ® is time
invariant, the pressure is constant and the velocity is assigned a constant
magnitude of U. So our far field conditions are q2 = U?, dp = 0 and the
derivative ®, = 0. By restricting equation (18) to these far field conditions, we
obtain

F() = Ut/2 (19)
We can redefine the velocity potential such that

! 2
¢=¢~JF(t)dr=d>-%-f 20)
0




From First Principles to the Linearized Aerodynamic Potential Equation

This has no effect in the interpretation of the velocity vector and the substitution
is made in equation (18). The resulting equation is the modified Bernoulli’s
equation.

% ¢ (dp _
§+7+IF"O 21)

We momentarily put equation (21) aside and consider the continuity equation.
The continuity equation (1) can be put into vector form

:
F+@ Ve +p(V-a) =0 22)

Divide by p and substitute § = V¢ from equation (8) and equation (20).
1rop7, (V¢-Vp) _

We now step back and see what we have accomplished. Euler’s formulation has
been reduced from five equations and five unknowns to a system of three equa-
tions and three unknowns. The three equations are, (23), (21) and (5). The three
unknown system variables are ¢, p and p. While the three velocity components
no longer appear, they can be obtained from the potential ¢. We still have the
goal of formulating a single equation in terms of a single system variable and
independent of the others. We will choose the velocity potential ¢ as this single
system variable. The other variables, p and p, can be obtained subsequently to
the solution for ¢.

In attaining this single equaiion, we start with equation (23) which has three
parts. The third part is already a function of ¢. The first part can be made a func-
tion of ¢ with the following manipulations based on equations (5) and (6) and
Leibnitz’s Rule.

2719 ) dp drdv 9
L1835 L5 - alew = al
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From First Principles to the Linearized Aerodynamic Potential Equation

Interchanging the first and last steps gives a useful intermediate formula.
d dp [02 J 0 P
e " Lelu 29

The left hand side of equation (24) employs abbreviated notation which is
consistent with the meaning used earlier in equation (16). We see where the right
hand side of equation (24) fits in a time differentiated form of equation (21).
Making the substitution in equation (21) we obtain

%f[a?_‘:] - —37[%? 2}

Divide by a* to obtain

ap [“‘1 ] d[dd J
)= [2 1651 ®)
Equation (25) can be substituted into the left hand side of equation (23). Finally,

the second term of equation (23) can also be put in terms of ¢ with the following
manipulations. Starting with equation (21) we obtain

[%@ ] v fdp | (26)

First, using equation (16) and then equations (5) and (6), we see that equation
(26) can also be written as

d¢ ] Vp 1dp a
— ===Vp = =-V
[3' 2159 Tpap PP
Interchanging the first and last step and dividing by a gives
Vp _ [ ] [3¢ J
> Vigts Q7
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From First Principles to the Linearized Aerodynamic Potential Equation

Finally, taking the dot product with V¢, it follows that

Vo) Eﬂw.v[%@{ug} 8)

This is in the desired form, ready to substitute into equation (23). But, first we
carry out the operations on the right hand side of equation (28) to give

(Vo - Vp)

-l
> [w 5 (V0) +V¢- V(L )]

Now, use equations (8) and (9) and note that (q2 =V Vo)

oot A dold)]

Equations (25) and (29) can be substituted into equation (23) to give the full
potential equation.

&0

2
v2¢-—{ +§( q’) + V- v[wﬂ 0 (30)

Equation (30) is almost in the desired form of a single equation in ¢ alone. We
address the parameter, a = a(x,y, z, #) in the following development. Starting
with equation (21), we substitute for p (p) .

P

q p _ =2 5. _ (r-1,°

g =l [, o
Po

0

Using equations (5) and (6), we see > = 1" Y and substitution in equation
(31) gives the following result.

18




From First Principles to the Linearized Aerodynamic Potential Equation

2

wrg = (9) e
Here, a, (1) is the speed of sound associated with the reference (e.g.: the far
field) conditions p = p, and p = p,. So, by equation (32) we have a formula
for a in terms of ¢. This formula for a can be used in equation (30) to obtain the
one single equation in ¢. However, the form of this equation is complicated and
we don'’t solve it anyway. At this point, we assume @ is somehow restricted and
address this issue later. We expand equation (30) using subscripts to denote
differentiation.

v - [ ;‘5}»,,— (%] (8,0, +0,0,,+0,9,)
—[‘—H (6%, + 6%, + ¢%,)

-[;‘5( (20,0,0,,+20,0,0,,+20,0,0,) = 0 (33)

The steady state form of equation (33) is obtained by setting to zero the deriva-
tives with respect to £. We proceed under the assumption that a steady state solu-
tion to this non-linear equation exists.

We now turn our attention back to equation (33). The unknown ¢, is divided into
two components, a steady state component (bar) and a small disturbance
component (tilde) which is time dependent. Likewise, p and p will be divided
into a steady state component and a small disturbance component (tilde).

Oyt =4(x) +é(xNzt) (34)
px,yzt) = ﬁ(x»)’: z) +13 (x, 3,21 (35)
pxyzt) =p(xy2)+p(xy21) (36)

The speed of sound is assumed time invariant in this linearization process. So we
denote this restriction as
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From First Principles to the Linearized Aerodynamic Potential Equation

a(x,y,z,t) =a(x,y,z) \ (37)

(Ultimately, we will keep a constant. One will see that a higher order approxi-
mation has no effect on the resulting linear formulation.) We substitute equations
(34) and (37) into equation (33) and delete any non-linear terms in ¢ and its
derivatives. Furthermore, we subtract out the steady state condition. We obtain
the following time linear partial differential equation (PDE).

-~ -~ -~

(@, +0,+0,) —[ ] (9, +28,0,,+28,0,,+20.0,, +

-~ a.

00, +0.0,+0.0,+20,8,0,+0,8, 0, +8,8,9) +

x:0.)

G—l
GI

2(6,0,0,.+6.0,0 +0,

- ~ -— -~

2(,0.6,,+9.6,.0,+66,.9) ] = (38)

o

Here, we can clarify our restriction on the speed of sound a. If we had assumed
that a was of a higher order, the high order terms would have dropped out when
we dropped all the non-linear terms.

While partial differential equation (38) is linear in ¢, the solution for $ is stll
difficult to analyze for any general description of the steady state field
& (x, ¥, z) . This spatially variable ${x, 5 5) results in spauaily variabie coeffi-
cients in this PDE for ¢. Certainly, there are no elementary solutions available
for the entire flow field described in equation (38). So, we choose to further
restrict our PDE to simple steady mean flows. If we let the steady mean flow
have a uniform velocity of I/ with streamlines in the x direction, then for the
entire flow field, the coefficients are simply

d(x,y,2) = Ux (39)
a(x,yz2) =a, (40)

where a,, is the constant value of a in the far field.




From First Principles to the Linearized Aerodynamic Potential Equation

Substituting steady-state components given by equations (39) and (40) into
equation (38), we obtain

(0,+8,,+9,,) - (%](&,ﬁzvinwz?w @1)

o

By collecting similar terms we produce the classical linear small disturbance
velocity potential PDE. We now name this equation the aerodynamic potential
equation given here as equation (42). We have defined the Mach number as
M = U/a. Both the steady velocity U and steady speed of sound a were
assumed to be constant throughout the flow field in the process of arriving at
linear equation (41). For a non-linear solution, these quantities would not be
constant. It follows that for linear small disturbance theory, the Mach number is
assumed constant for the entire flow field. Later, we will use the notation,

B = 1-M.

= s (U 1 %
(1 -Af)¢“+¢,,+¢,,- (F)%' (;5‘)% =0 42)

(4 0

Now, all the coefficients are constant and we can identify elementary solutions.
This will be assumed to be the governing PDE for describing the acrodynamic
behavior. The houndary value problem is comprisad of equation (42) and the
linear boundary conditions to be specified in Section IV, It can be shown that the
solution to this boundary value problem is unique.
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SECTION III

The Linearized Pressure Equation

We can solve for § (x, ¥, 2, t) using the boundary value problem comprised of
the aerodynamic potential equation (42) and the boundary conditions to be
described later. However, we are really interested in the pressure. For this
reason, we use Bemoulli’s equation (21) to develop a linear expression for p as a
function of ¢. In other words, having developed a boundary value problem for
¢ (x,y, 2, t) , independent of the pressure p, we now develop a lincar formula for
determining pressure. This functional relationship will be givea as equation (52).
Furthermore, we will express ¢ as a function of p in equation (73).

Using equation (5) we can write pressure as an explicit function of density.

p

~?~)p’ @3)
P

]

Thus the mtcaral cxnmcsmn n equation (21) can be written

P P
dp Y -
o =)o e (a4)
P o P,

Carmrying ou! the integration on the right hand side of equation (44), we obtain

j{ [%]lﬁ}*[?}i][lgj}i’[y—}] @5)
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The Linearized Pressure Equation

Equation (45) can be substituted into integra: equa..on {21) o obtain the non-
linear algebraic expression for pres.:.re in terms of ¢ alone. In equations (35)
and (36) we introduced the small disturbance notation for pressure and density.
Here, we will linearize about the constant far field pressure condition
p(xy,2) = p, and density p (x,y,z) = p,. Since we are interested in linear
aerodynamics, we use the linear part of a Taylor equation identified here for
some function F (p) synonymous with the right hand side of equation (45).

p =F(p) = F(p,) +F (p,) (p—p,) +hot (46)

Carrying out these operati =18 on equation (45) and simplifying gives

F
dp _ _Tin.
’[p [pojcu po) [%J @7

This linear expression can be substituted into equation (21). The derivative ¢, in
equation (21) is easily linearized as
b 3

"a-; = —87 (48)

Finally, the term q2/2 in equation (21) is lineasized sbout the free stream
velocity components ¥ = U, v = 0,and w = 0. Starting with

2

2
92- PR W) (49)

DI} o

We use a multi-variable Taylor series expansion on equation (49) to obtain

2
¢ _ Y2 ey =) >
L=V +Uw-U) = 30+ U}, (50)
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The Linearized Pressure Equation

We substitute equation (47), (48) and (50) into Bernoulli’s equation (21) to
obtain the linearized expression

\ ~ =~ 1 .
=) = ~p, b+ U+ 50" (51)

It may appear that this expression is not satisfied at the far field condition where
¢, 0,9, =G and p = p,. This is easily explained. In the development of
equation (21), we defined ¢ as an alternative definition of the velocity potential
®. In deing so, we essentially set the far field pressure to zero. If p, is to
describe the actual far field pressure, then we subtract the constant P, (UZ/ 2)
factor and we obtain the result

®-p,) =-p,(9,+Us,) (52)

It turns out the p OUZ/ 2 factor will be inconsequential becaus. we will be
primarily interested in the pressure differences batween the upper and lower
surface of a wing,

Equation (52) is a very important formula. In Section II, a linear boundary value
formulation for the potential ¢ (x, »»2,t) was derived from Euler’s equations.
Once the potential function ¢ (x, ¥ 2, 1) is determined, equation (52) is used to
determine the pressure p (x, y, z, ¢) . Later in this report, it will be useful to have
a formula for the potential given the pressure. The following development!
achieves this formula as equation (73).

We start with equation (52). We temporarily? define p= (p,-p)/p 0

p=0+Ub (53)

We use the method of characteristics to solve this problem. This method utilizes
a coordinate transformation such that cquation (53) becomes an ordinary differ-
ential equation which can be easily integrated. The new coordinates are

1. Sec the refesnnce by Colton.

2 ,6md:omeaemsonodeﬁnemwyuammmwuniﬁmhmwbewnﬁndmmbmm-
porary use of the symbal §.
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The Linearized Pressure Equation

E=E&(x0 (54)
n=n1 (55)

The potential function and the pressure function are given new designations in
the new coordinate frame. (Do not confuse Wy here with the acceleration
potential of Section XI. No connection is intended.)

o (x(& M), & m) = w&m) (56)

pix,t) = p(&m; (57

We ignere the role of the y and z coordinates. It will be seen that they have no
influence on the final solution. By the chain rule, we have from equation (56).

-~

0, = W5, + Wy, (58)
9, = WS+, (59)
Substituting equations (57), (58) and (59) into equation (53), we obtain
P = (W8, +¥n) +U (W&, +vy,) (60)
Rearranging the terms gives
P =W (5+UE) +y, (n+Un) (61)

We are free to choose the relationship between the (&, n) coordinates and the
(x, y) coordinates. So we now specify

n,+Un) =0 (62)
This is satisfied if we simply choose
nxt =x-t ‘ (63)
Equation (61, bscomes
P =y (5 +UE) (64)
If we specify & such that
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The Linearized Pressure Equation

E=2x (65)
we obtain the relationship between pressure and the potential.
p=U Ve (66)

Thus, equation (61) has been reduced to equation (66). Now we simply integrate
equation (66). The constant of integration is chosen at £ = x = —co, the far
upstream condition.

§
v&m =g [phmar )

Now we work to cast this expression in the original coordinates. From equations
(63) and (65) we have the inverse relations

x=§ (68)
= %’7’1 (69)
We make the change from p to p in equation (§7).
% 1
v&m = 5 [5[n 250 (10)
Now
dxn =yEN) = yxx-Un (1)

Therefore, by substituting equation (71) into equation (70), we obtain

[ A- x+Ut]

d(x ) = ] A (12)

By replacing p = (py—p)/p, and rearranging terms, we obtain the desired
result
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The Linearized Pressure Equation

b = Bgl-l-,j[p[w—’i;—"}-po]dx 3)

-0

In this formula, the reader is reminded that A is the dummy variable of
integration representing integration in the x direction. We dropped the y and z
dependence as a matter of convenience. Adding y and z back to the argument
list of the pressure function p (x,f) = p(x,¥, 2,¢) in the integrand will not
change the integral formula. In other words, equation (73) for @(x, Y.z, 8) is
written as

¢(x,3, 2,8 = IU_] [p[k,y, z t-i—_f]}f] —p‘,JdJ\

Po
Again, this formula is used if we know p(x,y,z¢) and we need the
corresponding function ¢ (x, y, z, ) . Now A appears twice in the argument list,
once in the x and once in the ¢ place holders of the pressure function
p(x,y,2¢) . This has the influence that as we integrate downstream from
x = —oo, we evaluate the pressure at time prior to ¢. Later in this report, we will
refer to this earlier time in the integrand as retarded time. Therefore, if we know
the pressure for all time prior to time ¢, we can evaluate the above integral
expression for the potential '6 (x%yz10).

28




SECTIONIV

Linearized Boundary Conditions from First Principles

The aerodynamic potential equation (42) was formulated in section (1f). It can be
shown that the solution to this partial differential equation is unique given the
appropriate boundary conditions. The boundary condition specifies the potential
or a directional derivative of the potential on all surfaces which define the
computational domain. The directional derivative of the velocity potential is a
component of the velocity vector. So we specify either the potential or a
component of the velocity on the surface of the computitional domain.

When the flow over a flight vehicle is addressed, the computational domain is
defined interiorly by the surface of the flight vehicle and the trailing wake and
exteriorly by the far field conditions. The domain may be nominally fixed with
respect to the vehicle body of interest. Certainly, this is usually the case for most
aerodynamic developments and this has been the case in this text. However, one
may have a reason to attach the frame of reference to the atmosphere and let the
vehicle pass through the reference frame. For this special case, the interior sur-
face of the computational domain moves and therefore, the houndary condition
is applied over a moving surface. Here, we will only address boundary condi-
tions on a surface which is nominally fixed with respect to the frame of refer-
ence.

Vehicle Surface Boundary Condition

A tme variant surface in three space can be described by the equation

F(x,y,2,t) =0 (74)
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Linearized Boundary Conditions from First Principles

Of course, it is unrealistic to formulate a closed form expression for the function
F if the surface is detailed as may be the case for a flight vehic’e. However, one
can always formulate the function F for a sufficieatly small patch of the total
surface.

The boundary condition on the vehicle specifies that the flow is tangential to the
surface. In other words, there is no component of flow normal to the surface.
Mathematically, this is described by1

%; +V.VF =0 | (75)
This equation can be linearized about any reference shape. We have linearized
the potential equation (33) about an undisturbed uniform flow as described by
equation (39). Thus, the boundary condition will be linearized in kind, about an
undisturbed and uniform flow. As mentioned earlier, this is a severe restriction.
Basically, this limits us to modelling flow disturbances over slender bodies and
thin wings.

Here, we will linearize equation (75) specifically for a thin wing. We denote the
functional description of the surface of the wing as F = F_ (x,y, z,t). This
function is now constrained to two uncoupled components, the deformation of
the midplane h,, and the thickness envelope 4, about the undeformed midplane.
The undeformed midplane is conveniently designated as the z = 0 plane. This
is stated mathematically as

Fy(t,y2,t) =z2=h,(x,y,8) Th(xy1) =0 (76)

For the linearized flow about a uniform free stream, V = U}, the aerodynamic
velocity vector is mathematicelly described as

V= (U+wi+ W]+ wk (77)
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Linearized Boundary Conditions from First Principles

For the remainder of this text, we redefine u, v, and w differently than in equa-
tion (7) to represent the small disturbance from the uniform free stream. We sub-
stitute equations (76) and (77) into equation (75) and denote b = k&,

h oh h
_.%7—-(U+u)3}—v%+w=0 (78)

We desire a linear relation between the velocity components at the surface of the
wing and the function 4 (x, y, £) . So, we make equation (78) linear in A, u, v
and w (keeping in mind that the derivative is a linear operator) by dropping the
non-linear terms. Equation (78) now becomes

oh _oh

It is now clear that the components of (h=h,th,) can be treated indepen-
dently in the linearized boundary conditions. This is especially important when
the dynamic response of a wing is considered. Here, we normally assume the
thickness effects are not time dependent.

h(x,y,t) = h, (x,y,t) £h (x,y) (80)

Therefore, when analyzing the dynamic response of a wing, we superimpose the
dynamic response due to h,, on a separate time invariant solution using &,. This
has an important influence in our choice of the doublet sheet to model the aero-
dynamics for the time dependent flow over the wing midplane and our choice of
source panels to model the aerodynamics for the time invariant component of
flow the wing thickness envelope. The concepts of a doublet sheet and a doublet
lattice will be discussed later.

The Far Field Boundary Condition

The far field boundary condition is enforced at far distances from the interior
boundary where the flow is uniform. It will be clear that the far field condition is
satisfied automatically when one uses a superposition of sources or doublets on
the interior boundary. The influence of sources and doublets dies out at infinite
distances.
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Linearized Boundary Conditions from First Principles

The Trailing Wake Boundary Condition

Steady state lift cannot be sustained where there is no viscosity. However, the
aerodynamic potential equation (42) is restricted to irrotational and therefore
inviscid flow. This contradiction is corrected by fixing the flow circulation about
the airfoil to meet the Kutta condition. The Kutta condition specifies a smooth
and finite flow off the sharp tailing edge of a lifting surface in incompressible
flow. The velocity vector is not allowed to deflect as the flow passes over the
trailing edge. If it does deflect, the velocity becomes locally infinite. This trailing
edge condition and wake are completely characterized for incompressible flow’.

Linearized steady compressible flow over planar wings can be transformed to
the incompresible case (using the Prandtl-Glauert transformation) and therefore
the trailing edge condition is well understood. For linearized unsteady comyress-
ible flow, the trailing edge condition is not as clearly characterized. For instance,
at high frequency, it is experimentally known that the flow off the trailing edge is
not tangential. This is an important topic and warrents further study2. For linear-
ized flow, we introduce a trailing wake or sheet with the property that the pres-
sure difference across the sheet is zero. This is the only condition imposed on the
wake. We allow a non-tangential flow on the wake. A few of the consequences
of these assumptions are now discussed.

For our linearized boundary value problem, the wing and therefore the trailing
edge are in the z = O plane. In time, the mathematical representation of the
wing slices out a plane region as it moves forward through the air at velocity U.
We will treat this planar region as the trailing wake. (We could have a non-planar
wake. However, for our linearized system of equations, the added accuracy is
not warrented.) It is assummed that there is no jump in the non-zero velocity
component, w = ¢, across the wake. Therefore, ¢_ is symmetric with respect to
z in its first approximation (eg. Fourier Series) with respect to z . With ¢, sym-
metric, it follows that ¢, ¢, and ¢, are all antisymmetric with respect to z in the
first approximation. Therefore the pressure

1. Ses Sections 13-8 through 13-10 of Karamcheti for a discussion of the wake, Chapter 7 discusses flow discontinuity.
2. The work by Guderley partially addresses this topic.
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Linearized Boundary Conditions from First Principles

p=0,+U9, (81)

is antisymmetric with respect to z in the vicinity of the wake. Since pressure
jumps are not admissible, it follows from antisymmetry that the pressure is zero
in the plane of the wake.

The trailing wake boundary condition for steady flows requires ¢ to be antisym-
metric across the wake. We allow the possibility of an anti-symmetric jump in ¢
across the wake. While continuity in pressure is a requirement, continuity in ¢ is
not. We are free to use the wake as a boundary on the domain of the potential
field. Since ¢ is antisymmetric and discontinuous across the wake boundary, so

is ¢,.

Boundary Conditions on an Oscillating and Deforming Wing

For simple wings, it is often expedient to represent the deformations in terms of
polynomials in space and harmonic in time. Certainly, this is the case for flow
over a plate. We assume a polynomial of order », in x and nyin y. Frequency is

denote as ® and we use complex notation. So we constrain the out-of-plane
deformation to the following series expression:

ny

By t) = {Z ) a,,,xjy"} e (82)

j=0k=0

Of course, we really mean to equate h with the real part of the right hand side of
equation (82). We substitute equation (82) into equation (79) to obtain

_ ok, ok
YER Y%

ny

(B E B o

j:Ok:O j=0k=0
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Linearized Boundary Conditions from First Principles

ot

The complex modulus of w is denoted as w such that w = we . From
equation (83) we obtain
n, n, m,
W= imZaakyk+ Z zajk(i(ox'yk+ ij"lyk) (84)
k=0 j=1k=0

The main reason for developing equation (84) is to provide an example of the
boundary condition formulation which may be used in the doublet lattice
method. Input for the example doublet lattice program in Appendix A is in this
form.




SECTIONV

Transformation to the Acoustic Potential Equation

In Section II, we started with the Euler equations and derived the aerodynamic
potential equation.

(1_M2)&>u+&»yy+?v,,—[%2‘-’ﬁ,,—[%]'6,, =0 (85)

We now show the relationship between equation (85) and the classical acoustic
potential equation.

1 A}
?xao+9yoyo+9:,:,-[‘?]§’zz =0 (86)

It turns out that the elementary solutions to the acoustic potential equation are
useful in identifying other elementary solutions to the aerodynamic potential
equation. This is taken up in the next section. There are two ways in which one
may obtain equation (86) from equation (85). However, the interprstation
differs.

First, we note that in the derivation of equation (85), we linearized the potential
about a uniform flow with velocity U in the positive x direction. (Or, what is the
same, the body moves in the negative x direction.) If we assume the flow has
zero velocity, then equation (85) takes the form of equation (86) and ¢ 1s
identical te ¢ and so are the coordinate frames.
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Transformation to the Acoustic Potential Equation

However, if we take a second approach, we see that equation (86) can be
obtained from equation (85) by the follow. \g simple translation (also known as
the Gaussian transformation).

x, = x=Ut (87)
Yo = (88)
z, =z (89)
T=1¢ (90)

We see that the (x,y,z,) frame moves with velocity Ui with respect to the
(»,y,z) frame and is therefore motionless with respect to the undisturbed
atmosphere. Next, we state that the potential in the (x, y, z) frame is the same as
the potential in the (x,y,z,) frame. We distinguish between the functional
descriptions with an over-tilde and an under-tilde.

Yz t) = O(Xp Y120 T) (91)

We use the chain rule and equations (87) through (90) to carry out the
differentiation process. We denote differentiation with subscripts.

=9, (), = ¢, (92)
& =9, () +9.T, = -US, +9, ©3)

We follow through with less detail for the higher derivatives using both the
product rule and the chain rule for diffzrentiation.

6&\' = 9x % 5N (94)
by = - VD, 0, ©5)
0, = U9, -209, +0, %6)

Of course, there is no change for derivatives in the lateral directions.
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Transfommatioa to the Acoustic P .eatial Equation

8, = b, ©7)
6. =9.. ©8)

By substituting equations (94) through (98) into equation (85), we obtain
equation (86).

The interpretation of the two approaches is different. The first approach is trivial.
We simply set the velocity to zero. The second approach is a linear transforma-
tion. The aerodynamic potential equation (85) is identically the same as the
acoustic potential equation in a uniformly moving frame.
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SECTION VI

The Elementary Solution to the Acoustic Potential Equation

in the previous section, we showed how the acoustic potential equation {86)
relates to the aerodynamic potential equation. In this section we seek an elemen-
tary solution to the acoustic potential equation. This is given in equation (109).
We introduce the linear Laplace operator V? and restate the acoustic potential
equation (86) as equation (99). (we drop the tilde underscore.)

%R
=

1Y = v 99)

a a
Ir: equation (99), we have not specified ¢ in any particular frame of reference.
We now introduce the use of spherical coordinates where r is the radial measure,
0 is the measure of longitude and A is the measure of latitude.

Mo

o =6(r,6,A,1) (100)

The acoustic equation (99) takes the following form'® in spherical coordinates.
2
a 1 9_ { 2 a¢ +
2 - Porl 37

1 ¢ 1 19%
[rzsink]a—xtsmk ] {rz(smk) JBGZ (101)

We are looking for an elementary solution to the acoustic potential eguation.
This elementary solution inay then be used in computing complex solutions by

1. Hildebrand, page (313).
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The Elementary Solution to tke Acoustic Potential Equation

the principle of superposition. More importantly, the elementary solution may be
adapted to solve the aerodynamic potential equation (42). We niake an educated
guess and look for a solution to equation (101) which is spherically symmetric.
We temporarily designate this solution with an overbar (not to be confused with
the steady state solution in Section II).

¢=0¢(r? (102)
A spherically symmetric flow is the same as a pulsating source (or sink) with

radial streamlines. Physically, such a flow injects mass into the field. The
spherically symmetric form of the acoustic equation 1is

L [ 236] (103)

32 rForl o
In order to maintain the undisturbed far field condition, we seek an elementary
solution which dies off as » — oo. We choose the lowest order expression.

fn

r

o(r,1) = (104)

By substituting equation (104) into equation (103), we obtain the following
hyperbolic partial differential equation.

& &
5{{ = azé—r—f (105)

Hyperbolic equations have characteristic solutions’, The two characteristic solu-
tions to equation (105) are combined.

f(r,t) = fi(r+at) +f,(r-at) (106)

1. soc page 399 of Hildebrand
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where f; and f, are any analytic function. Usually, the classical acoustic solution
is placed in the following form which is obtained from equation (106) by modi-
fying the form of f; and f,.

F(ro = gi[:+ﬂ+ge[:l] (107)

a

One can easily verify that equation (107) is a solution of equation (105). Now,
substituting equation (107) into equation (104), we obtain the result

r r
o(r,t) = gi[HELge{t”z] (108)

r r

If we plot g, as a function of time (assuming some initial pulse) we see that g,
represents an expanding wave. Likewise, g; represents an imploding wave. We
ckoose g, = 0 because the acoustic phenomena of interest here takes the form
of an expanding wave from a central disturbance. We drop the subscript ¢ and
write

-]

r

¢ (1) = (109)

The argument (- (—2) is called retarded time because it accounts for the delay
between the time the radiating disturbance was initiated at » = 0 until the time
it reached the distance r. We may assume that the function g (¢) is known.

It is a straightforward matter to verify that equation (109) is a solution to the
acoustic potential equation (86) given in the previous section in terms of carte-
sian coordinates. First we establish the following relations.

12
r= (x2+y2+zz) (110)

r, =

~ |

(111)
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_1.2 112
r -;-;3 (112)

We now proceed to develop expressions for the derivatives of ¢ = ¢ given in
equation (109).

o F-EMeE o
b [ B Lol L) [ L2+ [ o[- 2] oo

The derivatives with respect to y and z are derived similarly.

2 2

e G CHRE AN R

The derivative with respect to ¢ is directly derived.

< 1., r
&= 8" 1-1] (117)
We substitute equations (114), (115), (116) and (117) into the equation (86) and
we see that it is satisfied. Thus, we have confirmed that ¢ = ¢ is an elementary
solution to the acoustic potential equations.

Now we come to an important point. Up until now, we have assumed the point
source is stationary. If the source is moving in time, relative to the point x,, y,,
z,, then the definition of » changes. From equation (110), we now have
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2 2 2,V
r= (G0 =2)" G0 =y) "+ () - 2,)"] (118)

The expression for ¢,, in equation (117) is not correct for the moving source and
the acoustic equation (86) is no longer satisfied. So we formulate a new
elementary solution which represents a moving source. This is accomplished in
the next section.
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SECTION VII

The Moving Source

In this section, we obtain the elementary formula (145) for the moving source. In
the next section, we transform this solution to the moving frame of reference.
Then one may demonstrate that this formula does indeed satisfy the aerody-
namic potential equation (42).

The following explanation is a review of the derivation provided by Garrick’.
We superimpose a train of stationary sources, all in a line. These sources are
pulsed in a sequence, thus giving the same effect as a single source moving at a
constant speed. One may think of this as a motion picture film of a moving
source derived from a series of photographic frames.

The pulse function & (¢) is defined to be 0 when ¢+ 0 andtobe 1 when ¢ = 0.
We can define the pulse function more eloquently with the following continuous
function.

0 t<~a
d() =}i_l§0 -21-{14-003[%{“ ~astsa (119)
0 t>a

The pulse function has the following effect when placed in the integrand. When
we view the integration process as the limit of a series summation, the pulse

1. See page 571 of the work by Garrick
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function selects only one value of the integrand and reduces the other series ele-
ments to zero.

£ = [fmd@-nar (120)

Given a set of orthogonal x,, y and z, axes, fixed to the atmosphere, place a
series of stationary sources coincident with the x, axis. Thi¢ is shown in figute 1.
These six sources shown are located at x, = §, where the index i ranges from
1<i<6.

A:

(xpi y o zo)

Yo

: —
& & & & & &

Figure 1. Acoustic Sources on the x, Axis

All six stationary sources are assumed to sct independently. Because the acoustic
potential equation is lisiear, we can superimpose the elementary formula (109)
relating the potential at (x,,,,2,) due to a source located at x, = §, &nd
Y,=2,=0.

6

O (X V2o 1) = Z[%]g[r—%‘] (121)

i=1
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where

ro= (x,-8) 2+ )+ (2,)? (122)

If g is the pulse function, then equation (121) represents the potential which
arises due to the six sources which are simultaneously pulsed at ¢ = 0 with unit

strength,

O (i Yor Zop ) = i[-}_]s[:- i) (123)

i=1t !

" In equation (123), we see the effect of the retarded time. Even though all six
sources are pulsed simultaneously, the effect at the point (x,,y,,z,) is picked
up (r,/a) later. In other words, six simultaneous pulses are transmitted to the
point (x,,y,,2,) with a different delay.

Now, instead of pulsing simuitaneously, we pulse the sources in a sequence,
starting with the sonrce at &, and ending with the source at &,. Each source is
pulsed with a time delay of ¢ = 7, relative to ¢+ = 0. Furthermore, rather than a
unit strength, each source is pulsed with strength F; . Equation (123) now takes
the form

6

Garin) = 37 1E28] (-5 -] (124
Instead of six point sources, we may have many point sources along the x axis.
In fact, we may define a continuum of sources as a limiting process as the num-
ber of point sources go to infinity. (While, this argument is not rigorously
defended here, it can be shown that the desired formula relating the potential
field due to a moving source does satisfy the aerodynamic potential equation.)
The summation process of equation (124) is now treated as an integral
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00

O (X Yy 2 8) = j [ & ]F(z)s[ (z—r)——-(-’-)J T (125)

where 7 is the dummy variable of integration which one may think of as running
in parallel with time . The variable T points to some place in time for which a
uniquely tagged point (or differential) source is active. We devise the definition
of r (7) based on r; given in equation (122).

A1) = (x,~&, (1) +y2+22 (126)

F (1) dv is the differential strength of the source pulse which is uniquely identi-
fied by the time delay 1. Now, let the sources be pulsed at a uniform rate of ~U
along the x axis. Furthermore, we specify when t = 0, there is a pulse at
x = 0.In other words, we specify

%@ = -0 (127)

and equation (126) becomes

A = (x,+UT) 24yl 2 (128)

We now strive to evaluate the integral equation (125). The resulting formula,
equation (145), is the desired elementary solution for a moving source. In order
to take direct advantage of the sifting property described by equation (120), we

employ the following change of variable in equation (125) in order to simplify
the process.

r (%)
-0 =ft-1-~ ~a (129)

Substituting for r () from equation (128), we obtain

o 1 2, .2, 2,172
- =t—1:-—(5)((xo+Ut) +y,+2;) (130)
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We now modify equation (125)

o0

O (X, Y, 2, 8) = f [ ;%E]F (7) 5 (©) [%]d@ (131)

-0

In the process of changing the variable of integration from 7 10 ©, we require
expressions for ©(®) and dt/d®. This task is easier than one may suppose at
first. According to the sifting principle of equation (120), we evaluate the inte-
grand at ® = 0 only. This gives the result

oo = [ lr@[ 5] (132)

We now evaluate equation (132) for the potential which arises from a moving
source. This is achieved in equation (145) using equations (135) and (143).

From equation (130), obtain the following quadratic in 1 for © = 0.

U 2 24,2
(8% 1:2—2[1‘-4- _?]'H[rz— e y;, z")J =0 (133)
a a
where B% = 1-M? and M = U/a is the Mach number. From this quadratic
equation, we expect two solutions for 1.
1 Ux 172
¢ = (Ei)[(u- _;);t%((xo+zzx)2+pzy§+szz§) ] (134)
a

For subsonic flow (M < 1), we choose to limit € < ¢ which limits cquation (134)
to one root'. Equation (134) becomes

1. Garrick gimmeueumxm;hicduplmmonfalheluhwniccndnpamincwinﬂmuul’.kudﬁlbmm«
674 und 676 respectively.
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H (135)

where

_ , 12
R = ((x,+Un)2+pi+p%D) ’ (136)

Equation (135) is the expression for T when @ = 0 and U<a. We now

compute dt/d® with € = 0. Equation (130) is rearranged, squared and
differentiated to obtain equation (137).

adg[az(t-t—e)zl = a%[(xa+U*c)2+y§+z3] (137)

Carry out the differentiation and then set 8 = 0.

2 dat _ dt
a ('c-t)[-&-é-l:l = (xowz)u[a@] (138)
Now solve for d1/d®.
2 dat )
(@ ('c-»r)-U(xo-i-U"c)]a-é =4a"(t—1) (139)

Next, we observe from equation (129), for 6 = (

r=a(t~1) (140)
Making the substitution in equation (139) gives

[-ar-U(x,+Ux)] = -gr (141)

dt
e
1dt a (142)
rd®  ar+U(x,+Ux)
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Using equations (140) and (135), we substitute for » and t on the right hand side
of equation (142). After some simple algebraic manipulation, we arrive at the
following simple result.

1dr 1

-6 = 7 (143)

The definition for R was given in equation (136). Finally, we use equation (143)
in equation {132) to obtain

0 Gplptot) = [ F Mooy (144)

From equation (135), we have an expression for © when @ = 0. We make the
substitution in equation (144).

¢(xoryo:zoat) = [;‘"K]F[éi(t‘i- a;’, .-E)} (145)

where R is defined in equation (136).

This is the fundamental solution for the potential which arises due to a source
moving along the x axis with constant velocity of ~U%. In the next section, we
transform the coordinates to a moving frame.




SECTION ViII

The Elewientary Solution to the Aerodynamic Potential Equation

Our objective of the past three sections has been to derive elementary solutions
to the aerodynamic potential equation {(42) which may be used to model the flow
over wings and bodies. n Section V, we recognized that the aerodynamic poten-
tial equation is related to the acoustic potential equation by a simple Gaussian
transformation. The coordinates axes of the acoustic potential equation are fixed
to the atmosphere while the coordinate axes of the aerodynamic potential equa-
tion move with constant velocity ~U7 relative to the atmosphere. The elemen-
tary solution to the acoustic potential equation is a stationary point source with a
spaual decay of (1/r). We used a modificd form of this solution (109) to obtain
an elementary solution to the asrodynamic poteatial equation. Then a complica-
tion arose. We discovered that a simple transiation of the stationary source in the
x direction does not satisfy the acoustic potential equation. This mathematical
complication is the result of compressibility (also referred to as the Doppler
cffect). Here, we are faced with the apparent compression of pressure wave
fronts travelling upstream and the appasent expansion of pressure wave fronts
travelling downstream. So, through the limiting process of superimposing a
series of source pulses, we simulated a constant velocity source and derived the
formula (1<5) for the resulting potential.

In this section, we apply a change of coondinates to the moving source solution
(145) in the acoustic frame and thereby obtain the moving source solution (152)
in the original constant velocity frame. This is the desired elementary solution to
the aerodynamic potential equation. One may directly verify that equation (152)
solves the acrodynamic poteatial equation by direct substitution.
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Again, our objective is to mathematically model the flow over wings and bodies.
One approach is to position a continuum of sources on the wing or body surface
in order to disturb the flow and thereby satisfy the tangential flow boundary
condition. This concept of a spatial continuum of sources will be discussed in
the next section.

The moving coordinate frame is fixed relative to the structural geometry and has
a velocity ~Ui iclative to the acoustic coordinate frame. Therefore, a source
moving with velocity —U? in the acoustic frame is now fixed relative to the
moving frame. The potential which arises from a moving source was presented
as equation (145). From equation (127) we know that at + = 0 the single moving
source is located at the origin of the (x,y,z,) axes. We may modify the
elementary solution (145) to model the potential ¢ (x,y,z,) due to a single
moving source which maintains a constant distance (&, n, {) relative to the
source located along the x, axis at (& 0= -Ut) . (We revert to the under-tilde to
denote the potential in the stationary acoustic frame. Furthermore, the functional
notation c:p is used to denote the transitional state between the stationary and
moving frames.)

- 1 1 Uxe=8) 1.
O (X Yo 2 &M G 1) = [ﬁ} [“‘é{ T ;;R” (146)
and from equation (136)
2, a2 2, a2 2,12
= ((x,+Ut=8)"+P (y,-M +P°(z,-O)) (147)

Now we use equations (87) through (91) to change from the fixed (x,y,z,)
coordinates to the moving (x, y, z) coordinates.

, CUG-U-8) 14
o,Gonn bl = []F [é- LU v E;)_%RH (148)

and
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R

. /2
(=5 +B - +F -0D (149)

We make algebraic simplifications to equation (148) to obtain the following
equation.

ol -

- - M(x-&) —-R
wm»%@mgn=[kﬁ+(x? 1 (150)

af”® |
As a final step, we give T a new definition, not related to the dummy variable
used in the previous section. Here, 7 1s the retarded variable and it represents the
time delay incurred for a pulse to transit from its origin at (&, 1, {) to the point

(x, 9, 2) .

5

—
=M x-§)+R ¢

T = ‘ (151)
a [32
The form of equation (150) is simplified.
- ri
%m»aémgﬁatipﬁ—ﬂ (152)

The subscript s is added to denote the source solution. Later a subscript d will
denote the doublet solution. In the derivation of equations (152), (151) and (149)
we closely followed the approach taken by Garrick. This is the fundamental
moving point source solution to the aerodynamic potential equation. Thus, our
interim objective has been achieved. Eigher order solutions can (and will) be
formulated by differentiating equation (152) with respect to x, y or z.

It can be shown by direct substitudon that equation (152) solves the aerody-
namic potentiai equation.

(1-M2)7¢3x,,+?b,,+?b,,—[%¥}'x,-[;ﬂ$,, =0 (153)

35




SECTION IX

The Source Sheet

In the previous section, we showed that the fundamental source solution to the
acrodynamic potential equation

~ == 2U 7~ 13-
(1~M2)¢n+d:)y\,+ zz-{-z}‘pxt"[—z]q)n =0 (154)
‘ a a
1s given by the following simple formula.

% nnbn o = %]F [t-1] (155)

This is the formula for the potential at coordinates (x,y, z) due to a single point

source at coordinates (&, 0, {) . The boundary condition for the flow over a thin
wing was given in equation (79).

3 _oh oh
w= o= 5tUss (156)

where h(x,y,t) describes the time dependent deformation of a thin wing in
the (x,y) planc. The obvious question remains; how do we use equation (155)
to solve for the flow over a wing? The answer is not simple and is the subject of
the remainder of this text. We still need to formulate the source doublet in
Section X and then we formulate the pressure doublet in Section XI. We use the
concept of the doublet sheet to develop the integral formula in Section XII. In
this section, we aie introduced to the concept of a source sheet. While we will
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not use the resulting formulae for a source sheet, the concept is directly
applicable to a doublet sheet.

If we restrict our problem to the flow over a steady wing with no deflection (i.e.
only the wing thickness is a consideration), the boundary condition equation
(156) simplifies to

3 9k

5 U 3 (157)

Equation (155), for the elementary point source solution with temporally con-
stant strength A, simplifies to

AN ]

R (158)

‘33 (x, 3, 2, é’ n C) = {
Where A is the unknown strength of the source at the coordinates (&, 1, {). In
order to satisfy this boundary condition, we may superimpose n point sources
located at (x,y,z) = (§,7M,0). We satisfy the boundary condition on the
wing surface! at n points located at (xj ¥ 2;) - The thickness envelope is sym-
metric above and below the (x, y) plane so it is sufficient to satisfy the bound-
ary condition on the top surface only. We differentiate equation (158) with
respect to z and substitute the result into equation (157) for each static point
source.

0 " E)FA(};"L)
BRI e

So we have a system of n equations and n unknowns which can be solved with
linear algebra. One expects the accuracy of the solution to increase as the
number of point sources and control points 1is increased. We can reformulate
equation (159) as an integral if we consider the source in a limiting process.

1. By sansfying the boundary condition on the wing turface, we are inconsistent with our assumed Lincarization at the wing
midplane. However, ane expocts the boundary condition on the wing surface to be more sccurate than the midplane. Besides,
we avoid problems with singularities.
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o) - ([ [25 Js o

Here, we have discretized the (x, y) plane into differential areas of size dS and
located at x = § and y = 1. Each differential area has a source strength of
AdS. Again, the steady function 4 is evaluated at (x, y) . The radial measure R
is now defined as

s ]‘ ’ 2 2 2 ) 5 172
R=|x-8"+p (¢-n +p (2 ] (161)

If one is given the value of & (x, y) at m points, equation (160) can be approxi-
mately solved for the unknown function A (&, 1) if A (§, 1) is defined in terms
of m approximating components with constant coefficients. For instance, we
may form a composite function, 4 (§, 1) by superimposing m polynromials in &
and M, each polynomial weighted by a constant (but not yet specified) quantitiy.
We integrate equation (160) for each polynornial. This results in a linear system
of m equations with m unspecified constanis. Alternatively, we may spatially
discretize the wing planform and approximate A (&, ) with a continuous spline
funciion with m unspecified coefficients. Again, equation (160) is integrated to
obtain a linear system of m equations with m unknown coefficients. We may
think of this aerodynamic modei as a linear system with m independent inputs
(h(x,y) at m points on the surface) and m dependent outputs (m polynomial
constants). Once the approximating solution for A (£, 11) is obtained, the poten-
tial is determined using equation (158). Then we use the time invariant term of
equation (52) to solve for the pressure.

a¢]

P(xy) = —pU| 52 (162)

Thus, one example of how one may use the elementary point source solution to
obtain a continuous solution has been given. Keep in mind that we are solving
the small disturbance problem and that the solution breaks down at stagnation
conditions.
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It turns out, that a single source sheet cannot generate a pressure difference
across the (x, y) plane. Therefore, no lift can be generated. Mathematically, this
is seen when one recognizes the symmetry of the potential above and below the
(x,y) plane. For this reason, we investigate the source doublet in the next sec-
tion.




SECTION X

The Source Doublet

In Section IV, the tangential flow boundary condition over a thin wing was
separated into two linear components, wing thickness and wing deformation.
Thus, we can treat the linear boundary value problem for a thin wing as two
separate problems, the potential which arises due to the thickness envelope and
the potential which arises with the deformation of the wing midplane. The total
solution is the superposition of the two component solutions.

In the analysis of most linear systems, one considers the steady state condition
and then superimposes the time dependent response. The steady state solution
for a wing is a superposition of the pressure due to thickness and the pressure
due to steady deformation of the midplane. The time dependent response is asso-
ciated with the time dependent deformations of the wing midplane alone. This is
an important consideration because we can mathematically model the fiow over
a deforming wing with an infinitely thin sheet.

In the previous section, we demonstrated a solution technique using a source
sheet. However, it was pointed out that due to the symmetric nature of the source
sheet (with respect to the (x, v) plane), it was not possible to develop a pressure
differential. Therefore no lift can be generated with a single source sheet.
However, it is possible to develop a pressure difference if two source sheets are
placed in parallel. This can cause nurnerical problems if the two sheets are
brought close together. This is not to say this has not been done. On the contrary,
there are many examples where this is exactly what is done. However, for our
linear analysis, this results in a waste of computational resources. Instead, we
can formulate the limiting condition as two source sheets with opposing
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strengths are brought close together. This is the source doublet sheet. In this
Section, we describe the elementary point doublet formula.

Given the linear acrodynamic potential equation
- - 2U = 17~
Bz¢xx+¢yy+¢zz"'i;f}¢xt—[?]%‘ =0 (183)
and the fundamental source solution of equation (152).
1
0, = =f(t=7) (164)

we show that the elementary solution

¢d = %(¢s) ' (165)

is also a solution. We substitute equation (165) into equation (163) to obtain
JESR AR
Fllze][F]le], -0 -
Next, the order of differentiation is changed
%[B* @)+ @)+ @), [ 7|0, [5]e),] =0 ae

The term in the square brackets is known to be zero from equation (163). Equa-
tion (167) reduces to

535 [0] =0 (168)
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Thus, we have shown that equation (165) is also a solution to the aerodynamic
potential equation. We call this the source doublet or just the doublet solution. In
order to give some physical significance, we investigate the source doublet for
the steady incompressible case (set M = 0). Here we have the point source
solution for a source of unit strength located at the origin. The potential is

1
0, == (169)

with
P =Rty (170)

According to equation (165), the potential which arises from a point doublet
solution can be obtained by differentiation of the source solution with respect to
Z.

(bd:—--::—j- (171)

Now, we take a second approach to arrive at equation (171). We bring two
sources together from above and below the z = 0 plane as shown in figure (2).
The strength of the sources are opposite and inversely proportional to the dis-
tance between them. Using equation (169) we obtain the combined potential

Iar1 1

=[xt 77 a7)

Equation (170) is modified for each source as follows.
rf = x2+y2+ (z+(;)2 (173)
rp =2t +y + (z2=4)° (174)

We temporarily assume z# 0. We can see that as { — 0, we have a zero in the
numerator and a zero in the denominator.
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Figure 2. A Source Dipole
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We use L’Hopital’s Rule.

¢, = 5 (176)

¢, = lim| r r am
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3,3 3 3
1, |2yt |1 C(ry—r)
¢ = ighglo[ nr ]+§§h—r+no{ rr (178)

We now take the limit as { — 0 to obtain equation (179). Furthermore, we now
allow z to go to zero. We see that equation (179) agrees with equation (171).

b= = (179)

So a source doublet is the limit as a source and sink (source with negative
strength) are brought together with strengths inversely proportional to the dis-
tance between them. The same result is obtained by differentiation in equation
(171).

In the same manner in which a source sheet was constructed by placing a point
source in each differential area of a sheet, we can construct a doublet sheet by
placing a point doublet solution in each differential area with the above doublet
solution. However, there were restrictions placed on the above point doublet for-
mula. It is limited to steady incompressible flow. In this report, doublets will be
formulated for unsteady compressible flow.

For a point source, the potential which arises at any other point is proportional to
1/r. Therefore, the potential field for a source solution is symmetric with
respect to any plane passing through the point r = 0, including the (x,y)
plane. It follows that the potential field arising from a source sheet in the (x, y)
plane is symmetric with respect to the (x, y) plane. If the potential immediately
above and below the (x, y) plane is identical, then it follows from equation (52)
that the pressure immediately above and below the wing will be identical. There-
fore, a single source sheet cannot generate a pressure difference.

For a point doublet, the potential is proportional to —z/r> and it follows that the
potential field for a doublet sheet is antisymmetric with respect to the (x,))
plane. Since the potential is antisymmetric, we know from equation (52) that the
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pressure above and below the (x,y) plane must also be antisymmetric. So, in
contrast to the source sheet, we can develop a pressure difference with a single
doublet sheet. This is a fundamentally simple but important concept.




SECTION XI

The Acceleration Potential

Up to this point, we have been using the velocity potential ¢ as the unknown
variable in our linear aerodynamic system’. The input to our linear system is the
wing deformation A. The output of our linear system is pressure p. However, our
solution technique solves for the veiocity potential first and pressure is computed
later in a second step. In this section, we aveid the intermediate step of solving
for the velocity potential and solve for pressure directly with the introduction of
the pressure potential and subsequently the acceleration potential® .

We start with the acrodynamic potential equation (42).
- e 207+ 11~
B0, +4,, +¢“-h§-]@,-[;§]¢“ =0 (180)

Next, we differentiate with respect to ¢ and thea x to form the following equa-
tions

2.5 y - r2U7 3 17
FOMIONIONI (¢,)x,-[;] @), =0 @8y
25 ; - r2UY A 17 - (182)
B (¢“)n+ (¢‘)»'+ (@,)“‘ L;{_ (Q’)xt*[;ﬁ_‘ (4”):: -

We multiply equation (181) by p, and equation (182) by p U and add them
together to obtain equation (183).

I. Ser Williams, Guderloy and Lee for the non-singular farmulation for the poiential which arises froeh a doublet shoet.
2. ¥ may also be described as a presawre doublet. To be consisteat with aquation (169), we should use the symbal p, to de-
sctibe & prespare doublet. However, weo recuaia cansistent with Vivian and Andoews aad use .
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B0, (0, +UD,)  +p,(0,+Ub) +p,(3,+U8) -
B ORI P L XTI (183)

We recognize the following form of equation (52) within equation (183).

p=-p,(0+Ud) (184)

After making the substitution in equation {183), we arrive at the pressure poten-
tial equation

r2u 1
B Pux + Pyt Dy t';’z‘ ]Px:" [; J‘Pn =0 (185)

Now the variable p seems to be doubly defined as both the pressure and the pres-
sure potential. They mean the same thing. The form of equation (185) is mathe-
matically identical to the form of the aerodynamic potential equation (180).
Only the physical interpretation is different. Therefore, the elementary solutions
to the aerodynamic potential equation (180) are also elementary solutions to the
pressure potential equation (185]. The slementary pressure source equation fol-
lows from the elementary potential source equation (152).

p, = [%}f(:»r) (186)
‘= —M (x-—:’;) +R (187)
ap”
& 2 2 2 2 v 311/2
R=[@-0"+po-m +Fe- ] (188)




The Acceleration Potential

We now restrict ourselves to harmonics in time. In other words, variable time
dependency is replaced by a dependence on a constant frequency. By restricting
the problem to constant frequencies «, we obtain great computational savings.
The computational cost of solving the aecrodynamic flow over a body or wing in
the time domain is great in comparison. So equation (186) for a pressure source
p, with strength A takes the complex form psem'.

—imT

p, = [%}exp(im(r—r)) = {Ae_

]exp (iof) = pe™ (189)
Now we use the formula (187) for retarded time T in equation (189). For the
modulus p, on the right side of equation (189)

- A -iot A o
p(xy2) =

73,-e = oﬁ-exp ;f?' (M(x-E§) -R—)} (190)

Now p, is a symmetric function with respect to the z = { plane. This means that
we cannot use equation (190) to model a pressure difference across a planar
wing. We seek a formula for a pressure doublet. As with the source doublet, we
differentiate equation (189) with respect to  to obtain the definition for the pres-
suse doublet which will be called the acceleration potential y here. We divided
by p, in order to simplify the subsequent formulae and to bring these formulae

in line with the original derivations’,

_ . 1 _ X
]em = [a‘jw(x,y, z) ™ (191)

(119 179
v=lolated = 53
where the modulus of y is the differentiation of equation (190) with respect to z.

3. drA .
V(o0 = 5 () = 5| Sexp| o (M (x- é)-m” (192)

\
(*-\.
{22 €
;_R §aﬁ

04

1. See L. V. Andrews and H. T. Vivian.
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Now y = \T/ewt is an elementary solution to equation (185) and p = p VY is the
pressure whick arises with the acceleration potential. Some useful relations are
now derived. We define the non-dimensional pressure coefficient C, and imme-
diately specialize it to the acceleration potential, ‘

2
c, =2 =¥ (193)
o U U”
Next, we investigate the relationship between the velocity potential and the
acceleration potential. This is important in deriving the boundary conditions for
the pressure potential boundary value problem. We denote the harmonically

oscillating potential as

0(6y,2,0) =0(xy 2" (194)
The overvar indicates the complex modulus. The overbar here does not indicate
the steady state condidon as used in Section II. From y = P and equation
1 Po
(184), we obtain
Y(x,),2,8) == a+Ua.!(55(263/Z)e'm") (195)
s )y &y gi 3;—! 1)
Carrying out the operations
W(x'yr ‘) = _U‘Sx (X, Y Z)-'I'OJQ_). (x;y’ Z) (196)

We arrive at the inverse relation to equation (196) by using p = [g’—]em‘ in
equation (73). 0

d(x,y,2) = :&l—exp[’iljﬂj-r}]‘exp[%%}\“ﬁ(k,y, z) dA (197)

1. Here, we can ves how the term “acceleration potential” arises. It is the total derivative of the velocity potential. The total
derivative is a derivative with respect (o time relative to a steady twanslating frume of reference. The oraer of differentiation is
optional. Therefore, the accsleration field is related to the acceleration potential by the gradient.
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SECTION XII

The Integral Formula

In the previous section, we identified the elementary solutions to equation (185).
We derived the following elementary pressure doublet expression (192), other-
wise known as the acceleration | ential.

- 0 ] -
Vo) = W g ger| - M-8 =B | (198)

where A = A (@) is the amplitude of the oscillations at any given frequency.
Also, we have

172

— 2
R=[G-9Bo-n +FBe-0] (199)

Equation (198) gives the pressure field which arises from a single pressure
doublet. In this section, we extend the single pressure doublet to a doublet sheet.
As indicated in Section X for the source doublet (velocity potential), the
pressure doublet sheet is also suitable for modelling the pressure difference
between the upper and lower surfaces of a thin wing. Our goal in this section is
to develop the integral equation! (224) which describes the upwash generated by
a pressure doublet sheet. (For our aerodynamic problem of flow over a wing, the
upwash w is a kniown function. In later sections of this report, we will see how to
carry out the integral of equation (224) with unknown pressure Ap.) First we

. L. V. Andrews and H. T, Vivian, pp 15-20.
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The Integral Formula

develop the relationship between the amplitude A and the pressure difference
AP across a pressure doublet sheet. This is given in equation (215).

The first step is to carry out the derivative with respect to z in equation (198). As
a preliminary step we evaluate the following.

0 Bz-Y

k=5 (200)
3 1. B @E=0
5@ - (201)

Now, we carry through with the derivative in equation (198).
2 17, _ 1
Yoy = AR (=0)| 5 - [ D M-8 -R)| (02
E R J

This is the formula for a single pressure doublet. This formula describes the
pressure Y at coordinates (x,y,z) due to a pressure doublet at coordinates
(&, m, £) . We now consider a continuum of doublets in the (£, n, { = 0) plane.
Each differential area dS is given a doublet strength of AdS. While the choice of
differential partitioning is really somewhat arbitrary, we will indicawe a differen-
tial area as a rectangle of area dS = d&dn for the time being.

Vo) =pfadm) - -}Jexp[ = M-8 -R) }dédn (203)
5 ® Rl lap

The next task is to determine what value § takes as we approach the surface.
That is, we evaluate

lim y (x, y, 2) (204)
=

The presence of the R’ and R terms in the denominator of equation (203)
makes the integrand singular to order 07 and 0% when z = 0 and when the




The Integral Formula

coordinates (x,y) lie within the domain of S. This can be treated in the follow-
ing mannecr.

Construct a small circle with radius p, around the point (x,y,z=0) in the
plane of the wing. First, we integrate over the region outside of the circle and
clearly, in the limit as z— 0, the contribution to Yy goes to zero. Only the
portion of the doublet surface within the radius p  contributes to y. Now, we
change coordinates such that

(x=E&) = pcos ()
(y—m) = psin (6)

dEdn = %pdpde
For p and z sufficiently small, we can assume
exp (_z_o% (M (x--&) =R) ) = im (CcosE+ising) =1 (205)
aﬁ e—0 _
Furthermore, we make z/R° significantly bigger than /R by «¢hoosing
p, and z to be small. Finally, we assume A (€, 1) is constant within our smal

circle. So we evaluate

rnp,

o . —Bzp ]
}1mw(x,y, z) = limA [ 37 dpd© (206)
2390 =0 E';bf (Bzzz+p2) J
o [ ~2nPzp
lm ¥ (x,5,2) = lim l —— 3,2Jdp @07)
ol (B*2"+p")
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The Intsgral Formula

P

: —p
Limy (x,y,z) = lim (27A) N372 |dp (208)
250 =0 ! [322(1+[p}]

We now employ the substitution p = Bzp.

P,

B -
_p _
zh_r)no\p (x,y,2) = zh_l,no(znA) j [ (1" +'§2)3'/2}dp (209)
0
= P,
lim = lim (274) (p*+1 -y B 210
zl_r)no\v(x,y,Z) —-:_r)no( )(p°+1) .20 (210)

We end with the simple result that as one approaches the doublet sheet from the
top side that the acceleration potential

lm¥ (x,y,2) = -2n4 (211)

We get & similar result for the case where the doublet sheet is approached from
the opposite side.

_1:‘_‘?0‘" (x,y,2) = 2rA (212)

The jump in ¥ across the doublet sheet, going from top to bottom is

AV (x,y) = 4nA (213)

We recall that the relation between the acceleration potential and pressure is pro-
portional to the density, such that p = y/p. So we se¢ from equation (213), the
pressure jump modulus across the doublet sheet is simply




The Insgral Rormula

Ap (x,y) = 4npA (214)

Our convention is such that positive Ap results in positive lift with negative
pressure on the positive z side of the wing and positive pressure on the negative
z side of the wing. So we have the following expression for A in terms of Ap.

_ Ap
A= fas (215)

We make the substitution into equation (203) and obtain the following result.

V(x,y2) =

82z
4np

1 Q) —
- — (M (x—-¢&) -R) |dtd 216
AP, n){ L ﬁ:“}“p[aﬁz( (x=8) )}én (216)

We desire an explicitly linear relationship between the pressure jump across a
doublet sheet and the linear boundary condition, which is the normal component
of flow. Our attention was diverted in order to obtain equation (215). We will use
this relation later in our effort to obtain the final integral formula. So we reorient
our attention and begin our development of this formulation with equation (197)
of the last section. For a single oscillating doublet located at x = &, we have an
oscillating potential of

-1 [-—m) (x~

Fn) = e ”esp[ ]wx,y,z)dx 217)

We substitute for ¥ with the expression found in equation (198).

6(,1‘,}',2) = :Uéeip[:ﬁ%;ﬁ] x

x=§

j exp[@l%](gg[%exp[%(bl(l-&) —E)H}a (218)

—00

We can move the derivative with respect to z from under the integral and we can
combine exponential terms. Equation (218) becomes
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The Integral Formula

o (x,y2) =

313 o572 ] (o]0 - 22 )]} ]

-0

The z component of velocity is related to the velocity potential as

_ J -
#(%3,2) = =@ (220)
Thus, we compute w (x, y, z) from equation (219).

wix,y,2) =
—A7 & —w)(x-&) ¢ LML R
B2 o252 b2 E | o

We now consider a continuous sheet of doublets in the identical sense as was
introduced in equation (203). Then substitute for A using equation (215).

w(x,y2) = [‘%T]MI(AE)exp[“im%:Qj] X
S

-8 "
FI A oML R
2 Lile(pr g afen e
This expression can be condensed slightly’. Again, equation (223) is the formula
for the upwash w generated by a harmonically oscillating doublet sheet in the
z = 0 plane.

1. Thereby putting equation (222) in the identical form as in the reicrence of Andrew and Vivian.
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The Integral Formula

Wxy,z) = [A%M‘[(Aﬁ) exp[Lw%:_E-’lJ
s

N Loxp| 22 (n—MR) |an |dtan 223)
3’| J R [UBZ 1 |
We choose to abbreviate this equation as follows.

W(37) = [ goop |[[APK(G=8), -, dean @24
S

where

) 2 ) R
K(xpy,2,) = exp(—f—g{?)-g—i{f%exp{%(k—Mk) }dk} (225)
Z

and we essentially repeat equation (199).

- 172
R = (N +8%,+p%) (226)

K (x, ¥, 2,) is known as the Kernel function and is the topic of the next sec-
tion.

For the purpose of this report, we have restricted ourselves to a single planar
wing. As such, we may be tempted to immediately take the limit as z —» 0 in
equation (224). However, we still need to evaluate the derivatives with respect to
z in equation (225),
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SECTION X1

The Kernel Function

In the last section, we derived the integral equation (224) which relates the mod-
ulus of the unknown pressure difference Ap (x, y) to the modulus of the z com-
ponent of flow w(x,y,z). We know the z component of flow at the wing
surface (boundary condition) where z = 0. This will manifest singular behavior
which will be addressed in the following section. In this section, we evaluate the
Kemal function.

K (5, y,2,) _exp[ zcox] [‘[R [ — (A= MR)}dx} (227)

The objective of this section is to carry out the differentiation with respect to z in
equation (227). The resulting formula is given in equation (257). We isolate the
integral expression in equation (227) and label it as /.

—iox, &
K(xp¥02,) = exr[ i } az[1 ] (228)
j chp[ o5 (A~ MR)]dx (229)

We define two new variables r, and &, which will be used throughout the
remainder of this section.
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The Kemal Rnction

2 2 172

2
ry= (y,+z,)

..(Drl
1= =

U
This results in the following formula for R

R = (X2+B2rf) 2

In the evaluation of equation (229), we use a variable substitution. Let
v = A
pr,
Y

1 i 2 172
I= | ————exp| () (Vk, =Mk, (v} +1) ) |dv
_J:,(V2+l)i/2 { B 1 1 ]

where

w= o le
Now use another variable substitution. We define a new veriable «.
- 12
u= —;-{v-M(l +v2) ]

We obtain from equation (234)

I ik
2 &
wl (1+47)

where
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The Kemel Runction

(238)

Equation (237) is used in conjunction with equation (228). In the course of eval-
uating the derivative of equation (228), we use the chain rule

d _ arl d _z 0
dz ~ dzdr, ryor’ (239)

and we obtain

K _ —iex, [ (1 2\aI, (2\1,
(Xp0 Yor 2,) = €xp( 7] ) i 3 -l e Bl e (240)
1 1 \rj/jor]

r

This can be put in a convenient form proposed by Landahl'. We will eventually
restrict our formula to modelling the flow over planar surfaces in the (x,y)
plane. Landahl’s equation represeats a more general case for any planar surface
parallel to the x axis. We follow his development and then let z, go to zero.
Equation (240) is equivalent to the following equation (241).

K _ [-imxo] 19/, zi]a 1810‘} "
corsd = | g | e [ )

Again, the expression for I, is given in equation (237). Now we use Landahl’s
approach and make the following substitution of variable in equation (237).

t = ur (242)
- exp[:fgo—ﬂ
o= f| = lar (243)
2,2
4 (71""()

1. Ses the article by Landah!
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where
1 -
fo=ugry = E (MR-x,) (244)

In order to evaluate the derivatives of /, in equation (241), we use Leibnitz’s
Rule! and equation (243).

- —iot
a(z)-ja 7 7]

by

|: -0t ]
exp

o (245
iy [arl] !

Consider equation (245). From equations (232) and (244) we have

o)  M[OR] M[Br] _Mr
[371]”65{371]*65[? } R 240
‘Next, we carry out the derivative in the integrand and equation (245) becomes

3 “(r cxp{»x’mt] exp[-ﬂ'mr,] y
| T I 7 r »
5’;; (Io) = I[ ga )dt— (..........._....__._...... - L 173 ][-—-;.,%:-l-] (247)

2,2 2.2
(ri+7) (ri+1)

4

Next, change the variable of integration back from ¢ to 4 using equation (242).
Equation (247) becomes

oo ] o

15 (+uy'?

Next, we evaluate the rest of equation (241). Starting with equation (247),

1. Sec the footncts an page 14 of this kex
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The Kemel Function

arial ar’ ’e"p[:?]; "M ""p[—ichml]
&:héﬂ’a‘aj el b 1| prvwery [l

T2 1
(r{+1) (ri+5)

Due to the complexity of the formulation, we partition the right hand side of
equation (249).

8[1810

H, and H, are defined in equations (251) and (254).

sl
e 2

Now, use Leibnitz's rule in equation (251).

- 3’18.3:0[-*!&”} y Ap”""fmf—l ra
LU i a ‘:]
H, = dt + (252)
1 ![ (’1*‘2)5/2 ] t(":"“‘a)y’b][ar’

We get the following result using the relationship between r to u in equation
(242).

exp (—-thu) exp (—ikyu)
H, = (- du + 253
j(m H? \ ( )(m )3”) =

Next, we evaluate H, in equation (250).
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The Keroed Fosgtion

'-:cm'l \

2z 5’. 2

We carry out the differentiation operation.

exp (“—fg’-) 3R
( 2,172 }(Ez)[g;;] (255)

( I+‘l)

Now use equation (246) in equation (255). After some tasic algebraic operations
the following result is obtained.

0 e [(ik,Ma)+ (MBZ)] exp (—=ikyuy) ] .
’ r Jf2 R (1+uh)'? J (256)

[(M ) (Mzul )”exp (—ikyuy) }
"ﬁ? '1R L (1~|»uf)3/2 J




The Kernel Function

We now have an algebraic expression for the Kemel function given in equation
(241) using equations (248) and (250). Equation: (253) and (256) are used in
place of equation (250). It is left to the reader to conzolidate these equaiions. The
operation is simple; it is not practical to display such a lengthy formula in this
text. This completes our differentiation with respect to z in equation (?27).

Landahl has provided a compact form of our lengthy formula. At this point, we
switch over to Landahl’s® notation in order to follow his work closely. We will
use the expanded terms following equation (241). Equation (241) can be placed
in the form

—iox, 7 (KT, +K,T,]
K (r,3p2,) = exp| oot | 117022 (257)
Ty
where the terms are directly relatwable to the two terms of equation (241).
K [a"’} o
=r
1 1 5;.‘;

_ .3 a 1 an

K= Al g f )

In our development, we have limited ourselves to a doublet sheet in the (x, y)
plane. The formula given by Landahl is more general, representing any doublet
sheet which is paral.cl to the x axis. We make the appropriate modification tc the
expressions for T and T, by setting y(s) = Oand y(0) = 0.Thus T, and 7,
become

T, =1 (260)

1. Takenotothuinunmponbyhndam.ﬂ:cmi:mmorinmeKz tezm. This is clear when compared to aquation (241) in
this section.
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The Kemel Function

2
zD
e ]

We use equation (248) in Landahl’s expression for K, and we use equation (250)
 in his expression for K,. We obtain Landahl’s resulting! formula for K, and K.

M ~ik
K, = -Il”[ _'_“1:1 exp ( lzli‘/lz)} 262)
(1+uy)
ik M exp (~iku,)
K2=312+[ 1_2 1][ zll/lzji +
(1+uy)
Mrl][ ) (pzr%) {Mrlulﬂ exp (—skyu;)
—— (1+u) — +(2)+ = (263)
[ R 1 RZ R (1+u%)3/2
where
K exp (—ikyu)
I, = || —————= |du (264)
1 ,{((Huz)mj
and
" rexp (~ikyu)
I, = || ———= |du (265)
’ J(a+¢f”)

Uy

Differentiation with respect to z within the kernel function equation (227) is
complete. The resulting equation for the kernel function is given by equation

1. The diffcvence in the minus sign between this result and Landahl's result is accounted foc in the minus siga added in equa-
tion (224).
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The Kemel Function

(257). We might feel free to take the limit as z goes to zero for our planar wing.
In equation (257) it turns out that, because of the singular nature at z = 0, this is
not entirely recommended. However, we note that

lim T, =@

7,0

except when y, = 0 in which case

ZEIEOTz = 1 .
We also note that X, is finite everywhere. When K, T, is added to KT, in equa-
tion (257) and X is integrated in equation (224), the contribution of X, T, is zero
when z, is zero. Therefore, for a planar wing, we can immediately state,

’ K, -iox, 266)
2‘1’1_,_1)101( (X ¥, 2,) = (-r? Jexp[ i } (

Equation (264) for I, can be modified for improved computation. We assume?

u; 20.

P exp (—ikqu) K )
q:}_—ﬁwu=jwme&mq—i%74 (267)
u (1+u%) U (1+u%)
Integrate by parts to obtain
Il = {E‘CP (_l.klu) (_-—Lf?i )} +
(1+4) "
ik j ( - )exp (~ikyu) du (268)
(1+u )

1. Use equation (275) for u <0.
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Evaluate the term in square brackets.

. u
I = {exp (=ikyoo) —exp('lklul)-—"—_li—fﬁJ +

(1+u4))

zkj(

T /z)exp (=ikyu)du
(1+u )

(269)

The term exp (—ik;>) is somewhat meaningless. We fold this back in the inte-

gral
I = k B T LU
1 = —exp(—ikyu,) SRR e
(1+uy)
k[ -1+ —————y—l/—z)exp (—ikyu) du
uy (1+u )
This can be abbreviated as follows.
, Uy .
Il = &xp (—lklul) 1- (—*—-;TITZ')+ (""kljl)
(1 +u1)
where

Jy = exp(iklul)j[l ———%—ga}exp (=ik u) du
(1+u)

4y
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The Kemel Function

Laschka’ provides the following accurate approximation for x 2 0

vy
(1+u)

where ¢=0.372 and the a, are given in the following table

2 a,e™" (273)

a,

+0.24186198
-2.7918027
+24.991079
-111.59196
+271.43549
-305.75288
-41.183630
+545.98537
-644.78155
+328.72755
11 -64.279511

W 00 N2 O W b W N s 3

[y
{on]

Substitute equation (273) into equation (272) to obtain an approximate expres-
sion for J,

nc +k1

11 a e—-ncul
Jy= Z[ e }(nc-—zkl) (274)

We use equation (274) in equation (271) to obtain a formula for /,. This formula
is valid only for u, > 0. We see that the integrand of I, in equation (264) is sym-

1. See Laschka as pointed out by Giesing ot. al. on page 35 of Part I, Vol L
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The Kemel Function

metric. For u; <0 we can take advantage of the symmetry of the integrand and
still use the algorithm of equation (274). We evaluate the real and imaginary
compounents separately. For 4, <0:




SECTION XIV

The Doublet Lattice Method

There is no precise definition of the doublet lattice method and the associated
formulae. Basically, this Section restricts the approach® of Giesing et. al. to
planar wings. In addition, we deviate in the treatment of the sweep angle. This
deviation will be identified.

For a wing in the z = O plane, we have the following integral formula from

equation (224).

W (x,0) = E‘%—j | !ApK((x—fs), (y=n),0) dédn (276)

with the following supplementary formulae from equations (266), (262), (264),
(231) and (238). Here, we have substituted € for z to emphasize the limitation
process.

K(x,y,0) = lim [ exp[—imon @77)
2ol = S U
Miy | exp (—ikyuy)
K, = "11‘[ 2 ap.2.172 145172 (278)
(x5 + B2y;) (1+uy)

1. See Giesing, Kalman and Rodden.
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The Doublet Lattice Method

exp (—ikyu) |
I = || ————|d 27
5‘:[ (1+uH)*? ’ @7
®
- M (3o + By 2 -x, 081)
: yo|B?

The Kernel function in equation (277) is 02 singular as y?, goes to zero. This
requires special consideration as one integrates equation (276). This singularity
occurs when the y and 1 coordinates are the same. Furthermore K, is singular
when x, and y, are both zero. This occurs when (x,yj is coincident with
(&, M) . Finally, as 4, ranges from — to +oo, we must give special consider-
ation to equation (279). The following question remains. Can we evaluate the
integral equation (276) with these mathematical difficulties. All these difficulties
can be overcome analytically if one uses approximating functions. In this ana-
lytic approach, one appeals to principle values!. The principle values procedure
requires the limit as € — 0 be taken as the absolutely final step. If one is ever in
doubt about this procedure, it may prove reassuring to evaluate the integrand for
several cases and plot the value as the integrand approaches the limiting singu-
larity.

The doublet lattice method is an empirical device which simplifies the integra-
tion of this singularity. But primarily, the advantage gained by the doublet lattice
method is the relative simplicity in the resulting computer program, especially
for complex configurations. There are other methods which are not as simple to
implement. On the other hand, there is a simpler method called the doublet point
method?. With the doublet lattice method, the continuous pressure doublet sheet

1. See Mangler
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The Doublet Lattice Method

in equation (276) is replaced by a set of pressure doublet lines with finite length.
In figure 3 we picture the pattern of nine doublet lines for a rectangular wing.
Each line is contained in its own box. The simplicity is that all boxes are treated
identically, regardless of its proximity to the wing boundary (i.e. leading edge,
trailing edge or wing tip). Other methods, based on a continuous doublet distri-
bution require special square root singularities in the pressure distribution near
the wing boundaries.

4>
y
° ° °
° ° °
° ° °

VX

Figure 3. A Rectangular Lattice

The doublet line is placed at the quarter chord of each box. (To call this a “dou-
blet lattice” is really a misnomer. If one views the doublet line segments alone,
no lattice is formed. The name “doublet lattice” arises from the correctly named
“vortex lattice” methods’ applicable to unsteady incompressible or steady com-
pressible flow over planar wings.) The upwash w (x, y, 0) is evaluated at the 3/4
chord midspan of each box. The empirical nature of the doublet lattice method

2. See Ueda and Dowell
1. Sec James
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The Doublet Lattice Method

arises in the choice of the 3/4 chord and 1/4 chord. By no means is there any
mathematical proof that this is the correct location. As a matter of fact, for non
rectangular wings with swept and tapered boxes, the programmer is left to his
own devices! to invent meaningful 1/4 chords ard 3/4 chords. However, in
defense of the doublet lattice method, this level of empiricism is probably con-
sistent with the level of approximation employed in formulating the linear aero-
dynamic potential equation (42). One must be on guard and realize that the flow
field generated by this lattice of doublets will not be smooth, especially near the
wing surface. What is important is that the upwash at the 3/4 chord is approxi-
mately the same whether one has a constant strength doublet line at the 1/4 chord
or has a continuous doublet sheet with the correct strength.

Rather than dwell on rectangular wings, we assume we can invent a meaningful
location for the doublet line and the upwash point for general trapezoidal boxes.
A discretized swept and tapered wing is pictured here in Figure 4.

S
_—

0 0

|
Y

X

Figure 4. A Swept and Tapered Lattice

1. For instance, Giesing et. al. tsed 2 hybrid approach. In their calculations. Thoy start with a swept doublet line. However,
the resulting integral fosmula is carried out over an unswept doublet line. This points out the emplricist of the doublet lattice
mothod.
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So the area integral of equation (276) is truncated to a line integral along the 1/4
chord of each box. This line is depicted in Figure 5. Furthermore, we assume Ap
is spatially constant for each box. For a rectangular box, the box chord is
denoted as A&. Equation (276) becomes

_ -Ap (A
W(5,0) = 4‘;;{,5) gmeKux &, 0-m,0d  (82)
-
-L
ﬂ»g’
A +L :
\\
' Vg’x

Figure 5. Local Swept Coordinates

Substituting for X from equation (277) gives

‘-V-(x, )’. 0)‘—-"‘
_APA& : lzKl((x'"g)o (}’“ﬂ))exp[ﬂ%:_gj]
e Lgn‘ -m+€ (@8
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Letl; = -L and I, = L. We abbreviate equation (283) as follows

_ _ApAE R(a-9), 0-)
sy Vs = lim dl 284
W no) [4’“’" L-*"H G-+ } .

where

-ix ]

R (5,70 0) = Ky (5 3,) exp] —52 285)

Now, it is clear X is a complex function. It turns out that X can be approximated
with a complex parabolic function of /.

K(x,y,) = A, +Al+AF (286)

where A), A; and A, are complex coefficients. We identify the coordinate
(X yp) to represent (x,,y,) atl = —L. At the opposite end, we identify the
coordinate (xg, yg) torepresent (x,,y,) at! = L. Finally, at the midpoint, we
use (xq, yc) torepresent (x,,y,) at! = 0. Equation (286) can be formulated
as

I(1-L) 7 [2 ~F
K (x,, +
21 }(“y") L2

K(x,y,) = [ ]K (xcye) +

[’ L+ ]E(xg. Ya) 287)

which is easily verifiedat / = =L,/ = OQand ! = L. We regroup equation (287)
in terms of common powers of /. Thus, we can identify the coefficients in equa-
tion (286) as follows
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Ay = K (xe Ye) (288)

_ E(xm )’R) “E(xp }’L)
1= 2L

(289)

K (xp,y) = 2K (X ye) +K (Xgs YR)
2.L2

A, = (290)

Now we substitute equation (286) into equation (284). Furthermore, we note
N = IsinA.

L
- y,0) = {m]hm dl 291
W(57,0) = | oy e~+°_£[(y-zsinm2+e2 (291)

We abbreviate equation (291) in the following fashion.

W (5,0) = [ 4“"; (f-‘]wow,wz] (292)

The definitions of B, B, and B, are given as equations (293), (297) and (299).

L

B, = lim [ Ao |ar (293)
(sinA)*F = (2ysinA) 1+ (52 +€2) |

We integrate equation (293) to obtain the following inverse tangent function

T A, IsinA-y7 ©
e L
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We use the standard tangent identity for the difference of two angles to simplify
equation (294). We obtain

[ A, ]atan[ 2eLsinA } (295)

B, = 1i :
0 81310 SSIIIA_, 82+)’2—L2(Sin/\)2
Now we take the limit.
2LA
B, = 3 2 2} (296)
y =L"(sinA)

We follow a similar proceduse for to obtain algebraic expression for B, and B,.
The definition of B, is

L

Al 1
B, = lim [ 2 dl (297)

e-oO‘L ('sm,\)ztz- (2ysinA)I+ (yz+82) J

After integrating, we take the limit and obtain the following formula.

A R 2 2_ 2 o 2 {
B, =[ 1 2]log[(smA)2Lz QysinA) L+ () J+
2 (sinA) (sinA) L+ (2ysicA)L + ()

YA 2L
‘ 3 (298)
Sm"[f«L’(sinA)“J
The definition of B, is
r Ayl
B, = lim [ . 2 s |dl (299)
e=0J | (sinA)*F - (2ysinA) [+ (° +€7)

Again, after integrating, we take the limit and obtain the following formula.
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" 2LA, 7 [294,]. [ (sinA)’LE- 2ysinA)L+ (P)
| (sinA) s (sinA)“L"+ (2ysinA) L+ (¥°)

[ }’zAz 2L 300
| (sinA)2 [yz—chsinA)zJ G%0)

The values for B, B, and B, are substituted in equation (292) to obtain the rela-
tionship between Ap of one element and the w generated at the control point of
another element. Again, A is the average chord of an elemen’ box.

It is important for the doublet lattice user (o understand the approximations
incurred in discretizing a doublet sheet into trapezoidal boxes. It should be
immediately obvious that, since we have assumed the pressure to be constant
within each box, a sufficient number of boxes is requirsd to capture the steady
state (zero frequency) pressure function accurately. Ii is not opvious that we need
to increase the number of boxes as we increase the frequency of oscillation. For
instance, the pressure field over a rigid wing, plunging at high frequency, is not
trivial and requires a significant number of boxes to resolve the standing (pres-
sure) waves. The required box density depends on a combination of wing defor-
mation and the frequency of motion. The box density should be increased as the
deformation becomes more spatially wavy and as the temporal frequency of
motion increases. The doublet lattice user must perform convergence studies to
determine the appropriate box density for their application.




SECTION XV

The Example Program

The purpose of this section is to introduce a clear and simple version of a doutlet
lattice computer code. The mathematics of this text are tedious. Unless one is
somehow inspired, these mathematics seeri to exceed the bounds of reasonable-
ness. It is possible that one may overcome this hurdie by browsing through a
well annotated version of a doublet lattice code. Other existing computer codes
for full aircraft configurations are difficult to follow because of the programming
details. Clearly, this is not a criticism of the usefullness of these codes. Afterall,
the acrospace community has depended on them for over twenty years ncw.
‘They function well for a wide variety of configurations.

At the beginning of this effort to provide a tatorial on the doublet lattice method,
this author had a hope that he could start with an existing code, simplify it to the
planar case and then add comments. It turned out that it was more effort than was
wairented. This author decided that the algorithm was so conceptually simple
that he would develop his own code. Aftzrall, the whole raison d’etre for the
doublet lattice method is that it is relatively easy to encode on a computer.

The choice of computer language was not easily made, While there is a tremen-
dous sentiment for engineers to use FORTRAN, it is nowhere near the most
overall popular computer language. The C language is very popular, especially
on personal computers (PC), and it is adequate for encoding the doublet lattice
method. The most important feature of the C language, as far as this tutorial is
concemned, is the easy to read format. Comments can be placed just about any-
where. It is much easier to point out the relationship between the lines of the
computer code to the material of this text. In addition, the C language is vary
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popular within the computer graphics community. With the doublet lattice
method encoded in C, it is far easier for the PC programmer to connect it with a
graphics library. This author believes that some day, a visually enhanced version
of a doublet lattice code on a PC computer will be used to effectively motivate
students toward the study of unsteady aerodynamics. The main advantage of the
FORTRAN language is the COMPLEX data type. There is no equivalent data
type in C. This author chose to accept this shortcoming and use the C language.

The source code for this doublet lattice code for a simple trapezoidal wing is
given iu Appendix A. The comments within the source code are sufficient for
one to relate to the equations of this report. The example input and example out-
put arc given in Appendicies B and C. This example case is for a simple plung-
ing rectangular wing of aspect ratio two.

As mentioned earlier, there is no strict mathematical basis for the doublet lattice
method. It seems to work for rectangular wings. For swept and tapered wings,
we define what we mean by the 1/4 chord and the 3/4 chord. Geising et. al. seem
to use a hybrid approach. The integration process treats the line doublet as
though it was not swept. However, the Kemel function is evaluated at three
points along the swept doublet line. The approach taken in Appendix A is to
integrate along a swept doublet line. The effect of changing the sweep of the
doublet line may be an interesting topic for study.

In a sense, the doublet lattice method is empirical. Giesing et. al. point out that
for steady state analysis, the integral formulae can be integrated “exactly”. In
order to achieve increased mathematical accuracy (this does not guarantee that
correlation with test data will improve) Giesing et. al. chose to subtract out the
steady state component computed by the doublet lattice method and replace this
component with “exact” computations. While this could be done in Appendix A,
it wasn't. The point of Appendix A was to explain the implementation of the
doublet lattice method without added complication. The reader should be able to
see how to implement a correction to the steady state component. However, this
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author is not ready to say that anything is really gained for the effort. This is
another suggested topic for study.

All the equations presented in this report made no mention of the units of mea-
sure. It turns out that there may be a benefit in non-dimensionalizing these equa-
tions. The non-dimensional solution depends on the Mach number, the reduced
(non-dimensional) frequency, the shape of the wing planform and the non-
dimensional deformation. The solution can then be scaled to meet a variety of
different conditions such as vehicle velocity and air density. Therefore, at the
expense of possibly complicating the interpretation of Appendix A, all the vari-
ables are assumed to be non-dimensional. Non-dimensional time ¢ is scaled by

P = [%’]: (301)

and non-dimensional length x is scaied by the characteristic length b

X = g (302)

The reader should have no trouble in fomulating non-dimensional upwash w.
One merely divides the dimensional upwash by the freestream velocity U.

The example case is for a simple rectangular wing with aspect ratio of two. Only
half of the wing is modelled. The wing is symmetric about the x axis in all
respects. The wing is plunged with a reduced frequency of one. There can be no
correction for steady state because the zero frequency load is zero. The solution
agrees with data computed with the method of Giesing et. al.

The point of this report is not to provide a detailed explanation of the implemen-
tation. The point is to compile all the mathematics which lead to the doublet lat-
tice method in one single document. This has been done. The utility of the code
in Appendix A is not assured. The author of this report decided to include this
code with the hope that its mere inclusion would help illuminate the doublet lat-
tice method. The reader should feel free to use the example source code pro-
vided here as a starting point for developing their own utility. However, before
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doing so, one should give serious consideration to using the code of Geising et.

al. As indicated, their code is very versitile and is well proven. It has been the
mainstay of aeroelastic analysis and design for two decades.
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APPENDIX A

The Doublet Lattice Program Source Code

/* the following parameters may be adjusted */

$define MAX DIV X 20/* maximum number of chordwise boxes */
$define MAX DIV_Y 20/* maximum number of spanwise boxes */
#define MAX_EOLY 20/* maximum number of polynomial coeff */
#define PAUSE_ON_OUTPUT 2 /* time to pause for reading output */
/* Remember to recompile after adjusting the above */

/* do not adjust the following parameters: */
$define MAXBOX (MAX DIV X % MAX_DIV_Y)
#define MAXDIM (MAXBOX * MRXBOX)

$define ABS(x) (((x)<0) ? -(x) : (x))

tdefine PI (3.141592653589793)

#define EPS (1.0e-6)

g§define BIGP (1.0e+20)

$§define BIGM (-1.0e+20)

4

/* end of define */

RN R R R Y

struct element
{
float xi,yi;/* coord of inboard 1/4 chord */
float xm,ym;/* coord of midspan of 1/4 choxrd */
float xo,y0;/* cooxd of outboard 1/4 chord %/
float xc¢,ycy;/* coord of control point at 3/4 chord */
float chord, area;/* box chord and area */
float xcent,ycent;/* x and y coord of centroid ®*/
}:
gtruct trapezoid
{
int symm;
int  num box_x, num box_ y, total boxes;
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float
float
float
float
float
}i
struct

{
float

}i

xible, yible;
xibte,yibte;
xobte, yobte;
xoble,yoble;
mean_chord, area;

polynomial

a;

int px,py:

MAIN: dl()

/***************t***t*********'k****t**************************t**

» % % B % % % * % % % ® % % % ¥ » % ¥ % % % % % % % ¥ * * %

This is a doublet lattice code for a single trapezoidal wing.
You can assume symmetry or anti-symmetry about the x axis.
This code was written by Max Blair of USAF Wright Labortory.
Neither Dr Blair or the USAF assume legal responsibility for
potential errors which exist in this computer code. The user
is encouraged to validate the code for his or her design cases*
of interest. Send comments to:

Dr Max Blair
WL/FIBRC
WPAFB, OH 45433-6553

This code was written primarily for educational purposes. For
complete aircraft configurations, the user is encouraged to
use the doublet lattice codes H7WC and NSKA.

The input is placed in files dl.INPUT and bc.INPUT

dl.INPUT:
BLAIRCRAFT 2100 ATTACK FIGHTER(title line)

characteristic length (b)
Mach
reduced frequency wb/U

8: symmetric a: anti-symmetric n: no symmetry
0.0 x and y cooxd of inboard leading edge
0.0 x and y coord of inboard trailing edge
10.0 x and y coord of inboard leading edge
10.0 x and y coord of outboard leading edge

nunber of chordwise cuts (discretized x)
nunber of spanwise cuts (discretized y)
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bec. INPUT:

1 -1.0
0 -1.0
0 -1.0
0 -1.0
0 -1.0
0 -1.0
end of data

be printed out.

Output:

* % % % % % % % % % % % % ¥ ¥ % % % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ % N * ¥ ¥ ¥

0

O = N oK

NON-DIMENSIONAL INPUT:
If wing coordinates are already normalized with respect to
a characteristic length, then input bsl.

DIMENSIONAL INPUT:

If wing coordinates are input in other units (such as inches)
then input any value for b such as the mean aerodynamic chord
in consistent units (inches). The upwash is input in
non~dimensional form, normalized with respect to the free
stream velocity. Non-dimesnsional pressure coefficient will

flag constant =x power Yy power

0

N RO O

interpretation of bc.INPUT:

wix,y) = a00 + alO0*x + all*y + a20*x”2 + all*x*y + a02+*y~2
where w has been non-dimensionalized by the velocity, U.
Only lines with “1” in the first column is considered data.
Replace the “1% with a “0” to ignore any data.

A line which begins with an “e” will terminate the input,.
There must be at least one line which begins with an “e”.

complex modulus of the pressure coafficient (Cp) at each box
Cp = pressure/ (density*velocity squared)

MAIN: dI(?

5 % % % % % % % % % % % % % % % % * % ¥ % % % ¥ ¥ ¥ % % * ¥ ¥ ¥ ¥ *

iﬁtii&*ﬁt'tt*itti*ﬁittiiﬁt*iiiti&*&i*iiti*i*itt*ﬁﬁiliiiﬁt*ﬁiit**/

#include “dl.define*
¢include <math.h>
$include <stdio.h>
#include “dl.structure”

main ()
{
FILE *fopen();:

FILE *aicdat, *odat;/* pointers to I/0 files */
int diacretize(),read_input(),Kbar(),bc();




MAIN: dI()

unsigned seconds;

int i,symm,ic;

int ierr; /* error code */

int rb,sb; /* receiving box and sending box indicies¥/

int vector_index; /* how the [D) matrix is placed in a vector */
float x0,y0; /* distance from receiving to sending coocrdinates */
float M, k; /* Mach and reduced frequency */

float b, b2; /* characteristic length (also b*2) =/

float ul,beta2; /* ul is eqtn 281 */

float KbarrL,KbariL; /* real and imag Kbar for left peint */
float KbarrC,KbariC; /* real and imag Kbar for center point */
float KbarrR,KbariR; /* real and imag Kbar for right point */
float L,L2,dLx,dLy; /* related to length of the doublet line */
float Yt,Yt2; /* y relative to the sending midpoint */
ficat sl,812,s813; /* sine of the doublet line angle (fig 5)*/
float factor, fact0, factl, fact2,fact3; /* working space */

float Alr,A0i,Alr,Ali,A2r,R2i; /* equation (xxx) in the text */
float BO,Bl,R2; /* eguation (zzz) in the text *»/

float wr[MRXBOX],wi [MAXBOX); /* real and imag upwash at boxes */
float Dr[MANDIM],Di[MAXDIM]); /* The real and imag AIC matrix */
float liftr,lifti; /* The complex lift in cartesian forxrm */
float liftm,liftp; /* The complex lift in polar form */

struct element box[MAXBOX]; /* boxr geometric data */

struct trapezoid wing; /% wing geomstric data »/

soconds = PAUSE_ON_OUTRUT; /+ seconds the program will pzuge */

if ( (odat=fopen (“dl.IRASH", "w*) ) e= NULL)
{
printf (“\ncannot open file dl.TRASK for ousput\n®);
exit (0);
}
printf (*\n\n Auxillary dats placed in file {dl.TRASH)\n®%);

if ((aicdat=%fopen (*dl.AICY, “w*) ) == “WLL)
{
printf{™\ncannot open file dl.AIC for output\n”);
exit (&) ; . _
)

printf(“\n AIC placed in file {Jdl.AIC)\n");

printf ("\n MAXBOX: %d MAXDIM: 8$d\n” MAXBOX,MAXDIM) ;

/* BEGIN INFUT ¢/
printf ("\nBegin input\a*):;

ierr = read input (odat, &M, &k, &b, Ewing) ;
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printf (“Input complete\n”);

ierr = quadrilateral (odat,wing.xible,wing.yible,
wing.xibte,wing.yibte,
wing.xobte,wing.ycbkte,
wing.xoble,wing.yoble,
&factor, &x0, &y0) ;

wing.area = factor;

print£(“\nWing area used to non-dimensionalize lift is:%12.4e\n”,

wing.area);
printf(“The wing centroid is at x: %f and y: %f\n",x0,y0);
sleep (seconds) ;

/* INPUT IS NOW COMPLETE , DISCRETIZE THE WING INTO BOXES */

printf(“Begin discretizing the wing.\n");
ierr = discretize (odat,wing,box);
printf(“Discretization is now complete.\n");

/* non-dimensional variables are ccmputed */

betaz = 1-M*M;

b2 = b*b;

printf(® reduced freg (k): $%12.d4e \n*,k);
printf (™ beta”2 (1-M"2): $12.4e \n",betal);

/* Zero out the (D) matrix of AIC coefficients */

for (rb=0;rb<wing.total_boxes;++rb)

{

for (sb=0; sb<wing.total boxes;++sb)
{
vector_index = rb*wing.total_boxes+ab;
Dx{vectoxr_index] = 0.0;
Di [vector_index] = 0.0;
}

}

ic = {;
printf{*\n*);

- /* PROCEED TO FORMULATE THE COMPLEX AIC MATRIX D(I,J) */

for (symm={; symm<=ABS (wing.syam) ; ++aymm) /* consider symmetry */
-

for {rb=0;rb<wing.total boxes;++rb) /* receiving box index */
i ’ -
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for (sb=0; sb<wing.total boxes;++sb) /* sending box index */

{

/* Kbar is defined as equation 285 */

/* compute Kbar for left terminus of doublet segment */

x0 = box[rb].xc - box[sb].xi;

if (symm==0)y0 = box[rb].yc - box[sb].yi;

else y0 = box[rb].yc + box[sb].yo;

fprintf (odat,
“\nLEFT symm: %$2d rb: %2d sb: %2d x0: $%12.4e y0: %12.4e\n”,
symnm, rb, sb,x0,y0) ;

ierr = Kbar (odat,M,k,x0,y0, &KbarrL, &Kbaril) ;

/* compute Kbar for midpoint of doublet segment */

x0 = box[rb].x¢c - box[sb].xm;

if (symm==0)y0 = box[rb].yc - box[sb].ym;

else y0 = box[rb].yc + box([sb].ym;

fprintf (odat,
“\nCENTER symm: %2d rb: %2d sb: %2d x0: $%12.4e y0:%12.4e\n”,
symm, rb, sb,x0,y0) ;

ierr = Xbar (odat,M, k,x0,y0,&KbarrC, &KbariC);

/* compute Kbar for right terminus of doublet segment */

x0 = box[rb] .x¢ - box[sb].x0;

if (symm==0)y0 = box[rb].yc - box[sb].yo;

else y0 = box[rb].yc + box([sb].yi;

fprintf (odat,
“\nRIGHT symm: %2d rb: %2d sb: %2d x0: %12.4e yC:%l2.4e\n",
symm, rb, sk, x0,y0) ;

ierr = Kbar{odat,M, k,x0,y0, &KbarrR, sKbariR);

dLx = boxisb].xo-box[sb].xi; dLy = box[sb].yo-box[sb].yi;

L = sqrt((double) (dLx*dLx+dLy*dly))/2.0;

L2 = L*L;

/* set the sweep angle here for the doublet line segment */
if (symm==0) sl = (box[sb).yo-box[sb].ym)/L;

else sl = (box{sb].ym-box[sb].yi)/L; /* left half of wing */
8l2 = gl*sgl;

313 = gl*s22;

if (symm==0} Yt = box[rb].yc - box[sb].ym; /* local y axis */
else Yt = box[rb]l.yc + box[sb].ym; /* left half of the wing */
Yt2 = Yt*¥Yt;

/* The real and imaginary components of the A coeffiecients
of equations 288-290: */

AQr = KbarrC;

AQ0i = KbariC;
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Alr = (KbarrR-KbarrL)/ (2*L);

Ali = (KbariR-KbarilL)/ (2*L);

A2r = ( KbarrL - 2.0*KbarrC + KbarrR )/ (2.(0*L*L);

A2i = ( Kbaril - 2.0*KbariC + KbariR )/ (2.0%*L*L);

fact0 = (8l2*L2-2.0*Yt*sl*L+¥t2)/(S12*LZ2+2.0*Y¥t*31*L+Yt2) ;

fact0 = log((double) (fact0)); /* nat log */

B0 = (2.0*L)/(Yt2-L2*8l2); /* equation 296) */
factl = (0.5/sl2)*fact0;

fact2 = (Yt/sl)*BO;

Bl = (factl+factZ); /* equation 298 */

factl = 2.0*L/sl2;

fact2 (Yt /sl3) *factl;

fact3 = (Yt2/s12)*p0;

B2 = (factl+fact2+fact3); /* equetion 300 */

factor = (~box(sb].chord/ (8.0%PI));

Here, we will cr ¢ -°ss square matricies Di and Di into vectors.
The matricies Dx aad Di are the real and imaginary parts of [D].

{w]

= [D]{Cp}

{w} is a vector of non-dim upwash w/U at the control points.
{Cp} is the vector of non-dimensional pressure dP/(rho*U+2).
(D} is compressed into {Dr} and {(Di) in row packets.

*x/

vector index = rb*wing.total boxes+sb;
if (symm==0) /* for any symmetric case */
{
Dr(vector index] = Dr(vector_ index] +
factor* (BO*AQr+Bl*Alr+B2*A2r);
Di(vector_index] = Di{vector_ index] +
factor® (BOAAUL+BLAR11+BZ*AZi);
}
else if(symme=lgiewing.symm>0) /* left half wing is symm */
{
Dr(vector_index) = Dr(vector_ index] +
factor* (BO*AOr+Bl*Alr+B2*A2r);
Di[vector_index] = Di{wvector_index] +
fact.or* (BO*A0i+Bl*A1li+B2*A2i);
}
elgse if(symm==l&&wing.symm<0) /* left wing is anti-symm */
{
Dr[vector_index] = Drlvector_ index] -
factor* (BO*AOr+Bl1*Alr+B2*A2r);
Di[vector iandex) = Di[vectcr_index] -
factor* (BO*AOi+BI*A1i+B2*A21);
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printf (“\n CONFUSED about the wing symmetry... \nexit\n”);
exit (0);
}

} /* end of loop on sb */

1f (++ic>10)
{
printf(“\n%);
ie=0;
}
printf (™ %d4”,rb):;
} /* end of loop on rb */
} /* end of loop on symm */
printf (*\n\n");

/* Print out ths [D] matrix of AIC covefficients */
for (rb=0;rb<wing.total boxes;++rb)
{
for (sb=0;ab<wing.total_boxes;++sb)
{
vector index = rb*wing.total boxestsb;
fprintf(aicdat, *row: 85d ccl: 35d ind: R10d %15.7e %15.7e\n”,
rb, sb,vector_index, Dr(vector_index],Di([vector_ inhdex]);
}
}

/* Input the (w} boundary condition, return § of monomials */
if( (ierr = bu{odat,k,wr,wi,box,wing)) w= 0 )
{
print€ (“\nNo upwash specified and no pressure computed\n”);
fclosa(odat);
fclose (aicdat)
exit (0);

elne

{
print€({*\n Upwash gpecified and pressurs will bs computed\n”);

}

for (i=0;i<wing.total boxas;++i)

{
printf {854 Real{w]: $12.4e Imag{w): $12.4e \n*,
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MAIN: di()

i,wrli],wi[i]);

fprintf (odat, ”$5d Real[w]: $12.4e Imag[w]: %12.4e \n”,
i,wrli],wilil):

}

/* solve the complex problem {w} = [D]{p} */
printF (“\aSolve the complex problem {w} = [D]{p}\n”);
ierr=complex_solve (Dr,Di,wr,wi,wing.total_boxes);
if(1erri=0)
{
printf (“\nerror number %d in complex solve\n”,ierr);
exit (0) ;
}
/* note: the [D] matrix is now the complex identity matrix */

/* Print out the pressrre coefficients and sum the lift*/

printf (*\n\nTp PRESSURE COEFFICIENTS (P=0.5%*rho*U~2*Cp)”);
printf ( “\nbox # (rea' Cp) (imag Cp) (box area)\n”);
fprint £ (odat, "\n\.Cp PRESSURE CCEFFICIENTS (P=0.5*rho*U~2*Cp)"¥);
fprant £ (odac,“\nbox # (rea’! Cp) (imeg Cp) (box area)\n”);
liftr = 0.0; lifvi = (.0;
for (i=0;i<wing.total_boxes;++i)
{
printf( “%5d $12.4e &12.4e $12.4e\n",
i,wrii)],wili),b2%box[i].area);
fprintf (odat, "$5d4 %12.4e £1°.4e %12.40\n”,
i,wrli),wifi],b2*box([i].ar.a)
liftr += wr(i]*box[i).area;
lifti += wifil*box[i]).ares;
}
lifty /= wing.urea;
lifti /» wing.area;
ierr = polar (i1iftr,lifti,&liftm, &liftp);
liftp *= (180.0/PI;;
printf (“\nThe characteristic length b: “,b);
printf (“The wing area used to aon-dim lift is:%12.4e\n”,
wing.area);
printf(“Lift Coefficient = C_L*q*A\n*);
printf (“THE COMPLEX WING LIFT COEFFICIENT (C_L) IS: *);
printf("[(811.4e) + (811.4e)i)l\n”, liftr,lifti);
printf (“*MAGNITUDE: (8l1l1.4e) PHASE: (89.4f)deqg\n”,liftm,liftp);

fcloee (odat) ;
fclose (aicdat);

115




FUNCTION: read_input()

exit (0);
}

FUNCTION: read input ()

#$include “dl.define”
$include <math.h>
$include <stdio.h>
$include <string.h>
#include “dl.structure”

read input (odat,M, k,b,wing)
float *M, *k, *b;
struct trapezoid *wing;
FILE *odat;

{

FILE *fopen():

FILE *idat;

char csymm;

char line(200];

int ierr;

int n;

float x, y;

if ((idat=fopen (“dl.INPUT¥,6 “x¥)) == NULL)
{
printf (“\ncannot open file dl.INPUT for input\n”);
exit (0);
}
printf (“Input data will bes read from file ([dl.INPUT]\n");

/* BEGIN INPUT */

if( in_line(idat,line)==0 ) /* read title line */
{
fprintf (odat, “\ntext: [&§8]%,line);
print £ (“TITLE: \ntext: [%s)\n”,line);
}

if( in_line(idat,line)==0 ) /* read characteristic length */
{
sscanf (line, *§£%, &x);
*h = x;
printf (*characteristic length: %£\n“,*b);
fprintf (odat, “characteristic length: $£\n®, *vj;
}

if( in_line(idat,line)==0 ) /* read Mach number */
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FUNCTION: read_input()

{

sscanf(line, ”"%£”,&x) ;

*M:x;

printf (“*Mach: $€\n”, *M);
fprintf (odat, “Mach: %f\n”, *M);

}
if( in_line(idat,line)==0 ) /* read reduced frequency */

{

sscanf (line, “$£%, &X) ;

*k:x;

printf (“reduced frequency: $f\n”, *k);
fprintf (odat, “reduced frequency: $£f\n”, *k);

}
if( in_line(idat,line)==0 ) /* read symmetry flag -1, 0 or +1 */

{

gscanf (line, "$c”, &csymnm) ;

line[0) = csymm; line(l] = ‘\0’;

wing->symm = 0;

if( strcmp(line, "s*)==0 )
{
wing->symn = 1;
print £ (“Assume symmetry about the x axis\n%);
fprintf (odat, “Assume symmetxy about the x axis\a¥);

}
else if( strcmp(line, *a”)==( )

{

wing->symm = -1;

printf (“Assume anti-symmetry about the x axis\n”);
fprintf (odat, “Assume anti-symmetry about the x axis\n”);

}

alse
{

wing->symm = 0;

printf (“Assume no symmetry about the x axis\n");
fprint € (odat, “Assume no symmetry about the x axis\n”);

}
}
if( in_line(idat,line)==0 ) /* read inbrd lead edge coord */

{

sscanf (line, "8f 8€%,éx,&y);

wing->xible = x;

wing->yible = y;

printf(*inboard leading edge: x $f y &f\n”,
wing->xible,wing->yible);

fprintf (odat, “inboard leading edge: x §£ y &%f\n”,
wing->xible,wing->yible);
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FUNCTION: read_input()

wing->xible /= *b;
wing->yible /= *b;
}
if( in_line(idat,line)==0 ) /* read inbrd trail edge coord */
{
sscanf (line, “"%f %£”,&x, &y);
wing->xibte = x;
wing->yibte = y;
printf {(“inboard trailing edge: x %f y &%f\n”,
wing~>xibte, wing->yibte) ;
fprintf (odat, "inboard trailing edge: x %f y $f\n”,
wing->xibte, wing~>yibte);
wing->xibte /= #*b;
wing->yibte /= *b;
}
if( in_line(idat,line)==0 ) /* read outbrd trail edge coord */
{
sscanf (line, £ %£%,&x,&y);
wing=->xobte = x;
wing->yobte = y;
printf (“outboard trailing edge: x %f y %f\n”,
wing->xobte, wing~>yobte) ;
fprint £ (odat, “outboard trailing edge: x $f y &§f\n*,
wing->xobte,wing->ycbte) ;
wing->xobte /= *bh;
wing->yobte /= *b;
}
if( in_line(idat,line)==0 ) /* read outbrd lead edge coord */
{
sscanf (line, 3£ ¥€%,&x, &y);
wing->xoble = x;
wing->yoble = y;
printf (“outboard leading edge: x §£ y 8f\n*,
wing->xoble,wing->yoble);
fprint £ (odat, “outboard leading edge: x &f y 8f\n”,
wing->xoble,wing->yoble) ;
wing->xoble /= +%b;
wing->yoble /= *b;
}
if( in_line(idat,line)==0 ) /* read number of boxes in x */
t
sscanf (line, “§d”, &n) ;
wing->num box x = n;
printf (*number of boxes in the x direction: %d\n%,
wing->num box_x) ;
fprint £ (odat, “number of boxes in the x direction: $%d\n*,
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wing->num_box“x);
if (wing->num box x > MAX DIV X)
{
printf (*\n EXCEEDED MAXIMUM DIMENSION ON DIVISIONS IN X\n”);
exit (0);
}
}
if( in_line (idat,line)==0 ) /* read number of boxes in y */
{
sscanf (line, ”%d”,&n);
wing->num _box_y = n;
printf (“number of boxes in the y direction: %d\n”®,
wing->num_box y);
fprintf (odat, “number of boxes in the y direction: %d\n”,
wing->num box y);
if (wing=->num box y > MAX DIV Y)
{
printf (*\n EXCEEDED MAXIMUM DIMENSION ON DIVISIONS IN Y\n%);:
exit (0);
}
}

wing->total boxes = wing->num box_x * wing->num box y;
if (wving->total boxes>MAXBOX)
{
printf (*\n EXCEEDED MAXIMUM DIMENSION ON BOXES\n*);
exit (0);
}

fclose (idat) ;
/* INPUT IS NOW COMPLETE ®/

raeturn(0):
}

/Ci**t*tt*.**kQ*t**RtQt****i**t**t**t**ﬁtit*ﬁtt**t*lttﬂ**ﬁ*i*t*ti

*Calculate the coordinates of the discretised wing. A
i*ﬁiﬁitt**t**tt****itttt*t*tt*tt*Q&i*ittttit*Qttt**!tti**ﬁ*ttﬁti/

#include “dl.define”
#¢include <math.h>
#include <stdio.h>
#include *dl.structure”
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FUNCTION: discretize()

int discretize {odat,wing,box)

FILE

*odat;

struct element box[];
struct trapezoid wing;

{

int guadrilateral();

int ierr;

int rx,ry; /* x index and y index */
int box_ index;

float
float
float
float
float
float

total

dxib,dxob; /* delta x on the inboard and outboard chords */
dy; /* delta y is constant over the span */

%1, x2,x3,x4;

yl,¥2,y3,y4;

ix,iy;

area, total arsa;

area = 0.0;

/* delta x along the inboard and outboard: */

dxib

= (wing.xibte-wing.xible)/ (float}wing.num _box x;

dxob = (wing.xobte-wing.xoble)/(float}wing.num box_x;

/* de
dy =

lta y of all boxes: */
{wving.yocble~wing.yible)/ (float)wing.num box_ y;

fprintf (odat, "dxib: %f dxob: $£ dy: %£\n*,dxib,dxob,dy);

for (ry=0;ry<wing.num box_y;+try) /* box y index */

{

for (rx=0;rx<wing.num _box_x;++rxz) /* box x index */

{

box_index = ry*wing.num box x + rx;
/* printf (“rx: ¥3d ry: %3d receive_index: $4d\n”,

;*

rx, ry,box_index); */
inboaxd leading edge coordinates of receiving box: */

ix = (float)rx;

iy = (float)ry/(float)wing.num_ box_y;

x1 = ix*dxib + ix*(dxob-dxib)*iy; /*ible*/
yl = ry*dy;

/‘t

inboard trailing edge coordinates of receiving box: */

ix = (float) (rx+l);

iy

= (float)ry/ (float)wing.num box_y:

‘%2 = ix*dxib + ix* (dxob-dxib)*iy; /*ible*/
y2 = ry*dy;

A

outboard trailing edge coordinates of receiving box: */

ix = (float) (rx+l);

iy

= (float) (ry+l)/ (flout)wing.num box y;

x3 « ix®dxib + ix* (dxob-dxib;%iy; /*iblet/
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FUNCTION: discretize()

¥3 = (ry+l) *dy;
/* outboard leading edge coordinates of receiving box: */
(float) rx;
iy = (float) (ry+1)/(float)wing.num box_ y;
ix*dxib + ix* (dxob-dxib)*iy; /*ible*/
(ry+1) *dy;
/* coord of the receiving control pt at 3/4 chord centerspan */
box[box_ index].xc = ( x1+0,75% (x2-x1) + x4+0.75% (x3-x4) )/2.0;
box[box_index].yc = (y2+y3)/2.0;
/* inboard coord of the sending doublet line along 1/4 chord */
box[box_index].xi = x1+0.25%(x2-x1);
box{bo;_index].yi = yl;
/* outboard coord of the sending doublet line along 1/4 chord */
box[box_ index].xo = x4+0.25% (x3-x4);
box[box_ index].yo = y4;
/* midspan coord of the sending doublet line along 1/4 chord */
box[box_index].xm = (box[box_index].xi+box[box_index].xo0)/2.0;
box[box_index].ym = (box[box_index].yi+box[box_index).yo)/2.0;
/* average chord */
box[box_index].chord = ((x2=-x1)+(x3~x4))/2.0;
/* box area and x and y coordinates of the box centroid */
ierr = quadrilateral (odat,xl,yl,x2,y2,x3,y3,x4,v4,
&area, &ix, &iy) ;
box [box_index).area = area;
box[box_index] .xcent = ix;
box [box_index].ycent = iy;
total area += area;
fprint £ (odat, “\n BOX: #53d\n”,box_index);
fprintf(odat,” x1: $8.4f x2: %8.4f x3: $8.4f xd: $B.4f\n",
x1,x2,x3,x4);
fprint€(odat,” yl: $8.4f y2: $8.4f y3: $8.4Ff yd: $8.4f\n”,
yl,y2,y¥3,y4);
fprintf(odat,” 3/4 chord midspan x: &f y: &¥f\n¥,
box [box_index].xc,box[box_index].yc);
frrint€£(odat,” 1/4 chord inboard x: &£ y: &f \n*,
box [box_index].xi,box{box index].yi):
fprintf (odat,” 1/4 chord midspan x: %f y: %f \n*,
box [box_index] .xm,box[box_index].ym);
fprintf (odat,” 1/4 chord outboard x: 8%f y: %f \n”",
box [box_index] .xo,box[box_index].yo):
fprintf(odat,” average chord: $f \n“,box[box index].chord):;
fprint £ (odat,” area: %f \n",area);
fprint £ (odat,” x centroid: &f y centroid: &f\n”,ix,iy);

fo-
"
i

< oo
[ -
[

} /* end of loop on rx */
} /* end of loop on ry */
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fprintf (odat, “\nTOTAL AREA OF WING: $f\n“,total_area);
return(0);

}
FUNCTION: Kbar()

/********************************************************ﬁ*******

* This subroutine computes K bar. *
* K bar is given as equation 273 in the text). *
* K1 is given as equation 266 in the text. *

*********************************t******t************ﬁt*********/

#include “dl.define”
#¢include <math.h>
#include <stdio.h>

int Kbar (odat,¥M, k,x0,y0,Kbr,Kbi)

FILE *odat;

float M;/* mach */

float k;/* reduced freq wb/U */

float x0,y0;/* non-dimensional (x-xi)/b and (y-eta)/b */
float *Kbr,*Xbi;/* return these valueas */
{

int ieryx,Il{():

float ul,kl;

float alpha,betal;

float Kilr,Kli, factor;

float exr,exi,eur,eui;

float Ilrx,Ili;

float Ul;

fprintf (odat, “In Kbar now\n®):
fprintf (odat, “M: &12.4e\n”",N);
fprint £ (odat, *k: 812.4e\n” k);
fprintf (odat,”x0: %12.4e y0: 812.4e\n%,x0,y0);

boata2 = 1-M*M;
kl= k*ABS{(y0):
fprintf (odat,*kl: §12.4e\n”,kl);
if ({ABS (y0) )<EPS) /* if y0 = zero, we need to take care for ul */
{
if(x0>0.0) (ul=PIGM; )
else {ul=BIGP;}
}
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else /* y0 is not equal to zero */
{
ul = (M*sqgrt ((double) (x0*x0+beta2*y0*y0))-x0)/ (ABS (y0) *beta2) ;
}

alpha= -~x0%k;

exr= cos ({double) (alpha));

exi= sin((double) (alpha));

ierr = Il(odat,ul,kl,&Ilr,&Ili); /* compute the Il integral */

/* compute K1l = (Klr + i*Kli) */
if( ul>=BIGP || ul<=BIGM )
{
fprintf (odat, *BIG ul: $12.4e\n”,ul);
Klr = -Ilr;
Kli = -Ili;
}
else if( ul<BIGP && ul>BIGM )
{
fprintf (odat, “bounded ul: %l1l2.4e\n”,ul);
alpha = =kl*ul;
eur = cos((double) (alpha});
eui = gin((double) (alpha));
factor = (-1.0)*
{ M*ABS (y0) /sqrt ((double) ( (x0*x0) + (beta2*y0*y0))) )
/sqrt ((double) (1.0+ul*ul));
Kir = factorreur - Ilr;
Kii = factor*eui =- Ili;

alse

{
printf (*\nConfused with ul in function Kbar\a”):;

}

/* compute Kbar = {Kbr + i*Kbi) */
ierr = cmult (Klr,Kli,ext,exi,Kbr;Kbi);
return(ierr);

)

/t&*l*tt**ﬁttitt&*tit**t*ttliﬁt*tﬂt*ﬁ**..ttii.*tt.*t**ﬁit

* This soubroutine computes the integral I1l. &
* I1 is given as equation 267 in the text *
* Il computes the Il integral for any ul. *

ttﬁ*tiﬁ&*ittttttiiii.titﬁtﬁii.iittiititit**i.ttﬁ&ﬁi*it*./
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#include <math.h>
#include <stdio.h>
#include *dl.define”

int Il (odat,ul,kl,Ilr,Ili)

FILE =»odat;
float ul,kl;/* input these values */
float *Ilr,*Ili;/* return these valuas */

{
int ierr, cmult();
float Ul, Ireal;

fprintf(odat,” (IN Il1) ul: $12.4e kl: %12.4e\n”,ul, kl);
if (ul>=0.0)
{
1£(ul>=sBIGP) /* +BIGC < ul */
{
*Ilr = 0.0;
"I1i = 0.0;
}
else /* 0 <= ul < +BIG */
{
ierr = il (odat,ul, kl,Ilr,I1i);
}
}
else /* ul < 0 »/
{
if{ul<mBIGM) /* ul < -BIG */
{
fprintf (odat, *ul < ~BIG \a”");
Ul = 0.0;
ierr = il (odat,Ul,kl,Ilr,Il1i);
*Tlr *w 2 0;
*Y1i %= 2.0;
}
else /* -BIG < ul < 0 w/
{
/* compute Il for O<u<infinity: ¢/
fprintf(odat,” -BIG < ul < 0\a");
Ul = 0.0;
ierr = il (odat,Ul,kl,Ilr,Idi);
Ireal = *1lr;
Ul = (=1.0)*};
ierr = il (odat,Ul, k], Xir,I1i);
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*Ilr = (2.0*Ireal) - (*Ilr);
}
}

return (ierr) ;

}

FUNCTION 31()

/****************************ﬁ********ﬁ***t***t********t*********

*Function to compute the Il integral for ul »= 0%
********t*************t**************************t**************/

int il (odat,ul, kl,ilr,ili)

FILE *odat:
float wl,kl;
float *ily,*ili;

{

int ierr, cmult (), J1():

float ir,ii,alpha, factor,er,ei;
float jlr,jli;

fprintf (odat,” (IN il) ul: &12.4e kl: %12.4e\n”,ul,kl):
i£(ul1<0.0)
{
print£(™\n ul cannot be less than zero...ul = §12.d8\n%,ul):;
axit (0);
}
iery = Jl(odat,ul,kl,&jlr,&jli);
factor = 1.0 - ul/sgrt((double) (1.0+ul*ul));
ir = factor + kl*jli;
ii = -kl*jir;
alpha = -kl®*ul;
er = cos{(double) (alpha));
ei = sin((double) (alpha));
iexr = cmult({er,ei, ir,ii, ilr,4i14);

racurn{ierr);

}

/ttﬂ!*ﬁtﬂQ!t*iti'i*tﬁﬁ*li*ﬁi"t.tt'*iiltittﬂ***#t.tt*il.'
* This subroutine computes the integral Jl1. *
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* The integrand of Jl is appro- imated as an
* algebraic expression and the.. integrated.
* The series expression for Jl is given as

* equation xxx in the text.
*****************************************************ﬂﬁ*/

¥ ¥ % %

#include <math.h>
$include <stdio.h>

int Jl1(odat,ul,kl,Jlr,J1i)

FILE *odat;
float ul,kl;/* input thesa values */
float *Jlr,*J1i;/* return these values */
{
int i,ierr;
gtatic int n = 11;
fioat j,zero,siv,s8ii,jr,ji;
double djx,dji:
static float ¢ = 0.372;
static float a[ll] = { 0.24186198,
-2.7818027,
24.991079,
-111,.53198,
271.43549,
-305.75288,
-41.183630,
545,98537,
-644.78155,
328.72755,
-64.279511 );
fprintf (odat,” (IN J1) ul: $12.4e kl: %12.4e\n”,ul, kl);
ierr = 0;
zero = 0,0;
djr = (double)zero;
dji = (double)zero;

for(i=l;i<=n;++i)
{
j = a[i-1]%exp((double) (~i*c*ul)})/
((flout) (i*i) * (c*c)+ (kl*kl))
sjr = j*(float) i*c;
8ji = =-J*k1;
djr = djr + (double)sjr;
dji = dji + (double)sji;
fprintf (odat, “a[%2d]: %12.4e\n",i,ali-11),
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}

*J1lr = (float)djzx;
*J1i = (float)dji;

recurn(ierr);

. }

#include “dl.define”
#include <math.h>
#include <stdio.h>
$include «<string.t>
#include “dl.structure”

int bc(odat, k,wr,wi,box,wing)
FILE *oaat;

fleoat k;

float wril,wil];

struct element box([];

struct trapezoid wing;

{

FILE *fopen ()

FILE *jidat;

char c,flag(2j,1ine[200]);

int ierr,do_flag, number;

int i, j,px,py;

float 3, x, y, sumr, sumi;
float power():

struct polynomial poly[MAX POLY];

if ((idat=fopen (“bc. INPUTY, “r”) ) we NULL)
{
printf (“\ncannot open file b¢.INPUT for input\n”);
exit (0);
}

. printf (“Boundary data will be read from file [dl.INPUT]\n”);
printf (“reduced frequency (k): %12.4e\n”,k);
number = 0;
/* BEGIN INPUT */
do{
do_flag = 1;

127




FUNCTION be()

if( in_line(idat,line)==0 )

{

/* fprintf (odat,”\ntext: [%s]”,line); */

/* printf (“text: [%s]\n”,line); */

sscanf (line, "%c”, &c) ;

flag[0])=c;

flag[1l='\0’;

if( stremp(flag,”e”)==0 }/* end of data */
{
do_flag=0;
}

if( strcmp(flag,”l”)==0 )/* a line of data is in line[] */
{
sscanf (line, "$c %f %d %d”, &c, &a, &px, &py) ;7
poly[number].a = a; /* coefficient */
poly [number] .px = px; /* power of x */
poly[number].py = py; /* power of y */
printf(™ [%c] a: $f px: %d py: %d\a“,c,a,px,py);
++number;
do_flag = 1;
}

}
}while(do_flag==l);

fclose (idat);
if (number==() return (number); /* return zero if no data input */

/* Compute the upwash at each box 3/4 chord */

print£(*\n compute the upwash at &d control points\n*,
wing.total boxes);
for (i=0;i<wing.total boxes;++i)
{
x = box[i]).xc;
y = box{i].yc;
sumr = 0.0;
sumi = 0,0;
for (j=0; j<number; ++1y)
{
surr =~ sumr + (poly(jl.a * roly(j).px) *
power (x, (poly([j) .px-1)) * power(y,poly(3].py)’
sunli = gumi + k * poly(j).a *
power (x;poly[i) .px) * powar (y,polyljl.py):
}
wz{i) = gunr;
wifi] = gumi;
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FUNCTION complex_solve()

fprintf (odat,” $5d Real[w]: %12.4e Imag[w]: %$12.4e\n”,
i,wrli],wi[i]);

}

return (number) ;

}

EUNCTION complex solve()

/*

solve is a function to solve the complex linear system [a]{x}={c}
using Gaussian elimination and back substitution with pivoting
on each step. [a] is input in vector form a(k) = a(i,j) where
k=i*nc+j. nc is the utilized portion of a[nc] [nc] and c[nc]

where nc <= the declared dimension. The complex solution {x}

is returned in {c}.

The real and imaginary parts of a[][] are designated as
ar{] and ai[]. Likewise for the ¢ wvector.
*/

#include <stdio.h>
$define ABS(x) (((x)<0) ? =(x) : (x))

int complex_solve(ar,ai,cr,ci,nc)
int nc;

float ar[),ai[),cr(],cil);

{

int ierr,i,3j,4i2,nr,ir, jc;

int cdiv(), cmult();

float rmaxabs, tmpabs,tupr,tmpi,dr,di,big=l.0e+20,eps=l.0e~-20;
float cmag():

/* Consider nc rows: %/
for (i=0;i<nc; ++1)
{

/* find max diagonal value and switch rows */
nrei;
rmaxabs=cmag (av[i*nc+i] ,ai{i*nc+i));
for (i2=i;i2<ncy++i2)
{
tmpabs=rmaxabs-cmag (ar[i2*nc+i],ai[i2*nc+i));
if (tmpabs<0.0)
{
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FUNCTION complex_solve()

nr=i2;
rmaxabs=cmag(ar{i2*nc+i] ,aif[i2*nc+i])
}

} /* end i2 loop*/

for (j=0; 5<nc; ++3)
{
tmpr=ar [nr*nc+jl;
tmpi=ai [nr*nc+jl;
ar[nr*nc+jl=ar[i*nc+j];
ai[nr*nc+jl=aili*nc+i];
ar[i*nc+j]l=tmpr;
ai{i*nc+j]=tmpi;
}

tmpr=cr[nr];

tmpi=ci[nr];

crinr]l=crli];

cilnrl=ci[i];

cr[i)=tmpr;

cifi]=tmpi;

/* rows have been switched */

dr=ar{i*nc+i];
di=ai[i*nc+i];
if (ABS (cmag (dr,di) ) <meps) return(l);
for (j=i; j<nc; ++3)
{
ierrmgdiv (ar[i*nc+j),ai[i*nc+]], dr, di, etapr, stapl) J
ar(i*nc+j) = tmpr;
aifi*nc+j) = tmpi;
)
ierr=cdiv(cx[i),ci(i),dr,di, etnpr, ttupl);
crfi) = tmpr;
ci[i) = tmpi;
if( ABS(cmag(crli]),ci[i))) >= big )return(S);

for (ir=0;ir<ncy++ir)
{
if (ir=mei)continue;
dr = ar(ir*nc+i};
di = ai[ir*nc+il;
if( ABS (cmag(dr,di)) >= big)return(2);
if( ABS (cmag(cr(i},ci[i])) >= big)returni{d);
for (jomi; je<noy ++5¢)
{
ierr=cmult (dr,di,ar(i*nc+jc),aili*nceic], etapr, btupi),;
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FUNCTION compiex_math()

ar[ir*nc+ijc] -= tmpr;
aif[ir*nc+jc] -= tmpi;
} /* end jc loop */
ierr=cmult (dr,di,cr(i],ci[i], &tmpr, &tmpi) ;
crlir] -= tmpr;
ci[ir] =-= tmpi;
} /*ir loop*/

} /* i loop*/

return(0);

}

FUNCTION complex math()

/******************************t*****i‘**************************

This file is the source for a collections ¢f subroutines

written by Max Blair to perform simple complex operations.
e e L T T R I e e Y

$include <stdio.h>

#$include <math.h>

$define ABS(x) (((x)<0) ? ~-(x) : (x))
$define EPS (1.0e-20)

$define BIG (1.0e+20)

/* add c=a+b */

int cadd(ar,ai,br,bi,cr,ci)

float ar,ai;/* input this complex number */
float br,bi;/* input this complex number */
float *cr,*ci;/* return this complex number */
{

*cy = ar+br;

*ci = ai+bi;

return(0);

}

/* add c=a-~b */

int csub(ar,ai,br,bi,cr,ci)

float ar,ai;/* input this complex number */
float br,bi;/* input this complex number */
float *cr,*ci;/* return this complex number */
( )

*cr = ar-br;

*ci = ai-bi;

return (0) ;

131




FUNCTION complex_math()

}

/* multiply c=a*b */

int cmult(ar,ai,br,bi,cr,ci)

float ar,ai;/* input this complex numbes */
float br,bi;/* input this complex number */
float *cr,*ci;/* return this complex number */
{

*cr = (ar*br)-(ai*bi);

*ci = (ar*bi)+(ai*br);

return (0);

}

/* divide c=a/b */
int cdiv(ar,ai,br,bi,cr,ci)
float ar,ai;/* input this complex number */
float br,bi;/* input this complex number */
float *cr,*ci;/* return this complex number */
{
float d;
d = (br*br)+(bi*bi):;
if (d<EPS)
{
printf (*\n division by complex zero in cdiv\n®);
exit (0);

else
{
*cy = ((ar*br)+(ai*bi))/d;
*ci = ((ai*br)-(ar*bi))/d;
}

return(0);

)

/* transforms complex number from cartesian to polar form */
int polar{ar,ai,bm,bp)

float ar,ai; /* input cartesian form of complex number a */
float *bm,*bp; /* return polar form of b, mag and phase (rad)*/
{

float ftheta():

*bm = sqzt ((double) ((ar*ar)+(ai*ai)));

*bp = ftheta(ar,ai);

return (0);

}

/* transforms complex number from polar to cartesian form */
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FUNCTION power()

int cartesian(am,ap,br,bi)
float am,ap; /* input polar form of complex number a, magnitude

and phase (rad) */

float *br,*bi; /* return cartesian form of complex number b */
{

*br = am*cos ((double)ap);

*bi = am*gin((double)ap):

return (0);

}

/* return the value of theta (rad) given x and y coordinates: */
float ftheta(x,y)
float x,y;

{
float pi,xtest,theta;

pi=acos ((double) (-1.0));

xtest=fabs ( (double) (y*1l.0e-05) );
theta=pi/2.0;

if (y<0.0)theta=(-pi)/2.0;

if (fabs ( (double) x) <=xtest) return (theta);
theta=atan ( (double) (y/x));

if (x<0.0)theta=theta+pi;

return (theta) ;

}

/* absolute value of complex number in cartesian form */
float cmag(ar,ai)
float ar,ai; /* input cartesian form of complex number a */
{
float mag; /* return polar form of b, magnitude and phase (rad)*/
if( ABS{ar)>BIG || ABS(ai)>BIG )
{
printf (“potential error in cmag ar: &e ai: %e\n”,ar,ai):
if( ABS(ar)>BIG )mag = ar;
if( ABS(ai)>BIG )mag = ai;
return (nag) ;
}
if( ABS(ar)<EPS && ABS (ai)<EPS )return(0.0);
mag = sqgrt ( (double) ( (ar*ar)+(ai%ai)));
raeturn (maqg) ;

}

EUNCTION power ()
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FUNCTION quadrilateral()

float power (x,i)
/* carry out the operation x*i where x is real and i is integer */
int i:

float x;

{

int i;

float p;

if (i==0) return(1);
if (i==1) return(x);
p=x;

for (3=2; j<=1i; j++)
{

P=p*x;

}

return(p) ;

}
FUNCTION quadrilateral()

/* input the coordinates in a counter-clockwise order */

tinclude “dl.define”
#include <math.h>
#include <stdio.h>
$include “dl.structure”

int quadrilateral (odat,xl,yl,x2,y2,x3,y3,x4,y4,area,xc,yc)
FILE *odat;

float x1,x2,x3,x4;

float yl,y2,y3,y4;

float *area, *xc, *yc;

{

float al,a2,a3,ad;

float bl,b2,b3,b4;

float ¢l,c2,¢3;

al = (-x1+x2+x3-x4)/4.0;
a2 = ( xl-x2+x3~-x4)/4.0;
a3 = (-xl-x2+x3+x4)/4.0;
a4 = ( xl-x2+x3-x4)/4.0;
bl = (-yl-y2+y3+yd)/4.0;
b2 = ( yl-y2+y3-y4)/4.0;
b3 = (-yl+y2+y3-yd)/4.0;
bd = ( yl-y2+y3-y4)/4.0;
cl = ( al*bl-a3*b3);

c2 = ( al*b2-a2*b3);
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c3 = ( 32*b1-33*b2),'
*area = 4.0%cl;
if (*area<=0.0)return(l);

al = ( x1+x2+x3+x4)/4.0;
a2 = (-x1+x2+x3-x4)/4.0;
a3 = (-x1-x2+x3+x4)/4.0;
ad = ( x1-x2+x3-x4)/4.0;
bl = ( yl+y2+y3+y4d)/4.0;
b2 = (~-yl+y2+y3-y4)/4.0;
b3 = (~yl-y2+y3+y4)/4.0;

bd = ( yl-y2+y3-y4)/4.0;

FUNCTION in_lineQ)

*xc = ( 4.0%(al*cl) + 4.0* (a2*%c2)/3.0 + 8.0*(a3*c3) )/ (*area);
*yc = ( 4.0*%(bl*cl) + 4.0% (b2%c2)/3.0 + 8.0*%(b3%c3) )/ (*area);

return(0);

}

FONCTION in linal

#include <stdio.h>

int in_line(idat,line)

char line{];
FILE *idat;

{
char ¢l;
int j;

cl=getc(idat);

if (cl==EQOF)

{
line[0])="\0’;
return(l):;

}

else if(clm=]10)

{
line([0)}='\0’;
return (0);

line([0]}=cl;
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end of doublet 1sttice source code

}

j=12
while( (line[j]=getc (idat)) != 10 )
{
if(line[j]==EQF)
{
printf(“*\nEND OF FILE ENCOUNTERED IN in_line() \n*)};
exit (0);
}
j++;
}
line[j]='\0/;
return(0);
}

and of doublet lattice scurge coda
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APPENDIX B

The Doublet Lattice Program Input File

BLAIRCRRFT 2100 ATTACK FIGHTER

6.0 characteristic length (b)

0.5 Mach

1.00 reduced frequency wb/U

s s: symmetric a: anti-symmetric n: no symmetry
0.0 0.0 x and y coord of inboard leading edge

12.0 0.0 x and y coord of inboard trailing edge

12.0 12.0 x and y coord of outboard trailing edge
0.0 12.0 =x and y coord of outboard leading edge

3 number of chordwise cuts (discretized x)

3 number of spanwise cuts (discretized y)

COMMENTS :

Pdimensional pressure
Cpnon-dimensional pzressure
rhoair density

P = rho*U~2+*Cp
For typical “non-dimensional” input, set Umb=l,

The output is interpreted accordingly.
Only Cp is printed out for each box.

ke INPUT

Boundary condition (upwash) input for doublet lattice:

flag constant X power y power
l -1.0 0 0
0 -1.0 1 0
0 -1.9 0 1




0 -1.0 2 0
0 -1.0 1 1
0 -1.0 0 2
end of data

interpretation:

w(x,y) = a00 + al0*x + a0l*y + a20%x*2 + all*x*y + af2ry~8
ingtructions:

Only data with a *1” in the first columii will be cohsida#ed

data.

Replace the “1” with a “0” to ignore any data.

A line which begins with an “e” will terminate the input.
There must be at least one line which bdgina with an “a*.

and of data
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APPENDIX C

The Doublet Lattice Program Cutput Listing

Auxillary runtime data placed in file [dl.TRASH]
Aercdynamic influence coefficients placed in file [dl.AIC)
MAXBOX: 400 MAXDIM: 160000

Begin input

Input data will be read from file [dl.INPUT]
TITLE:

text: (BLAIRCRAFT 2100 ATTACK FIGHTER]
characteriatic length: §.000000

Mach: 0.500000

reduced frequency: 1.000000

Assume symmetry about the x axis

text: [ 0.0 0.0x and y coord of inboard leading edge)
inboard leading edge: x 0.00000C y 0.000000
inboard trailing edge: x 12.000000 y 0.000000
outboard trailing edge: x 12.000000 y 12.000000
outboard leading edge: x 0.000000 y 12.000000
number of boxes in the x direction: 3

number of boxes in the y direction: 3

Input complete

The wing area used to non-dimenaionalize lift is: 4.0000e+00
The wing centroid is at x: 1.000000 and y: 1.000000
Begin discretizing the wing.
Discretization is now conplete.

reduced freg (k): 1.0000e+00

beta*2 (1-M*2): 7.5000e-01

0
1

3456780
4567H¢8

W M
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Boundary condition data will be read from file [dl.INPUT]
reduced frequency (k): 1.0000e+00

[1] a: -1.C00000 px: O py: O

compute the upwash at 9 control points

Upwash specified and pressura will be computed

0 Realfw]: 0.0000e+400 Imag[w]: =-1,.0000e+00
1 Realw]: 0.0000e+00 Imag[w)]: ~1.0000e+00
2 Real[wl: 0.0000e+00 Imag[w]: -1.0000e+00
3 Real[w]: 0.0000e+00 Imagiw]: -1.0000e+00
4 Real[w]: 0.0000e+00 Imag(w]: -1.0000e+00
5 Keal{w]: 0.0000e+00 Imag([w]: ~1.0000e+00
6 Real{w]l: 0.0000e+00 Imagw]l: -1.0000e+00
7 Rsal[w]: 0.0000e+00 Imag([w]: -1.0000e+00
8 Real[w]: 0.0000e+00 Imag(w]: -1.0000e+00
Solve the complex problem {w} = [D]{p}

Cp PRESSURE COEFFICIENTS (P=0.5*rho*U*2*Cp)
box # (real Cp) (imag Cp) (box area)

0

W -Jo bW

-5.4900e-01
-3.8862e¢+00
~5.8736e+00
~5.9144e-01
-3.06405e+00
~-3.6234e+00
~5.8286e-01
~-2.8983e+00
-2.8893e+00

6.2682e+00
2.4495e+00
1.1745e+00
5.8092e+00
2.1530e+00
1.0281le+00
4.5474e+00
1.4663e+00
7.1186e-01

1.6000e+01
1.6000e+01
1.6000e+01
1.6000e+01
1.6000e+01
1.6000e+01
1.6000e+01
1.6000e+01
1.6000e+01

The characteristic length b: The non-dimsnsional ving area used
to non-dimensionalize lift is: 4.0000e+00

Lift Coefficient = C L*q*A

THE COMPLEX WING LIFT COEFFICIENT (C_L) IS:

[(~2.5038e+00) + ( 2.8453e+00)1]

MAGNITUDE: ( 3.7901e+00) PHASE: ( 131.3471;deg

U.8. Coverumant Printing Of’ice $48-137
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