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FOREWORD

This report was prepared by the Douglas Aircraft Company, Aircraft
Division, Long Beach, California, for the Acrospace Dynamics Branch, Vehicle
Dynamics Division, Air Force Flight Dynamics laboratory, Wright-Patterson
Air Force Base, Ohio under contract F33615-70-C-1167. This research was con-
ducted under Project 1370, "Dynamic Problems in Military Flight Vehicles," and
Task 137003, "Prevention of Dynamic Aeroelastic Tastabilities in Advanced
Military Aircraft." Mr. S. J. Pollock of the Aerospace Dynamics Branch was
Task Engineer.

This 1eport consists of two parts with two volumes for each part. This
volume, Volume I of Part II, contains a method which uses an image system and
an axial singularity system to account for the effects of the bodies. Volume I
of Part I contains the method of direct application of nonplanar 1lifting sur-
face elements, Volume II of Part I is the Computer Program H7WC, and Volume II
of Part II is the Computer Program NCKA. The volumes containing the computer
programs are available upon request from the Air Force Flight, Dynamics Lab-
oratory/FY, Wright-Patterson AFB, Ohio 45433,

The work reported herein was conducted Juring the period of December 1369
to August 1971.

The Principal Investigator was Joseph P. Giesing. Mrs. T. P. Kalman wes
responsible for the computer programming and Dr. W. P. Rodden was a McDonnell
Dougias Company Consultant. Others have made significant contributions to this
project including Messrs. D. H. Larson, D. S. Warren, and W. E. Henry.

The contractor's designation of this report is MuC-J0944. The report was
released by the authors in August 1971 for publication as an AFFDL Technical
Report.

This tecknical report has been revizwed and is approved.
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ABSTRACT

A technique for predicting steady and osciilatory aerodynamic loads on
general configurations nas been deveioped which is based on the Doublet-Lattice
Method and the method of images. Chord- and spanwise loading on 1ifting
surfaces and longitudinal body load distributions are determined. Configura-
tions may te composed of an assemblage of bodies (elliptic cross s=ctions and
da distribution of width or radius) and 1ifting surfaces (arhitrary planform
and dihedral, with or without control surfaces). Loadings predicted by this
method are required for flutter, gust, frequency response and static aero-
elastic analyses and may be used to determine static and dynamic stability
derivatives. Volume I presents the theory and calculated results while
Volume II presents the details of the computer progrem used to implement

the theory.
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NOMENCLATURE

Reference total area
Average body width
Local body width
Radius of curvature
Average body height
Local body height

Position vector to center of curvature

Ro11ing moment coefricient (moment/qu) (+ right wing dovn)

Pitching moment coefficient (moment/gAc) (+ nose up)

Yawing moment coefficient (moment/qAS) (+ nose right)

Pressure coefficient

Side force coefficient (Force/qA) (+ out right wing)

Vertical force coefficient (Force/gA) (+ up)
Local chord length

Reference chord length

Local pitching moment coefficient

Local normal force coefficient

Center of pressure

Matrix relating normalwash to 1ifting pressures
surface elements

Matrix relating normalwash to 1ifting pressures
elements

Matrix relating normalwash to Tifting pressures
and all their images

Matrix relating normalwash to 1ifting pressures

plus their images plus lae contributions due to
ground effect
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for elements
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Partitioned matrix [Eﬁ E], relating normalwash to 1ivting
pressures and doublet stirengths

Matrix relating the flow normal to a body surface (at the
meridian angle 8) to the liftiny pressure for elements and their
images

Matrix relating the average side- or upwash at a body due to
Tifting surface elements

Matrix relating the doublet strength to the local up- or sidewash
using quasi-steady, cwo-dimensional slender-body theory

Spacing of doublets or vortices within slender bodies (sirulation
of body aspect ratio (b/a))

Matrix relating normalwash to axial doublet strengths

Matrix relating normalwash to axial doublet strengths with the
effects of symmetry and ground effect included

Matrix relating the normalwash to y- or z-oriented axial doublets

Lifting surface element semi-width; also cross-sectional elenent
semi-width

Total force on a body due to 2 point pressure doublet. Subscript
indicates direction of force; superscript indicated direction of
pressure doublet

Nondimensional deflection. Also function involving Hankel functions
Hankel function of the second kind of order v

Deflectiors normal to a lifting surface

Deflections of a body in y- and z-directions, respectively

Unit vectors in x-, y- and z-directions, respectively

Unit vector in the direction of the body force

Velocity kernel functign; the normalwash due to a point pressure
doublet; also (ag - bg)/4

Potential kernel function; the potential due to a peint pressure
doubtlet

Reduced frequency (wc/2U )
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The normalwash due to a potential doubiet

The potential due to a potential dﬁub]et

Mach number; also normalwash due to & point source; also moment
Orientation of pressure coublet

Qutward normal and tangent vectors

Function involving Hankel functions

Generalized force; also modified ac.;eration notentizi
Dynamic pressure

Generalized modal coordinate

/?x —-c)2 + g2pl

Ay =n)? + (z =)

(a + b)/2

semi-span

Freestream velocity

Normalwash boundary values

Normalwash due to image 1ifting surface e.ements
Normalwash due to body interference doub’et ¢ svribution
Ws + Wy

Normalwash due to 1ifting surface elem>nts

W — AW

Normalwash in the circle plane

Coordinates of a receiving point

Coordinate abeut which moments are taken

angle of attack

/1 —-M2

Dihedral angle: Yo receiving point, ' sending point

Vortex strencth
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Lifting pressure

Modified acceleration potential jump
Normalwash due to slender body elements
Longitudinal length of 1ifting surface box
Lorgitudinal length of axial element
Potentiai jump

Symmetry plane indication (1 symmetry, O nc symmetry, -1 anti-
symmetry); also a delta function; alse a virtual displacement

Eiemantal area

Ground-effact indication (-1 ground effect, 0 no ground effect,
1 antiground effect)

z-coordinate of sending point

y-coordinate of sending point

Lateral coordinates in the plane of the lifting surfacn
Meridian anole for a body of circular cross section

Sweep of 1/4-chord of 1ifting surface <ioment; also inclination
angle in z-y-plane of a crcss-sectioral surface element

Quadrupole strength

Doublet strength of interference-body elements

Doublet strengih of slender-body elements

Multipole strength in circle plane; \ gives order of pole

Doublet strenyth of modified acceleration potential distribution
in y- and z-directions; also reducticn factors for image doublets

#-coordinate of sending point

Distance from center curvature to external singularity
Scurce strength

Velocity pntential

Acceleration pctential

Frequency




Center of axial-hody element
Leading edge of body element

Trailing edge of body element

Subscripts and Superscripts

LL
LR

¥»q

1,2
1/4

Body axis

Body

Image

Lower left-hand quadrant

Lower right-hand quadrant

Residtal or interference flow

Receiving and sending points, respectively
Upper left-hand quadrant

Upper vight-hand quadrant

Steady

y~- and z-directions

On the body surface

Planar and ronpianar parts, respectively

Quarter chord of element
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1.0 INTRODUCTION

Until several years ago the kernel function procedure was the best known
and nost widely used 1ifting surface thesry. The classic report on this pro-
cedure is by Watkins, Runyan and Cunningham! There have been many variations of
this procedure; however, it is not our purpose to present a survey of them.
Ashley, Widnall and Landah1? have already prepared an excelient survey of the
1ifting surface theory.

The use of lattice methods in steady fiow goes back to Falkner? and even
further. Recent developments and improvements made by Rubbert“, Dulmovits®,
Hedman®, Belotserkovskii”, Giesing® and others have rejuvenated and popularized
this method. The lattice method produces very accurate results even though
the numerical technique is relatively simple. James® has analyzed a two-
dimensional model of the steady lattice theory. He has proven that when the
vortex is placed at the 1/4-chord point of each element and the control point
is placed at the 3/4-chord point of each element (the 1ifting surface is
divided into a number of elements), then the following is true: 1) the 1ift
and moment are exactly correct, 2) the Kutta condition is satisfied auto-
matically withcut the use of loading functions, 3) in the Timit of a large
number of elements the correct Teading edge singularity and correct trailing
adge zero are obtained, and 4) the method works just as well for cambered
surfaces whose distributions are continuous.

The lattice methcd is simple, versatile and accurate. The accuracy has
already been discussed. The simplicity arises from the fact that no loading
functions are required. The method is versatile because no prior knowledge
of the solution is required as with the kernel function procedure. loading
functions appropr.ate to the particular problem must be chosen ahead of time
for the kernel function procedure. It has been demonstrated that the lattice
method can handle a very wide variety of configurations, including: 1) wings
of arbitrary planform, 2) wings with partial span control surfaces, 3) T-tails,
wing-pyions, wing-tails, 4) wings in ground effect, and 5) annular wings, wings
with arbitrary dihedral,

[ S gpr——y C




Since the steady lattice method has met with such success, it seems
only naturail that it should be extended to unsteady (oscil’atory) flow.
Albano and Roddenl® have done just that. (A completely independent unsteady
lattice procedure was developed by Stark!l.)

The new unsteady method has been termed the Doublet-iattice Method (DLM).
Further extensions, applications and refinements of the DLM are found in
references 12 through 18. The DLM has proven as versatile as the Vortex
Lattice Method and can handle the same wide variety of configurations (see
references 13, 18 and Part 1 of this report). The attributes of the Vortex
Lattice Method, i.e., simplicity, accuracy and versatility can be applied
equally well to the DLM. Because of these attributes it was selected as
the basis of the present method.

Of major interest in this report is the interaction of bodies (e.g.,
fuselage, nacelle, store) with lifting surfaces (e.g., wing, tail, pylon,etc.).
There are two basic approaches to this problem: 1) one in which elements are
placed on the body surfaces, and 2} one in which images are placed within the
bodies. Recent advances in the first of these approaches have been made by
Woodward!?, Labrujere2® and Bradley and Miller?! for steady flow. Part I of
this report presents an extension of these methods of oscillatory flow. Recent
advances in the second of these approaches have been made by Giesing®, Spangler
and Menderhal122, B8orland23 and Chou2" for steady Flow. This report (Part II)
presents an extension of these methods to oscillatory flow and very general
configurations.

The approach of this report is to use the method of images directly
replacirg the steady vortex lattice on the 1ifting surfaces and image suriaces
with an unsteady vortex lattice DLM. The advantage of using images over other
methods is the fact that images do not irtroduce any new unknowns into the
problem,

This approach furnishes a practical method for handling general configu-
rations efficiently. Specifically, the configurations considered may include
a collection of bodies (e.g., fuselage, nacelles, stores) and 1ifting surfaces
(e.g., wing, tail, pylon, etc.). The configuration may oscillate in any mode,




rigid or flexible, and may operate in or out of ground effect. Cutputs from
the method are: generalized forces and aerodynamic parameters such as span
loads, center of pressure, 1ift, moment, etc. The method can aiso be used to
obtain dynamic stability derivatives [reference 14).
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2.0 THEORETICAL DEVELOPMENT

2.1 Outline of the Problem and Solution
The velocity normal to an oscillating surface or body, W = UwRe(wse1“t)
is related to the lifting pressure 4p = qRe(ACpe1wt) by the following inte-

gral equation derived in Appendix A:

1
ws(x,y,z,yr) = §;"/:/‘ K(Xx =&, y —n, 2 =20, Yoo Ypo kr’ M)ACD(I,n,C)dS |
L.S. (2.1-1)

where L.S. indicates integration over all 1ifting surfaces. This is the
familiar integral equation of lifting wrface theory for surfaces alone.

Here Yo Y, are the sending and receiving surface dihedral angles. If a
body is introduced, there are additional contributions to the norma1 velocity.
The first contribution may be called the slender body term and represents the
flow field generated by bodies without considerations of interference.

\ .l AN
AW(X.-.V,Z,YY.} = 'g?/ L(X — &5y — ﬂa9 - Cas 'Ys» 'YY.: kl'" M)us(«i)dﬁ
B.

.
tae f M =g,y =n, 2 =5 v Mo()de (2.1-2)
B

The Timit B. indicates integration over all bodies; tiiese integrals are aico
derived in Appendix A. The subcript a on n and ¢ indicate the Iacation
of body ares.

Here the term Is(g)* represents an axial multipole distribution {dipois.,
quadrupole, etc.) whose orientation is given by Vg The second integral
exists only in steady flow and is a source distribution used to represent
the body volume effects. The slerder body terms are known since ﬁs(g) and
~(g)**are determined using an appropriate slender body theory.

*Actually ﬁ](g) is twice the classic doublet strength U](E).

**Cyrrently in the Present Method sources are excluded since they do not
exist for unsteady flow and have a small effect even in steady flow.
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A second contribution to the normalwash flow field caused by the intro-
duction of bodies into the flow field arises from "image" 1ifting surface
elements. These are placed within the body to help divert the flow around
a body in the presence of a 1ifting surface. The strength of the image
elements js the same as the external elements,

. L[ kx -ty =g 2 -
VI(X"Y’Z’YY‘) = 87 K(X £, y nI, Z CI: YSI’ YI’" kY" M)ACP(E,n,C)dS
L.S (2.1-3)
The subscripti on nyg and Yg indicates the image position on the image
surface,

A third contribution tv the normalwash flow field caused by the bodies
is generated by an interference doublet distribution ”r<g)'

1 ~
wo(Xoys2sy,) = g7 _[ L(x ~ &y y =m0 2= 7.5 vos v koo M (6)de (2.7-4)
B.
The form of this equation is identical to the first integral of equation
(2.1-2). The reason it is not combined with ﬁ; is the fact that %, is
known vhile ﬁh, like ACp, is unknown.

In the direct problem, the normalwash boundary conditions are specified

and the 1ifting pressure, ACp, and body interference distribution, HI’ are
solved for:

W= W,k AW Wyt W (2.1-5)

N

Here w 1is the prescribed normalwash on 1ifting surfaces and bodies. If the
known quantities are placed on the left-hand side while the unknown quantities
are placed on the right, then the following equation results:

\
L ~ ] - _‘I v - ] f
w—8‘n f Lusdi +z‘;fM0dg)-— 8'_1.'-,,[] r\Adea +§f KIAdeS
B, B. L.S. L.S.

T (2.1-6)
B.




Here the subscript I on K indicates K(x —¢, y =Ny 27805 Yo Yy K. M).

__lf 1 (.
W— AW = g;-il; (K + KI)AdeS + g;-g{ Lundg (2.1-7)

There are still further contributions to the normalwash and these arise
from planes of symmetry and ground effect. If the assumption s made that the
right haif of the aircraft lies in the upper right-hand quadrant of the z-y
plane, then a subscript UR may be applied to contributions made from 1ifting
surfaces in this quadrant. Siailarly, UL indicates upper left which contains
the contribution from the left side of the aircraft. The subscript LR
indicates lower right and,in tris quadrant, the ground effect of the right side
is contained. The subscript L indicates lower left and this quadrant
contains the contribution of th¢ ground effect of the left half of the air-
craft. Fquation (2.1-7) may be »xpanded to include these contributions as
fellows:

W — (AwUR toSowy T e p b oedtw )0

_1 ([ , ) f
) ﬁffi‘K F KDy + etk Ky, e (R Ky +es(k k) | ocyds
+ %; Jf} Lyp + by, +ebp * eéLLL' Hnds (2.1-8)
B

The quantities 5 and ¢ are thuv <ymmetry and ground effect indicators.
For instance, # = 1,0,-1 indicates symmetry, no symnetry, and antisymmetry,
respectively. Similarly, ¢ = -1,0,1 ‘'ncicates ground effect, no ground
effect, and anti-ground effect, respectivc The changes to the argument Tists

denoted by these subscripts are as follow:

UR: n = n, L =L, Yo = YS

S
UL: n = -n, 5= L Yg T TYg
LRen=mny  £= -0, v = -y

LL:n = -n, T = =0, Ys = Ys

————. S B i 1 W AT USEETRTE TR T TS T T g




The bacic method of solution of Eq. (2.1-8) is to discretize the lifting
surfaces into small boxes and the bodies into sma axial elements. The
unknowns are assumed constant over these elements and the normalwash boundary
conuition is applied to each box and element. This forms *s many equations as
unknowns and the system may be solved. Eq. (2.1-8) becomes:

N2
Z Acpsff KTrst + Z ’Jns f LTr.sdg (2.]__9)
s=] ELEMENTs s=] ELEMENTS

where S and r indicate sending and receiving points, respectively, and

=W — _
WT L\Wl

by = (AWUR +ooowy toedvpt eéAwLL)

_ 1
Kp = 2= 00+ K + 80K+ Ky + e(K+Kp) g + es(K + KI)LL}
1
Lr = 87 {le * oLy * elig * oLy}
N1 = number of 1ifting surface boxes for all surfaces
NZ = number of axial body elements for ali bodies

In matrix notation:

{WT} = [0.] {ﬁ;ﬁ} (2.1-10)

where

(071 = [7 {E] (2.3-1)
ir which

D = {(D * D)
(D +Dp)y
1 ¢(D + DI)LR
+ ¢6(D + DI) (2.1-12)
LL}




Here

1
rs ff Br K ds

D =
ELEMENT
_ (L i fj_
DIrs = ff 8r KI ds = 8n K(X —Ey ¥y nI. Z-—- CI, Yl’" YSIs kr,M)dS
ELEMENT ELEMENT

(2.1-13)

The matrix elements Drs have the subscript r on the receiving point quanti-
ties, X325, and the subscript s on the sending element quantities
LR P o ELEMENT. The matrix partition E is:

- 1
Eps = E?{ Ejp * OBy, * ebp t F‘SELL}

JI

BODY
ELEMENT

(2.1-14)

m
{]

Once Wy is known, ACp and w, can be found, and these can be used to find
the loads on the 1ifting surfaces ard hodies.

The calculation of the flow fic d due to the slender body terms, i.e.,

u. and o, s performed using the same discretization technique.

S
N3 N3
_ ] ~ LY -
R = o f LdE + Z o f M,.od (2.1-15)
s=1 S BODY k=1 BODY
ELEMENT ELEMENT

where N3 s the number of slender body elements., If symmetry planes and
ground effect are accounted for and matrix notation is introduced, then Eq.

{2.1-15) becomes:
{AwT} = [LT} {ﬁ;} + [MT]{G} (2.1-16)

where

T

-

MT =

- e~y ) - - - - — s
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Slender body theory states that ‘ES is directly proportional *o the
Tocal velocity normal to the body axis (the direction of ug is parallel to

this velocity).

Wy = wh2D (2.1-17)

where D2D is the proportionality constant which is dependent on local oody
cross section. The values of w which act normal to the body axis

(Eq.(2.1-17)) are part of the larger set that acts normal to all surfaces
and bodies.

2.2 The Normalwash Boundary Conditions

The normalwash w must be determined at each 1ifting surface element
(or box) and at each axial body element in both the z- and y-directions.
The normalwash boundary conditions are obtained by taking the substantial
derivative of the modal deflections. There are various methods of describing
these modes and several of these will be discussed. Only the first of these
methods has been incorporated into the present method (the polynomial approach).
The polynomial approach lends itself to scientific investigation where the
modes are simple. When the modes become complicated, however, it may be
desirable to incorporate other more practical modal input methods.

2.2.1 Polynomial Modes

The total deflection distribution of a 1ifting surface normal to itself
is made up of a set of modes, fi'

h=T ) qf, (2.2-1)

where a} are the generalized coordinates and NM s the number of modes.
The total normaiwash i5 likewise

W= %— = q.W., (2.2-2)
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where

{ df -
W, = — L+ %9 f,
! d(x/<) o

or

W.i = - - + 1k‘ nf]

(x/¢)
Here
. G
kr " 2U

For 1ifting surfaces the niodes may be approximated by

<
2

m
i nm < ) (f ) (2.2-3)
n=0 m=0

- z mzo mm( ) (g)m (2.2-4)

x/—) =0 c

where <t 1is the lateral distance in the plane of the Tifting surface.
Eqs. (2.2-3) and (2.2-4) represent fifth-degree polynomials in both the
lateral and longitudinal directions.

When dealing with bodies, two separate directions of motion are possible:
z-motion and y-motion. However, bodies have no lateral coordinate, thus the
mode shapes are as follows:

5 N
£,o= ) az, (%) (2.2-5)

V=0
5 0
fy, " Zayin(:) (2.2-6)
n=0 ¢
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G sy

2, . n-1
LI nazm<§) (2.2-7)
d(x/c) 5 c
df 5 '
yi n-1
= nay . (5} (2.2-8)
d(x/c) .3 \c

The W, arrays have the following order: first, all of the Tifting surface

normal wash values, w, are determined, then the z- or upwash values, W and

then the y- or sidewash values, wy.

{W}i W, (2.2-9)

2.2.2 Numerical Input

In many instances it is inconvenient to determine polynomial coefficients
from medal data. The values of w and f could then be supplied directly.

An alternate scheme is to supply ocnly h and require the program to take
the necessary derivatives numerically. Various fitting techniques could be
used including the spline fit of Harder2s,

A second alternate is to supply only the values of df./d(x/c) and

integrate for tne values of f,. Also needed is one value

spanwise station to establish the level of fi‘

Q-

f ri at each

Interpolation schemes could be used to reduce the number of input values.
Instead of supplying deflection data at each spanwise strip, it could be
supplied at intervals along the span and interpolated at the intermediate
spanwise locations.

1
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2.2.3 Aerodynamic Influence Coefficients

There are many schemes for generating aerodynamic influence coefficients
(AICk) and some of these are discussed in Part I of this report (page 28).
The basic idea of the AIC approach is to derive a set of elementary modes
which can be used to build up any desired mode shape. These elementary mode
shapes are independent of the mass or stiffness properties of the aircraft
and, thus, can be used to build up a solution for various fuel conditions,
for example. One way to derive elementary mode shapes is to deflect a series
of modal deflection points on the structure one at a time while holding all
the others fixed. Once the generalized forces for this set of elementary
modes are known for a particular aircraft planform, Mach number and frequency,
aerodynaric solutions for all mass and stiffness distributions can be fourd
simply by a matrix multiplication of the modal deflections and the AIC
matrix.

— T I 4
Qij = {fj} [AIC] {fi} \ZWZ—]O)

where fj is a set of modal deflections for mode j and fi is the same
for mode 1.

The type of curve fit used for the generation of the elementary mode
shapes may vary. Part I of this report offers several possibilities (see
page 31). Recent work by Harder, et.al.25 already referred to, on two-
dimensional surface spline fitting of deflected surfaces may offer a very
accurate and versatile technique for generaiing elementary mode shapes.
For bodies the usual one-dimensional spliie could be used.

2.3 The Lifting Surface

The basic technique employed to represent the 1ifting surfaces is the
Doublet Lattice Method (DLM). The DLM is an extension of the steady flow
Vortex-Lattice Method to oscillatory flow. Developments of the Vortex-Lattice
Method include those of Rubbert", DulmovitsS, Hedman®, Belotserkovskii’,and
Giesing® who extended the method to wing-body ccbinations. The original
extension of the steady Vortex-Lattice Method to unsteady flow was made by
Albanc and Roddenl®, Adaptation of the DLM to AIC generation was done by

12




Stahl, et al.l2 Extensive correlations for nonplanar configurations were
made by Kalman, el al.l3 A refinement of the method for nearly coplanar
configurations is reported in Part I of this report (section 2.1, appendices
A, B and C) and aiso by Rodden, et al.-® The use of the method for stability
derivatives is given by Rodden and Giesing!®, and its use in gust analysis is
given by Giesing and Roddenl®, An extension to induced drag distribution was
made by Kalman, et al.l?

Tha DLM has proven to be a simple, versatile and accurate method for
the solution of unsteady nonplanar 1lifting surface problems. The general
nature of the solution need not be kown in advance as with the kernel func-
tion techniques which utilize a standard set of pressure loading functions.
Elimination of the loading functions simplifies the analysis since the
complicated and time consuming quadrature integrations of the loading functions
and kernel are eliminated. The method is versatile since there are essentially
no restrictions on the configurations that can be handled. It has been shown
to be accurate by James® who performed analytic studies on the steady two-
dimensional version,and through the many correlations with experimental data
and other analytical methods.

The flow singularities used to model the 1iftinc surface are steady
horseshoe vortices and oscillatory doublets along the bound vortex. The doublet
line is equivalent,at zero frequency, to the horseshoe vortex, and thus the
horseshoe vortex need not be used. However, since the effects of the vortex
system can be analyzed exactly, while the effects of a doublet line can only
be approximated, improved accuracy is obtained by using both the vortex and
doublet systems. In this way, the vortices represent the steady-flow effects,
and the doublets represent the incremental effects of oscillatory motion.

The configuration is idealized by dividing the surface(s) into small
trapezoidal elements (voxes) arranged in strips parallel to the freestream
so that surface edges, fold lines, and hinge lines lie on box boundaries
(sketch 2.3-1). Then, to vepresent the steady-flow effects, a horseshoe
vortex is placed on each of the boxes such that the bound vortex of the norse-
shoe system coincides with the quarter-chord line of the box. To represent
the oscillatory increment, a distribution of acceleration potential doublets
(which have the steady-flow acublet strength subtracted) of uniform strength

13




e o

- IS

N

ol

Y X.£
BOUND VORTEX
" AND LINE OF
DOUBLETS (&)
DOWNWASH
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Sketch 2.3-1. Surface Idealization into Boxes and Location of Vortices,
Doublets and Collocation Points

is superimposed on the bound vortex. The surface boundary condition is a
prescribed normalwash applied at the control point of each box. The control
point is centered spanwise on the three-quarter-chord line of the box
(sketch 2.3-1). The influences of all vortices and doublets are summed for
each control point to obtain the total dimensionless normaiwash, w, at the
control point.

The expressions for Drs’ the elements of Lhe infiuence matrix, are
well documented in Part I and will not be repeated here. A general description
of the method of integration wiil suffice. The expression for Drs is given

in Eq. (2.1-13).

_ 1 \
D\"S = -8—'" ff Kds (2.3—1)

ELEMENT
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The kernel K ds split up into the following components

(s)  px¢(s)
Kz%TlKl L 2% }

(2.3-2)

where the sending and receiving subscripts (s,r) have been dropped for
convenience. The first term in braces is the steady part of the kernel while
the second and third terms are the planar and nonplanar parts, respectively,
of the unsteady increment. Integration in the ¢g-direction (parallel to the
freestream) is done by lumping the value of the integrand at the one-quarter-
chord point of the box. The integration of the steady term in the spanwise
direction is done using the law of Biot and Savart. Spanwise integration of
the planar and nonplanar terms is done by approximating the numerators by
parabotas. The resulting expressions are anaiytically integrable.

D - D(S) + D(j') + D(2)

(2.3-3)
e (s) T* (s)
(s) _tx [ $T1K1 oKy —
D) = 22 2 + Lo—tdn (2.3-4)
r r
-e
(0 Lo PR FBTEG (
D = -8—77 r2 dn ‘203”5)
-e
(2) _ ax ; Az'ﬁ' By Ly
p(2)  ax d (2.3-6)
8 r‘4
-e
where
-2 N (s)
AT+ B+ O = Ty(Ky — K )
(2.3-7)
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the coefficients A,B, and C are found by evaluating the kernel at the center
and both edges of the element. Here 1§ s a spanwise coordinate in the plane
of the element centered on the sending element, e 1is the semi-width of the
sending element anu the subseripts (r,s) have been dropped again for con-
venience. The result of inteyr ting Eq. (2.3-4), i.e., an expression for the
steady horseshoe vortex, is found in Par: I, Appendix C, Vol. I, page 68. The
integrations indicated in Eqs. (2.3-5) and (2.3-6) are found also in Part I,
Vol. I, Appendix B, page 58. Two expressions for D 2) are found on pages 59
and 60 of Part 7, Vol. 1, Appendix B.

The matrix formulation for an isolated 1ifting surface without ground effect,
symmetry or images, given in terms of the influence coefficient matrix [D], is

then
{w} = [D] {Acp} (2.3-8)

2.4 The Isolated Body

It is desirable to use an axial system of singularities to simulate the
effect of bodies in the fluid since they require much less computational
effort than do surface singularity distributions. Generally,axial distribu-
tions are associated with siender body theory.

Slender body theory has had a long history and it is not the purpose of
this report to detail its development. Only some of the more important works
will be mentioned. The doctoral thesis by Revell (see reference 26) gives a
very elegant and detailed description and cites over 200 references.

Munk27 is generally the first of any references relating to steady
slender body theory. Kamman28 applied a modified version of Munk's theory to
airship hulls (Karmah's method will be discussed later in this section).
Lighthi112° may be mentioned next along with Jones30 for extensions to slender
wings and Miles3! for extensisn to unsteadr flow. Many attempts have been
made to extend the slender body theory to higher order. Ward3Z has given
second-order effects for the nonlifting component of the pressure for super-
sonic flow. Adams and Sears33 have extended this method to subsonic flow
using the Fourier transform. Van Dyke3" attempted a second-order "1ifting"
solution and was only partially successful. Van Dyke suggests using the
first-order solution for the 1ifting components (doublets) but suggests using
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the higher order axial flow solution along with a higher-order pressure formu-
lation to find the pressures and forces. Such aformulation allows the coupling
of the cross flow with the axial flow. This coupling does have an 2ffect on
the axial loading; however, for many bodies (shown in reference 34) the first-
order solution is very good over a wide range of Mach number.

The only completely cunsistert second-order theory has been developed by
Revell126, Revell attacks the second-order solution by a complicated iteration
scheme.

The methods of Hess and Smith35 and Landweber3® may be mentioned in
passing. These methods are exact, surface singularity methods. They are,
however, only valid for steady, compressible flow or unsteady incompiessible
flow and cannot be used here.

In all of the axial singularity methods described (except for Revell), the
lifting part of the solution is given by the first-order slender body theory.
Various improvements have been suggested for determining the loading associated
with this distribution; however, the distribution itself is determined using
first-order theory.

The basic approach of stender body theory is to consider only the near
field effects of the axial singularities of the bodies on themselves. In the
neer field the flow is both two-dimensional and ruas.-steady. When the body
surface lies close to the axis, the surface sees only ithe local axial singu-
Tarity distribution. Also, when the body surface lies close to the axis,
the characteristic wave length associated with the solution of the wave equa-
tion is long compared to the distance from the body axis to its surface; this
renders the problem quasi-steady. In all of the axial singularity methods
described, only one isolated = dy is considered. Any method developed would
have to properly generate a fluw field away from the body surface where the
slender body assumptions are no longer valid (so that the mutual interference
of bodies can be accounted for).

A possible solution to this problem would be to use the exact three-
dimensional unsteady compressible flow solution for the effect of the axial
singularity system. The axial integral could be discretized (see Appendix B)
giving a piecewise constant singularity distribution. For such a distribution
the axis is divided up into a series of short axial elements. The singuiarity

17
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strengths are held constant over each element but varied from element to
element. The boundary conditions would be made to hold along a line on the
surface of each of the bodies. Multiple bodies of arbitrary thickness shculd
be handled easily and the flow fields could be caiculated easily.

Karmén used this approach to predict pressures and loads on airship hulls
at angle of attack. He used scurces for the volume effect and doublets for
the crossflow lifting effect. Karman's method was a velocity potential
aprvoach (Appendix B, Eq. (B-2)). Other approaches could be used, however,
for instance, the pressure potential method given by Eq. (B-4) (Appendix B)
or the medified acceleration potential approach given by Eq.(B-15) (Appen-
dix B). For steady flow the modified acceleration potential method is the same
as the velocity potential method.

The unsteady pressure potential and modified acceleration potential
methods, discretized as described above, were implemented on the computer so
that they could be investigated. The formulas for the flow field due to a
short element of pressure potential doublet and modified acceleration potential
doublet are as f1lows:

1
Ers = Gn 8K lxp "51/45’ Yp " Mg 2y "'gas’ Ypr kps M)
Pressure Potential (2.4-1)
1 'iwA\ES/ZUOo
Ers = 87 [© Kx, =&y 5 ¥ =, > c)
S 5

-3 wAgs/ZUm ( \]

- e KX, — £, s Y.~ N, 5 «ov)

r 2’ ’r a |

Modified Acceleration Potential (2.4-2)

The terms g1s, £2e and 51/45 are the leading edge, trailing edge and
1/4-chord point of the sending axial element (indexed by the subscript s).
The index r indicates the receiving point. The boundary condition was
enforced at one point per element. For the pressure potential method this
point was located as follows:

18
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Pressure Potential

(3/4-chord point of element)

r T X378,
Y = 0, (2.4-3)
Zp =yt Ay
where 2, is the radius at the pnint x3/4r.
Modified Acceleration Potential
X, = x1/2r (mid-chord point of element)
Yp Ty (2.4-4)
Zp = 5y t A,

Unlike slender body theory each element affects all control points.

The pressure point doublet in steady flow is just an ordinary doublet Tine
of constant strength originating at the pressure point and terminating at
downstream infinity. The pressure point doublet in steady flow then is just
a semi-infinite doublet 1ine.

KARMAN PRESSURE
ELEMENT POINT

Sketch 2.4-1
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The two approaches previously outlined are essentially the same for
bodies that close {eliminating the wake). The only difference is that the
elements for the pressure doublet method are shifted aft by 1/4 of an element
length. This difference disappears with increasing numbers of elements. The
numerical results for either method were found to be almost identical for the
cases considered. Figure 1 shows one such case. A pointed body of parabelic
shape 1s made to pitch about its leading edge with a reduced frequency
(k - wL/Uw) of 0.1. The calculated axial loading* is compared to that obtained
using the method of J. W. Miles3!. For this case the axis was divided up into
ten equal elements. A pressure doublet was nlaced on each element. The vesults
for a thickness ratio, (Rmax/L), of 0.1 are essentially in perfect agreement
with those of Miles. As the thickness increases, however, the calculated results
start to oscillate about the correct solution. F-» very thick bodies the
results are meaningless, It has been found that the ratio of diameter to
element Tength plays an important role in determining the accuracy of the
results. It has been found that the diameter should not be much greater than
2 to 4 times the element length. VYon Kdrman used a diameter-to-element length
ratio of about 3, and thus obtained very satisfactory results for the airship
hulls he considered.

The reason for the failure of this method is not known. The supersonic
version of this method, as developed by Kdrmdn and Moore3’ and Tsien3®, seems
to work very well. It is suspected that the reason the supersonic method works
while the subsonic method runs into trouble, is the fact that in supersonic
flow, singularities or discontinuities are propagated to the body surface from
the axis while they are not in subsonic fiow. It is obviously impossible to
produce a discontinuity in upwash on the body surface due to axial singularities
unless discontinuities can propagate to the surface of the body from the axis.
It is then obvious that in subsonic flow the closer the singularities are to
the surface (i.e., the more slender the body) the more accurate the solution
will be. It seems logicai that there is a restricted family of upwash distri-
butions or boundary conditions that a subsonic axial singularity system can
satisfy on the surface of the body. The method by which one determines whether
a specific upwash boundary condition qualifies for a solution is not yet known.

*The assumption was made that the axial doublet strength could be used directly
to obtain the loading in the calculation.
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Karman28 commented that the doublet distribution obtained by his method
agrees very well with the doublet distribution obtained using Munk's slender
body theory. He went on to suggest that very accurate solutions for the
pressure could be found if the exact non-Tinearized pressure formula were
used in conjunction with the doublet distribution obtained using either his
or Munk's theory.

Karman has thus suggested a solution %o our problem. For an isolated
body, slender body theory should be used to determire the axjal doublet
strength. Classical slender body theory does not account for interference
between the isolated body and 1ifting surfaces or other bodies. A solution
to this problem would be to keep the finite element or K&rmdn approach for
intereference purposes but to uce slender body theovy for the effect of a
body on itself. Stated in terms of influence coetrficients this would mean
that slerder body theory should be used for the calculation of influence ce-
efficients of the bodies on themselves, producing diagonal matrices, and
general three-dimensijonal wave equation solutions should be used for the
calculation of infiuence coefficients of the bodies on 1) 1ifting surfaces
and 2) other bodies. The interference matrices would be full matrices.

2.4.1 Axial Singularity Strength Using Slender Body Theory

Slender body theory states that the flow field very near the body is two-
dimensional and quasi-steady. At each longitudinal station the flow field
depends only on the focal upwash (or sidewash ) and incal body cross-sectional
shape. The axiail singularity can then bhe determined from this two-dimensional
quasi-steady flow. For the case of a circular cross section a simple doublet
suffices to divert the flow around the cross section.

W= 2aWal (2.4-5)

S )
where a, is the local ralius and w is the local up- or sidewash.

For noncircular cross sections a simple doublet will not suffice. In gen-
eral, a multipole expansion would be required to simulate the cross section in
the far field. An alternative approach which requires no new basic singulari-
ties is to use doublets spaced laterally a distance from the axis. This produces
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the same effect in the far field as do higher order singularities. This
approach can be wmatched to the proper exjansion through the second term
(quadrupole) to give the value of the distance of th. doublet from the origin.
An integrated doublet, i.e., two vortices, can also be used in the same

manner.

Consider the flow about a body of elliptic cross section wheve a, 1is the
semi-major axis and b0 is the semi-minor axis. The siender body thecry
gives the near field solution as the two-dimensional flow about an ellipse.
Let F be the compiex potential in the complex plane.

Fo- -iwz+ 11 (2.4-6)

where Z is the complex coordinate in the circle plane. The transformation
to the ; or ellipse plane (y =y + iz) is

o= 1+ K%L

. =y + iz

F o= {a, +b,)/2 (2.4-7)
K = (a2 +b2)a

upwash at the cross section

v

In the usual procedure for inner-outer matching, the inner soiution wiii be
expanded in terms of the outer variable. Basically what is wanted is the
multipole expansion of the inner or slender body solution. Expanding the

expression for F and g gives:
r
F o= dw L- {c - K%c - K@c3 - “.}

+ P {g - K¢ - K4/c3— }-]:‘
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or retaining one term past the doublet gives:

2
a +b a +b a --b
F = iw {—c +ao(°z O)C-1+<02 o) (02 O)ao’-B L; (2.4-8)
1‘
4 *

onset
flow doublet quadiupole

The appropriate doublet and quadrupole strengths, needed to represent the
elliptic cross section, are:

ug = 020w doublet
p2D = Lnao(ao + bo)/2 (2.4-9)
2
a +b a —b
“q = w:.‘na0 ( 0 > o) ( 0 5 °> quadrupole

The flow about the ellipse is replaced by the flow about a doublet ¢f strength
kg and a quadrupole of strength Mg The approach is to replace the doubiet
and quadrupole with two doublets each spaced a distance d from the axis of
the cross section.

Two cases will be considered: 1) b > a, i.e., major axis smaller than
minor axis, and 2) a > b. For the first :ase, b > a, cwo doublets will be
used (see sketch 2.4~2). One doublet placed at +id and the other at -id.
 Z

T M
1 ALT

DCUBLETS

Ty

oo

Sketch 2.4-2
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The complex potential due to these doublets is:

(2.4-10)

us/4n us/4n
z-3d A e

Expanding Equation (2.4-10) gives:

F o= iw

-t ot (us/&r)r.'1 - (usdz/zn)c"3 + ...)g (2.4-1)

The term - usdz is the quadrupole strength. Equating this to Mg given in
(2.2-4) gives an expression for d.

d = 00 = K (2.4-12)

The second case, where the major axis is larger than the minor axis, a > b,
is now described. In this case an integrated doublet is used. This inte-
grated doublet gives two vortices; one positive vortex at d and one negative
vortex at d. Sketch 2.4-3 gives the geometry.

Z

A

e

- -
b
N Y -
J
VORTICES-
Sketch 2.4-3

The complex potential for the two vortices is:

F=diw {—; + g;-zn (g—;;f%)} (2.4-13)
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Expanding this equation gives:

\
= i 2rd -1 2rq3 -3
F o= iw {- ; o+ <2n )c + (—3§——) 4 + ...} (2.4-14)

Equating Equations (2.4-14) and (2.4-8) gives:

2dr = Mg
Hg = D2D
(2.4-15)
D20 = 2 ao(aO + bo)/2
ag_— bg
d = A3 ——— = 3 K

Equations (2.4-15), (2.4-12) and (2.4-9) give the appropriate doublet
strength or vortex strength and spacing d to properly represent the doublet
and quadrupole strengths of the elliptic cross section. The far field may
now be determined by using the exact wave equation solution for thase singu-
larities coupled with the appropriate singularity strength and spacing as

derived above.

’ The multipole expansions used are terminated after the quadrupoie. Thus
{ the cross section will not exactly be an ellipse. Specifically, the ratio
! a/b or b/a may not exactly be the aspect ratio of the body. Figures 2 and 3
! give examples of body shapes obtained using two-doublets and two vortices.
E In many instances it is not important to maintain an eliiptic cross section
1 ’ exactly since the ellipse itself is an approximation to body shapes with
‘ unequal semi-major and semi-minor axes. The main idea is to match the ratio
; of a/b or b/a of the ellipse or approximate ellipse to the physical air-
: craft cross section. In some instances the body cross-sectional shapes
f f shown in Figures 2 and 3 are more representative of the physical shape
' than is the ellipse. In any case it may be more important to c¢orrectly
associate the values of doublet strength and spacing d with the ratio a/b

or b/a for the approximate ellipse.
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2.4.2 Far Field Representation

As stated in the foregoing discussion, exact formulas are to be used for
the effect of the body on Tifting surfaces and other bodies. The cross-
sectional area and shape usually varies along the length of practical bodies.
Thus, the strength and spacing d must vary along the length of a body.
Numerically, it seems reasonable to assume that thie cross section is piecewise
constant over chort lengths. The body is then divic 4 up into short elements
(see sketch 2.4-4). The two-dimensional doublet becomes a line doublet the
Tength of the element. One 1ine doublet lies at n = +d and one at 1 = -d.
Each line doublet or vortex, will, in general, lie at a different value of d .
The exact solution for a constant strength doublet has not been derived. How-
ever, an expression for a doublet varying like e'i w(g-gc)/Uw over the ele-
ment (from TR where £e = (g] + gz)/2) has been derived in Appendix B.
This is the modified acceleration potential method. The infiuence function at
a2 field point then is the sum of two expressions, one for the doublet elemert
lying at n = ny d and une for the doublet elem:nt lying at n» = "3 - d.

[ 4. /2
L I, ey, =0y, —d)sz, = )
vs 16| O a, s’ r A
KX, =8y Y. —(n, +d), z =t 4 ...)]
r 15 r a S r a
_e—iu’\as/zuh [K(Xl" 6o yr. - (na ""ds), Z'(‘ - Ca ) -“)
s s s
|
+K(X £ 5 Y. - (T'I + d ), FA e °'-)]
2> ag " st T ag ]
(2.4-16)

The term K is the classic kernel ot 1ifting surface theory and is derived
in Appendix A. The terms 7, and ¢, are the element end points. The
term Ers gives the velocity at the point Xps Ypos 2y normal to a surface
of dihedral ' due to the doublet 1ine segment of unit doublet strength

If the short segment of line doublets is integrated Taterally, as outlined
in Appendix B, then the result is an unsteady trapezoidal vortex; see Sketch
2.4.5,

e —— e - e

*For convenience the .udified doublet (l < 2u)is used in this analysis, see
Eqs. 2.4-26, -27.
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The division by 2d appearing in Eq. (2.4-17) reduces the quadrilateral
vertex strength per unit area to a doublet strength (modified) per unit length.

Expanding K into its three component parts, as given by Eq. (2.3-2),

o els) o (1) L c(2) ,
Eps = Eps’ * Epg’ * Eig (2.4-18)
(s) _ 1 p (s)
S = s r —
E -m K (X"'»]sy Ny "')T]/rzdn
~d
d
- ]]ﬂdf K'§S) (X "52’ Y —n, ...)TE/ r4 dn (2.4_|9)
~d
d i u)AE/ZUm (S)
Mm_ 1 f {e Ki(x =95 oo0) = K57 (X =895 +00)
E = T6d "] 5
9 U , r
-1 wAE/21
e “Kﬁx—%,“J+K$Nx—%,“J
- . ar
r
12.4-20)
1 wAE/2U
(2) ] d e ® Kz(x""g], ---)"'Kzs)(x"g]a )
B = imf T*
2 r4
- wAE/ZUoo , (S)
e Ko{x ~ &5, veo) K3 (x ~ &5s ..‘)1 ‘
4 { dn
r J
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where the subscripts r and s have been dropped in Eq. (2.4-19) through
(2.4-21) for convenience. The subscript r is attached to the receiving
point quantities Xps Yps Zps Yo etc., whereas the sending point subscript
s 1is attached to the sending element quantities, AEcs &1 5 &2 s d , etc,
The steady term E'S)  is associated with a trapezo*dal vortex of constant
strength located around the edge of the element and can be determined using
the 1aw of Biot and Savart. The second and third terms, E') and E(2) can
be evaluated in a manner analogous to that for D(]) and D(Z) given in
Eqs. (2.3-5) and (2.3-6).

A +Bn+c.
(1) _ 1 12 1 |
_13;3Jf + dn (2.4-22)
-d !
d 2
An~ + B.n+C
e(2) - T%;a_/. 2 224 (2.4-23)
r
A]n2 + B]n + C] = Numerator of (2.4-20)

Aon? + Byn + C, = Numerator of (2.4-21)
This formulation of E(1) and E(z) becumes very inaccurate when r =0 and
the receiving point is downstream of the element. The ’./r2 and 1/r
singuiarities exist only on the length of the element; no uch singularities
exist downstream. These singularities are eliminated in the numerator in a
Timiting process. Howaver, when the numerator is approximated by a parabola
the singuizrities are not cancelied properly. A way around this difficulty
is to fic the entire integral with parabolas.

1) ] ) 2 ) ,
= & ./ %+ By + C)dn = g (g + 2acy (2.4-24)
“d
q
+ Byn + Cp)dn = e (2 A,d% + 2dC ) i2.4-25)
e?) - 4“ vy T6nd \3 "4 4 \ee
d

29




v
e ————————.

AL

p——

¥

A3n2 +B,n+C Integrand of (2.4-20)

3 3

A4n2 + Byn + C, = Integrand of (2.4-21)

The coefficicnts As, 83, C3, A4, B4, 84 are calculated by evaluating the
integrands a2t three points: n = -d, 0, d, that is, the :¢ft edge, center

and right edge of the element. When a fieiu point Ties closz to one of these
Tocations (downstream of the element) then r becomas very small and accuracy
can be Tost in the calculation. To avoid this difficulty, a two-point formula
is used when r < 0.01d. The offending point is simply eliminatad from the
calculation.

Byn + C; = Integrand of (2.4-20)

Integrand of (2.4-21)

Bgn + €4

If a field peint 1ies close tc an element edge, for instance, B and C are
determined using the value of the integrand as evaluated at the other edae
and the center. This simplification of the integration scheme gives rise to
irreqularities in the normalwash flow field of the trapezoidal vortex in a
region downstream of the element. These irregularities do not, however,
invalidate the calculation. Problems involving 1/r2 and 1/r4 could be
eliminated if the velocity potential approach were taken and new formulas
developed for the line and area integrals. The general form of these inte-
grals are given in Appendix B, Eqs. (B-1) and (B-2). Details of the integra-
tion over a small element have not yet been developed but no problems are

envigioned,

2.4.3 Matrix Representation

In the last two subsections, expressions have been derived for the singu-
jarity strengths and far field effects of short element lengths. The total
effect, 4w, 1is obtained by summina the effects of all elements. In matrix
form

3, = 2.0 D2Dw (2.4-26)
wny = [E2) @)y 4 ey 6 W, (2.4-27)
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where aw is the flow field caused by the bodies. Specifically, aw is the
normalwash at: 1) Tifting surface elements, aud 2) body interference elements
(these will be discussed later) that iie off the surface of the sending body.

The superscripts z and y indicate the doublet orientation in response
to velocities jn the z- and y-directions. Various expressions are used for
E(Z) and EYY/ dependirg on the ratio a/b of the cross section and
depending on the location of the receiving point. The far field formulas
(2.4-16) and (2.4-17) are used when the receiving points fall on 1ifting
surfaces and on bcdies other than the sending body. The effect of a body on
itself is determined simply by the inverse of the expression for 1 given
in Eq. (2.4-26). This means that the value of w used as a boundary condi-
Zion is obtained as the effect of the body on itself. The final bounaary
condition on 1ifting surfaces and interference body elements is the difference
of w — ow. The result of this difference is zero for interference body
elements lying on the sending body. Rather than go through this operation,

L the term w (excluding the effect of other slender bodiss) is set to zzro
F there. Thus, the effect of a body on itself is set to zero.
(z) ‘y) - . A
E = EY’ =0 wnen receiving 2lements 1ie on sending body ( )
2.4-28
w =0 for interference body elements on the sending body
when b/a > 1
E(Z) = Equation (2.4-16) with Y = 0
(2.4-29)
E(Y) = Equation (2.4-17) with Yg = -90°
wnen b/a <1
E<z) = Equation (2.4-17) with g = 0
(2.4-30)
E(y) = Equation (2.4-16) with g ® -90°

The receiving points for 1ifting surfaces are, as usual, the 3/4-chord
puint centered spanwise., The receiving points for body interference elements
are on the receiving body axis Yp ¥ Napr Z. = Na, and centered longitudinally.
For geometrical purposes, bodies are represented by constant section tubes to
which 1ifting surfaces are attached. In some instances (e.g., a tail) this
idealization moves the surface so that the proper aw is not calculated. A
provision has been made to shift surfaces (receiving points) back to their
proner position.
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2.5 Interference

The first step in the determination of interference has been taken in
section 2.4. Specifically, the incremental normalwash wsw due to the
isolat2d bodies has been found, Eq. (2.4-23). The resulting normalwash is

Wy =W = AW (2.5-1)

and is known at all Tifting surfaces and bodies. This may he viewed as a new
normalwash distribution to be satisfied by the lifting surf.ces and budies and
need not be considered further. Simply replace w with W

The basic approach to be taken in the solution of this new modified
boundary value problem is to: 1) generate an approximate Green's function for
1ifting surfaces in the presence of several bodies, and 2) generate a resicual
flow used to render the Green's function exact. In simpler terms, an image
system is generated within each body to divert the flow around that body when
it is in the presence of the 1ifting surface. The image system is not
completely effective in doing this, however, and a residual flow must be added.
This residual potential is a simple axial singularity distribution, very similar
to the axial system discussed in section 2.4,

2.5.1 The Method of Images

The method of images is not new. Lennertz3? in 1927 and Tater Koeing*? were
two of the first to use the method for steady flow. The basic jdea of the
method is to match each singularity external to the body with one internal to
the body at the "image" point. The strength of tne internal or image singu-
iarity is directly related to that of the external singularity strength so that
no new unknown distributions are intrcduced. The image singularity exists to
negate the flow through the body surface generated by the external singularity.

The method «f images has been put to use in different ways. In most of
the approaches the residual flow is ignored. Exceptions are Rehorst“! and
Wu and Talmadge“? who generated complicated expressions for the residual flow
fields.
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Zlotnick and Robinson"3 used images of unswept horseshoe vortices that
are placed along the 1/4-chord point of a swept wing. The calculaticn of
induced velocity due to a particular bound horseshoe vortex includes the
image as well. The resulting integral equation for the span ioad is soived
using a discretized Weissinger approach. Some attempts were made to account
for the effect of body thickness ratio on the 1ift of the body.

Gray and Schenk*" used a more approximate method. The basic approach
was to: 1) determine the span load excluding the fuselage; 2) form the image
system of the known loading; 3) calculate the resultant upwash distribution
generated by the image system on the wing, and 4) repeat the span load calcu-
lation using the new upwash distribution.

Multhopp's method“> and extensions of it by Weber, Kirby and Kettel“®
require a mapping of thefuselage to a vertical or horizontal slit. The fuse-
lage is effectively reduced to either a piane of symmetry or a segment of the
lifting surface. In either case the resulting simplified problem can be
solved using standard methods. Such an approach igrores entirely the residual
flow field. This method cannot be extended much further and generalization to
more complicated configurations seems unlikely.

Giesing® recently has incorporated the method of images into the 1ifting
surface theory. A1l horseshoe vortices, both external and image, possess
sweer. Non-midplane configurations are considered. In addition, the residual
potential is accounited for using an axiai doublet distribution. The approach
described in the present report is an extension of this method. Spangler and
Mernidenhal1<Z have developed a simiiar method for more general configurations.

Extensions of the method of Gray and Scheik have recently been made.
Borland?3 has extended the method to fuselage cross sections o7 elliptic shape.
Chou=" has generalized the image procedure to include nacelles. Also, an
attempt was made to generalize the image approach to account for Tongitudinal
variations in cross-sectional area.

Other approaches have been taken intc account for wing-fuselage interfer-
ence. For instance, slender body theory has been generalized, refined and
extended to determine the flow abouvt very slender wing-body combinations. No
attempt will be made to review all of the slender configuration approaches.

w
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Instead, reference will be made to an excellent survey paper written by
Lawrence and Flax“7. This approach has not been considered for the present
method since more than just slender configurations are considered.

2.5.2 The Method of Images for Circular Cross-Sections

The image point and singularity strength are determined using two-
dimensional theory. Appendix C shows how the Thcmpson Circle Theorem is
appled to obtain the image point location and strengths for three types of
external singularities in the presence of a body of circular cross section.
The three types of singularities are: 1) the vortex, 2) the source, and 3)
the doublet. The results are given in Appendix C in Equations (C-2), (C-3)
and (C-5), respectively. For an external vortex of strength r Tocated at

n,t, the image strength Iy and location nps &y are given as:

FI = "l"
ng = (a%/0%)n (2.5-2)
Ty = (az/oz)c
where
2
2oy 2

Here it is assumed that the axis of the circular body is at the origin of
coordinates. Sketch (2.5-1) gives a graphical description of these results.
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For u.e source of strength o, there are two images

o] =90

I

np. = (a%6%)n
1

0. = (2269
1 (2.5-3)

g _

T = =0

i

ngp =0

I

tgy =0

I

For a doublet of strength u(y) and u(z) in the y and 2z directions,
respectively, the image strengths and positions are given by:

2
ugy) = :ﬁ@ [u(y)(nz -Cz) + u(Z)ZCn]
0
'(Z) - a‘? [ (z)( 2_ 2) + (y)z ]
My ;K' (- u2en (2.5-4)
ny = (azlpz)n
5y = (a%76%)z

The location of the image in the x-direction is identical with that of the
externai singularity. That is, the image singuiarity matches the external
singularity both in length and position in the longitudinal direction.

The use of a multipole expansion or singularity distribution along the
axis of the body requires that the surface boundary condition (the residual
normalwash generated by the external singularity and its image) must be finite
and continuous on the body surface. One of the basic requirements of the image
then is tc render the boundary condition regular even when the external singu-
larity lies very close to the body surface. It can be showa that such is the
case. In the 1imit as the singularity approaches the surface from the outside,
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the image singularity approaches the surface from the inside. In the limit the
sirgularily and its image render that portion of the body su.face Tying between
them a plane of symmetry. The flow normal to the body surface in that region
is then z¢ro. This can be shown from the expression for the imige coordinates

nps G Consider the case £ =0 and n = a + ¢. Equation (2.5-4) then gives:

np = a—e+0(cd)

u%v) = ) s oed
u§z) = u(z) + 0(%)
when
n=a+ce

This equation shows that in the limit as ¢ >~ 0 the surface n = a is a
symmetry plane. This is a two-dimensional result. It can be shown, however,
that it also holds in three-dimensions.

As a summary of the above discussion it may be stated that:

1.  The image singularity furnishes the major part of the disturbance
flow necessary to satisfy the boundary condition on a body in the
presence of an external singuiarity.

2. The ~oundary conditions for the residual potential (heeded in
addition to the image potential) is everywhere regular even when the

external singularity approaches the body surface.

2.5.3 The Method of Images for Noncircular Cross Sectiors

Borland23 has developed an image system for eliiptic cross sections. The
image point is obtained by transforming the circle image points. The transfor-
' mation is the one that carries the circle to the ellipse. The image coordinates
given in complex form are:

2
) (2.5-5)

Lo T H0/0KE (A + 1B
: L) SRS S ) -
! (1/2)7“ (A + iB)
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where

L}
=3
|
e
I
+
———
=
|
-—le
™
Sa®
1
R
e

A+ iB =
Y= fla+b)/2
2

(2 . at =7
The terms a and b are the semi-major and semi-minor axes, respectively.
This formuia is not valid for singularities lying outside of the region
bounded by the eilipse
2 2
C + n _'l

2 2
(F2/1K] - K2KIA2) (F%7 K — KBK| /7%

since the image point then lies on the wrong Riemann sheet. This is not a
serious deficiency since the image system is intended mainly to eliminate the
nonuniform flow field associated with singularities that lie close to the body
surface. Under this circumstance the behavior of the image is identicai to that
described in the Tast subsection. In a small region near the singularity the
surface of the body becomes a plane of symmetry in the limit as the singularity
approaches the surface.

As anticipated, the image approach is not as effective for noncircular
cross section as it is for circular cross section. The image does not render
the ¢1lipse a streamline even in the two-dimensional cross section plane. The
residual potential then will be larger for noncircular cross sections.

A second method of determining the image pcint for noncircular cross
sections is given in Appendix C. The method is basec on the concept of local
center and radius of curvature. If the radius and center of curvature are
known on that part of the body cross section which 1ies closest to the
external singularity, then an image point may be found using the circ‘e produced
by that center and radius. The image is calculated using the formulas for the
circular cross section where the circle center and radius vary depending on the
pusition of the external singularity relative to the cross section. Sketch C-2
in Appendix C gives an illustration.
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The formulas for tne radius and center of curvature have bea2n develcped
for an ellirtic cross section in Appendix C. If T is the vector from the

center of the ellipse to the center of curvature and a is the local radius
of curvature, then:

Y Y 2 .2

C =3 (i—a—b-—) cos®o + F(E——-S»—a—->sin3e (2.5-6)
2 020 2 2.3/2

= . {a” sin% + gb cos“6) (2.5-7)

where the parameter 6 s related to y and z as follows:

Yy = a cos @

Z

b sin ¢

The unit vectors 3' and X are in the y- and z-directions, respectively.
Sketch 2.5-2 presents a plot of the locus of T which is the evolute of the
ellipse and a plot of a for an eilipse of b/a ratio of 0.75.

As the ratio b/e 1is reduced, the center of curvature eventually passes
outside of the ellipse, thus allowing the possibility that the image may pass
outside of the ellipse. This methnd, 1ike the last, wcrks best for singular-
ities that lie close to the body. The determination of which method is best —
either Bori.nd's or the method just described — remains to be seen. In any
case, it is anticipated that there will be restrictions on the ratio b/a and
on the position of tne external singularities as far as images are concerned.

The present method uses the local center of curvature approach with a
further restriction: the image point must 1ie in Lhe same quadrant as the
externa! singularity. If it does not, it is ignored. This restriction
eliminates the overlapping of image sheets within the body. That part of the
image surface indicated by a dashed line in the example of Sketch 2.5-3 is
the part that is ignored.
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2.5.4 The Method of Imayes for Unsteady Flow

The method of images can be taken over into the unsteady regime essentially
unchanged. Attempts to refine the image to account for unsteady effects have
led to the conclusion thet unsteady effects can be Tumped into the residual

potential.
Consider the cross section given in Sketch 2.5-4. Attempts to refine the
jmage system so that unsteady effects are accounted for include:

1.  An adjustment of the strength and location of the image such that
the boundary conditions at A, B and C are satisfied in unsteady
flow;

f . 2. Adjustment of the strength of a second doublet jocated at "0" and

the position of the image doublet such that the boundary conditions

at A, B and C are satisfied in unsteady flow; and

3. Adjustment of the strength of the second doublet (at "0") and the
strength of the image doublet so that the boundary concitions at
A, B and C are satisfied in unsteady flow.
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Sketch 2.5-4

A11 of the approaches sre based on the assumption that the similarity
variable k = kr r/€ is small. Consistent with this approximation is the use
of Laschka's simpiified expression® for the kernel downstream of a pressure
doublet. (The exprassion is valid if (gr/(x —g) 1is smail.) This expres-
sion is expanded in terms of Kk and terms vp to B n ¥ and & ave
retained. In all of the attempts outlined, the changes in strength aiu posi-
tion of the image ave small (proportional to EiInk and EQ) so that pro-
ducts of high-order terms are igncred.

The basic idea of the first attempt is to adjust the image strength so
that the boundary condition at A (and by symmetry at C) ds satisfiad for
any image positiosin. The boundary condition at A and € req,.-2s that there
be a stagnation point at A and C. The next step is to caiculete the value
of the stream function on the body surface at A and C. The image position
is then adjusted so that the value of the stream function at B matches the
value calculated at A and C.

It was found that the boundary condition at A and € could not be
maintained vhen the external and image singuilarities approached the circular
surface.
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The second attempt was meant to correct this condition. Inscead of using
the image strength Lo satisfy the boundary condition at A and C, a second
doublet was introduced at the origin to do so. Again the stream function was
calculated at A and C and the image location adjusted until the stream
function at B matched that calculated at A. This method works except when
the external singularity is at a large distance from the body. This is not a
serious drawback since the basic expansion in terms of kr r/c fails there
also. The basic drawback with this method as with the first one is that an
adjustment of distance is involved. The image position is adjusted. This
adjustment, however, must vary in the Tongitudinal direction; the correction
to the position of the image varies Tike e'1 wX/Uw. Changing the position
of the image with x 1is practical only when the frequency is small. This
type of correction is complicated and not worth the effort.

The third attempt was directed toward the development of a correction that
does not involve adjusiment of any distance. The idea is to adjust the strength
of the doublet at the origin for any strength image so that the boundary condi-
tion at A and C s satisfied. The st =ngath of the image was then adjusted
until the stream function at B was equal to that calculated at A and C.
This approach has no real deficiencies except that the status of the boundary
condition at D and in between A, B, C, and D is unknown. Also, this
nethod like the second method fails for singularities located at large distances
from the body.

The conclusions drawn after analyzing the above thvc. attempts to correct
the irage i3 that it is hetter to lump unsteady effects into the residual
potential. The last two attempts described actually use a correction flow
(the new doublet at the origin) to correct for unsteadiness. Rather than
generate a residual solution ror each singularity and image separately, it seems
jogical to generate the residual potential only once. The description of the
residual potential i< given in section 2.5.6.

2.5.5 Formation of the Influence Matrix with Images

Each Tifting surface element has its image. For each unsteady horseshoe
vortex exterior to tne body, there may be an image unsteady horseshoe vortex
within the body. The expression for the normalwash influence matrix for
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elements exterior to the hody may be rewritten from Eq. (2.3-1) as

K dn (2.5-8)

Lumt}
1
Ooit>
A X
1]
m\m

The influence matrix from the image element is:

I
K

I dn (2.5-9)

)
—

u
[o0)[>3
Flz

|‘.__§
[¢2] [12]

I

The required image quantities are determined from the edge locations of the
image element. If nysty are the coordinates of the inboard edge of the
exterior surface element, and Nosty are the outboard coordinates,and n

a
and Eg are the coordinates of the local center of curvature, then the
corresponding image locations are:
— '52 —
“I] =, ¥ —?-(n] —-na)
] (2.5-10)
R _
¢ s ty t 7 (g gy
1 7
2 —_ _
Py = (n] —-na)2 + (C] —'Qa)z

Similarly, for il and SP% These expressions are sligntly different from
those of (2.5-2) gecau:e it is no Tonger assumed that the body on ¢ 1is at

the origin.
2 ?
e; = 4(n; —n; )+ (g, =2ty )
I 'j I, 'L I, ™4
(WIZ nI])
cos vy = ————E-I—"—- (2.5-11)
sin yp = = e
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The sweep angle of the image element, A\ is given by

sin M T — e
VA«E + €y
(2.5-12)
e
I
cos Ap =
JA&Z + e?

Each body in the flow may possess an image of the external 1ifting surface

image. For the sake of efficiency, it is not required that each body have a complete
image system. That is, every 1ifting surface element need not have an image

in every body. Only those bodies that Tie close to the 1ifting surface element

are required to possess an image of the element. Also, if a 1ifting surface

element Ties out of the range of the body Tongitudinally, then no image

exists. Taking into account all image elements, the normaiwash beccmes:

twgd = [D] aCp)
() (2.5-13)
= (b)
b=1

where the superscript b ranges over a11 bodies that must have images associ-
ated with the element. The velocity Wp is the sum of the velocity due to
1ifting surface elements, Wes and their images, Wi

Wp = Wg * Wy

It is convenient at this point to include the effects of symmetry and
ground effect. The effect of symmetry is to introduce a system of lifting
surface elements, plus their images, on the left-hand side of the y =0
plane. The n-coordinates of the sending elements are changed from n to
-n . Similarly, the dihedral angle changes from Y to “Yge Elements
lying on the symmetry plane (in the y = 0 plane) have no image. The effect
of the ground plane is to introduce a system of lifting surface elements,
plus images, below the z = 0 plane. The ¢z-coordinates of the sending
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elements are changed from ¢ to -7. The dihedral angle changes from Y
to g+ The interaction of ground effect and symmetry is to change n to
-n, ¢ to -z and leave Yg unchanged.

D=

[ B}

(n,CsYS) + 60‘('n3C9‘YS) + ED(T\"C”‘YS) + ‘690(“13'C,Yd)

Note that the effect of images is included in Eq. (2.5-13) because of its
inclusion in D. Eq. (2.5-13) may be rewritten as

fug} = [D] (aC ) (2.5-14)

2.5.6 The Residual Interference Fiow

The image singularity, of course, is not completely effective in
diverting the flow, generated by the external singularity, around the body.
The reason is that two-dimensional theory was used to develop the image. It
is surprising, however, how well it does work. Wu and Talmadge“? have
attempted to solve the full three-dimensional problem of a semi-infinite lire
doublet in the presence of a shape that has a circular cross section and is
infinite in length*. Their approach is to treak the potential into two parts:
¢y due to a doublet and its image (as discussed above) and ¢, an incre-
mental potential used to render the solution exact. The basic approach is to
calculate the flow normal to the surface as generated by the singularity and
its image, i.e., as generated by 61 Then a Fourier-~Bessel series is used
to negate this residual normalwash. Basically, what this series represents is
a distribution of singularitiec along the axis of the body. Near the axis the
Bessel function can be approximated by the functions 1/rn. Thus, the series
sum over n represents a wave equation multipole expansion. Wu and Taimadge
have shown that the residual upwash and thus the incremental potential is
everywhere small. The variation with x is given as:

Tim b > 0(x)
x ~»0

Tin 4, > 0(x2)

X > o

*Wu and Talmadge actually consider a jet and not a body. However, the basic
solution for the jet and body are very similar.
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Although the image system makes the major contribution towards satisfying the
body boundary condition, thers are stili some effects not accountad for.
These effects can be classified loosely as follows: 1) effects of bound

vorticity, 2) effects of ncncircular cross sections, and 3) effects of
unsteadiness.

These effects produce residual velocities normal to the body surface.
These residual velocities, however, are free from singularities since it was
onc of the main requirements of the image system to eliminate such
singularities. Since no singularities exist, a solution of the axial singu-
larity type may be used. Again, slender body theory will be used to find the
strength of the axial singularity required to eliminate the residual velocity
normal to the body surface. In order to use ithe axial singularity system, an
effective up-or sidewash velocity must be determined from the nonuniform
residual onset flow obtained from the 1ifting surface and its image surface.
Slender body theory allows two-dimensional quasi-steady methods to be empioyed
to find this effective velocity. The basic problem is shuwr in Sketch 2.5-5.

ELLIPSE PLANE CIRCI.E PLANE

=3
~ll

n b

Sketch 2.5-5
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The basic ~teps in the solution are outlined as follows:

1. Transform the normal velocity boundary conditions, which are caused
by nenuniform residual onset flow, to the circle plane;

2. Solve the potential flow probiem in the circle plane;
3. Transform the solution back to the ellipse plane;

4.  Knowing the doublet strength, fiud the effective velocity necessary to
produce it.

The normal component of the residual velocity, w, is

Wwe=h - }j‘wR(y) + E‘wR(Z)" (2.5-15)

where Wp is the residual onset flow. This residual onset flow is caused by
the 1ifting surface elements plus their images inside the body {or bodies).
That is

= +
Wp = W ot Wy
For an ellipse
= _ Ib cos o + Ka sin o

n
J b2 cos?e + az 51;20

The normal velocity transformed into the circle plane, w, is

W= s W1 - [ - (b/2)?] cos® (2.5-16)

Tn the circle plane this normal velocity may be negated by a multipole expan-
sion centered on the body axis. 1In the circle plane the multipoles are
designated by wu |

v

+ (2.5-17)

+ +
F\)] 'Y-“\)'I

= —

1 d Eiy> co05 vo u z sin vé
T
vz

where the subscript v ‘indicates the order of the singularity ccnsidered.
For example, v = 1 indicates a doublet, etc. If both sides of Eq. (2.5-17)
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are multiplied by cos vé and integrated from 6 = 0 » 2r the result is:

27! ©
f W cos vede = ]2_ z u;y)/F\’H (2.5-18)
0 v=1

AT i, g

Similarly, if cos ve 1is replaced with sin ve, the result is

\

2u o
j/ W sin ve = -;_—_z ;;(Z)/F"” (2.5-19)
0 v=1

Egs. (2.5-18,-19) give the values of the doublet, quadrupole, etc., strengths
to satisfy the normal velocity boundary conditions. These singularity strengths
may be transfo-med back to give the appropriate singularities in the ellipse
plane. Formulas developed previously (Section 2.4) for the far field properly
represent the multipole expansion through the second term v = 2. The distance
% d is selected such that the proper quadripole strength is generated. In

] Section 2.4 the distance d was a function of the cross section only, i.e.,

‘ b/a, however, here d is a function of both cross section and nonuniformity
in tne residual onset flow field. It is impractical to use an influence
formula that is a function of onset flow, thus the effect of nonuniformity on
the value of d will be ignored. Only the zross-sectional shape will be used
to determine d. Since d has been determined previously,only the doublets
need be considered in Eqs. (2.5-18, -19). The doubTlet transforms unchanged
from the circle plane to the ellipse plane. After substituting m for W

(Eq. (2.5-16)),the expressions for E(Y) and ﬁ(z) (remember u = 2u) become:

2w
';;(.Y) =232('| + D/a) f W COS 8 4] - [] —_ (b/a)z] COSZG de (25-20)
‘ 0
! 2% :
Z(z) =2a2(1 + b/a)ﬁ/ﬂ w sin 8 \h - —-(b/a)z] cos%e do (2.5-21)
0

Numerically, the integrals are replaced by sums in the present method. These
integrals may be translated into an equivalent velocity as follows:
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p2p' )y, (¥) (2.5-22)

=
]

(2) . pop(2),(2) (2.5-23)

where w(Y) is simply the right-hand-side of Eq. (2.5-20) divided by D20<y).
The term w(z) may be found in a similar manner. The superscripts (y) and (z)
on the term D2D are to indicate that there is a difference between them

for noncircular cross sections.

p20'?) = 2, a,(a, * b,) (2.5-24)

(y)
D2D 2n b (a, + b,) (2.5-25)

In Eqs. (2.5-20) and (2.5-21) the terms a and b are those used for the

image calculation. That is, they are corstant for the entire cross section.
Thus, the velocity normal to the surface is calculated on the constant section
tube used for the images. The values of a, and b, found in Egs. (2.5-24)
and (2.5-25) vary along the length of the body. When Eqs. (2.5-24) and (2.5-25)
are placed into Egqs. (2.5-22, -23) and then into (2.5-20, -21), the results

are:

2n
w(y) = ]———g——T—)a a + b) f f w cosede (2.5-26)
mala, *t
0% " %o’ g
‘ 2m
W2 %- a(a ++b) ./p f w sinode (2.5-27)
3% T Do
0
f= g1 -1 = (b/a)?] cos’s

The assumption that is made for the calculation is that the image cross

section approximates the actual one. In order to more closely transfer this

onset flow to the actual surface, the value of a(a + b)/ao(a0 + bo) is set
to unity. The velocity normal to the su-face of the ellipse due to 1lifting
surface elements and images is calculated using D and DI’ If the sending
element is located along a body axis and not on a 1ifting surface, then, E(y)
and E(z) are used. The dihedral angle at the receiving point to be used is the
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local surtace slope on the ellintic cross section. The integrals are evaluated
by calculating w at various points around the circumference of the cross section

Na
w(y) -1 w cos 6 f 20 (2.5-28)
m Y vy v

v=1

A similar expression exists for w(z). The subscript v indicate- that the
receiving point is located at 6 _ as follows:

= + 4
Yy Ny a cos ev

z = 2 + b sin ev

—i 3 » -
cos Yrv 5 sine, (2.5-29)

:—b—COS 8
o v

sin Yy
AV

PRI I - \m‘ m. (i

Jbz cosze + a2 sinze

p

Eqs. (2.5-26, -27), are applied to the influence matrix relating the normalwash
due to a 1ifting surface element and its image at the body surface.

As it stands in Eq. (2.5-14) {wR} is partitioned into two parts: 1)

the normalwash at the 1lifting survace elements, Wps and 2) the normalwash

at the body surface at various meridian angles (ev), wée)

N ) [ n ‘ o (5 c_2n
E i {WR} = st“ ;*(j;-)‘)) = l%‘(g‘)"l U.\bp,f \C u—uu)

‘ In order to obtain the average z- and y-velocities at the bodies Lgs. (2.5-26,-27)
must be applied

27
5lz) o 1 J/' D,f cos ado (2.5-31)
i
0
2
5v) . J,;f D, f sin ade (2.5-32)
0

50




o Ay

Then the matrix {ws} becomes :

(W 7]
M)
twy = WDV 5Dy ), (2.5-33)
i =4 P 3 | 0t ; .
‘“-’s(zy) Lg(y)— ’

It is important to notice that the cross-sectional shape (and size) used in the
determination of the effective up~ and sidewash (Eqs. (2.5-31, -32}) must be
the same as that used to determine the images. This cross section is constant
for the entire body length. The effective velocity obtained from these
calculations, however, i3 applied to the actual body cross-sectional shape and
size through the use of the local influence function [2D and the setting of

the term a(a + b)/ao(aO + bo) to unity.

Thus far the effect of 1ifting surface elements and their images on bodies
has been considered. Attention is now turned to the interference effects of
bodies on all parts of the configuration, i.e., other bodies and 1ifting
surfaces.

The residual interference flow is to be generated using the same singular-
ities as those used for the isolated body (section 2.4, Egs. (2.4-16, -17)).
The only differences are: 1) that the distribution of elements will be differ-
ent, 2) the normalwash is determined at points on the cross-sectional surface

rather than at the body axis (even though the results are applied to the exact
surface).

The distribution of elements for interference could be identical to that
for the isolated body for simplicity. However, this is inefficient. The
singularity strengths for the isolated body are known and do not add to the
number of unknowns in the problem as do the interference elements. For this
reason a generous number of elements may be allocated, for the isolated body,
to properly describe the body radius distribution, the greatest variation of
which is near the leading and trailing edges. The greates. variation in the
residual flow may be elsewhere, specifically near the body/1ifting-surface
intersection.
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he bady radius must equal the constant value used in the image calcula-
tion. The reason is that the image singularity surfaces exist within this
constant section tube. Thus, two idealizatiors for the body are used: 1) te
generate the flow field of the isolated body, the exact radius distribution is
used, and 2) to account for interference, a tube of constant cross section is
used along with the exact body shape.

The residual flow field due to lifting surfaces and images has nonuniform-
Tties across the body surface. Thus, the averaging of this nonuniform velocity,
given by Eqs. (2.5-26, -27) is required., For the effect of bodies on other
vodies, however, the nonuniformities are small and the normalwash may be
evaluated on the axis.

The influence matrix relating the normalwash at a field point due to an
interference body element is formally the same as that for an isolated body
except that the values of pgy), ugz) are not known.

) = A7 {2y 4 ey (), (2.5-34)

Eis) = Eig) = 0 when the receiving element lies on the sending body
except when r =g

Eig) - 0208 when r=s
(2.5-35)
EW) = pap™Y) when r=s
rs
b/a > 1
£42) < £q. (2.4-16) with 4 = 0
rs S
() . ) (2.5-36)
Ers = Eq. (2.4-17) with Ty = -90
b/a < 1
(z) _ : -
Ens’ = Eq. (2.4-17) with vg = 0
(2.5-37)

E(y) = Eq. (2.4-16) with y_ = -90°
rs v ! S
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The receiving points for the 1ifting surface elements are the 3/4-chord
points. The receiving points for the bodies arz on the body axis at Yo =0
z, = car and centored longitudinally on the element.

’
a',

In summary then, the residual interference is handled in the following
manner:

1. The up- or sidewash at bodies due to 1ifting surfaces and their
images is determined using an averaging technique on the normalwash
at the body surface. The body surface used for this purpose is a
constant cross-section tube.

2. Interference body elements are used to negate the up- and sidewash
given in (1) and also the up- and sidewash generated by other bodies.
The interference body elements are distributed differently from
isolated or slender body elements. This is dore to reduce the
number of unknowns in the problem and to place interference elements
where they are most needed.

2.5.7 The Use of Surface Singularities for the Residual Interference Flow

In the last section axial singularities were used for ihe determination
of the residual potential. An alternate method is presented here. Specifically,
the normalwash boundary condition can be satisfied using a distribution of
either unsteady horseshoe vortices or quadrilateral vortices on the body
surface. In Part I of this report, unsteady horseshoe vortices were used
on the body surface to account for all of the body/lifting-surface interference.
(Slender body elements were used to determine &w.) For the present method,
however, surface singuiarities on the body surface may be used to account only
for the well-behaved residual flow. Thus, both an image system and surface
singularities can be used. The number of elements on the body surface need
not be as large as for the method of Part I since the residual flow is well
behaved. However, the introduction of surface singularities greatly increases
the number of unknowns in the problem and the computational effort., It is
anticipated that this method will be used only for difficult configurations or
if a very high degree of accuracy is required. It may also be desirable to
have such an approach for cross-checking purposes.
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The normalwash, Wr, to Tifting surface elements lying on body surfaces
is determined in the same manner as the W for axial interference elcments.
The only difference is that the velocity normal to the surface elements is
determined instead of z- and y-wash at the body axis. For a single body Wy
at these surfaces is zero since it is assumed that the slender body axial
distribution has diverted the onset flow around the body surface (exceot for
interference {low). If two or more bodies exist (including symmetry and
ground effect bodies), then one body may induce a nonzero Wpooon ailother
body.

Eventually it may be desirable to use quadrilateral vortices that are
inclined to the filow field so that more details of the body surfaces may be
treated. In such a case it is necessary to use a more general formula than
the one developed in Appendix b. An expression for a pressure doublet inclined
to the flow was developed by Berman“?. Such an expression integrated over an
element would give an inclined horseshoe vortex. This type of singularity is
unsatisfactory for the body surface since a wake trails back from each point
on the surface. Such wakes would then thread in and out of the body surface.
A similar expression for a velocity potential doublet would be desirable to
produce an inclined quadriiateral vortex without a wake. If any wake did
exist it could be added at the end of the body using unsteady horeseshoe
vortices.

2.5.8 The Image System for Wing-Tail Conrigurations

The method of images requires a b of constant cross section. The
image system trails back on the inside of the body without any changes in
lateral position. The application of the image System concept to bodies
of variable cross section with special refere. .e to the wing-tail problem is
the subject of this subsection.

If a 1ifting surface system is attached to a body at only one location,
then a fairly simple solution to this problem exists. At the intersection of
the body 1ifting-surface system an average body cross section is selected for
use with the image system. The effects of the Tifting surface on the actual
body cin be determined on this average surfac In other words, the normal-
wash to the actual body surface generated by the 1ifting surface and image
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system can be calculated on the average surface. The results calculated on the
average surface are then applied to the actual surface as if they were calcu-
lated on the actual surface. If the residual Fiow field is reasonably uniform
(laterally), then very little error should be in*roduced with this method.

Yhis approach is very similar to that of Woodward for steady flow. His
basic approach is to use slender body theory for the exact body shape in a
uniform flow to determine the axial doublet and source distribution. These
singularities are then used to calculate an orset flow to the 1lifting surfaces
on the wing. Lifting surface elements are then placed on an idealized body
shape of constant cross section to account for the rest of the interference.
If a wing-tail configuration is considered, then the tail must be attached to
the idealized body shape. This idealized shape usually takes on the radius of
the body as it is at the wing-body intersection. This may cause errors in the
tail Toads for two reasons: 1) the relative positions of the 12ft and right
horizontal stabilizers as well as the fin may be changed consideratiy to
accommodate the idealized fuselage shape, and 2) the loads in the presence of a
very large diameter fuselage are different from those i the presence of a
small diameter fuselage. Reference 21 gives examples of the Wuodward approach
for the B-58 and sther aircraft configurations.

A possible solution for the wing-tail problem is to use one idealization
for wing-body interference and second idealization for the tail-body interfer-
ence. This cannot be done with the Woodward approach, but it may be possible
with the present approach. For instance, the body idealization suitable for
the wing-body intersection could be used to determine wing-on-wing, wing-on-

£
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body, and wing-on-tail interference, The body idealization suitable
tail-bedy intersection could be used to determine tail-on-tail, tail-on-boay
and tail-on-wing interference. Sketch 2.5-6 gives a graphical exampie of this

approach.

The relative positions of the left and right 1ifting surface systems are
now correct for the local influence of these surfaces on themselves. The
effect of the wing on the wing is very accurate as weil as the effect of the
tail on the tail. The effect of the wing on tue tail deserves some speci-?
consideration. The approach outlined accounts, in a crude way, for the fact
that the wake follows the flow field around the body. Consider, for instance,
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IDEALIZATION FOR DETERMINING IDEALIZATION FOR DETERMINING

THE EFFECT OF THE WING ON THE EFFECT OF THE TAIL ON
ITSELF AND OTHER PARTS OF THE ITSEWF AND OTHER PARTS OF
AIRCRAFT THE AIRCRAFT

Sketch 2.5-6

the trailing vortex at the wing root. This vortex follows the fuseiage and
crosses the tail plane at the fuselage-tail intersection, i.e., at the
horizontal tail root. With the approach just outlined, the same effect is
achieved by placing the wing and tail-root :sections at the same points
laterally. If more information is known about the wake location, either
laterally or vertically, the tail position could be adjusted to more ac.6u-
rately reflect the relative geometries of the wing wake and taii. The idea
is to select an idealization thal places Llhe wing wake properiy reiative to
the tail since it is the wake that generates the strong wing-tail coupling.

Adams and Sears33 presented a fairly simple formula for calculating the
lateral streamline displacement about a body of revolution neglecting vortex
sheet roll-up. It is
2(5) = rP(e;) = ak(zy) + aX(x) (2.5-38)

re(g) =r o

Here r(z) is the lateral position of a streamiine (where the radius is ao(g))
that had its origin at r(g]) (where the radius is ao(gl)). Such a formula
could be used to determine where wing trailing vortices emanating at r(g])
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will strike the tail plane. The use of this approach would cause practical
difficulties for the lattice method*. In the lattice methed the trailing
vorticity is idealized in discrete vortex lines. These vortices must
impinge on the tail plane at strip edges (if wing and tail are copianar or
near coplanar). The strips at the horizontal tail must then be adjusted so
that thay align with tihe wing edges after the transformation (2.5-38) is
applied.

By far, the largest factor in determining the position of the wing wake at
the tail is the vortex sheet convection and roll-up. Although the present
method does not determine this effect, there is no fundamental reason why it
could not be included at a later date. It seems appropriate, at the present
time, to delay the inclusion of the second-order wing-tail idealization
improvements (outlined in this section) until a full study of all of the
second-order effects can be made.

2.6 Body Force and Moment Distributions

Heretofore this report has cnncerned itself with the determination of the
singularity system that has been substituted in place of the aircraft. This
secticn deals with the loading obtained from the singularity distribution and
subsequently the generalized forces from the loading.

On all Tifting surfaces thke loading is equal to the singularity strength
and thus no further discussion is needed. However, for the bodies involved,
the situation is much more complicated.

The objactive is to develop a simple set of expressions for the joad
distribution on a body, in the presence cf a singularity distribution. Both
the singularity distributions interior to the body (axial doublets, vortex
quadrilaterals and images) and those exterior to the body (1ifting surface
elements and axial singularities on other pbodies) generate 1ifting forces on
bodies. Unlike 1ifting surfaces, bodii. have nonzero thickness. A change
in potential, say from the bottom to the top side of a body, causes a net

*Such a method would be fairly easy to apply to Toading function methods. The
spanwise distribution of vorticity would simply be modified by Eq. (2.5-38).
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force. The flow fields of all singularity distributions give rise to a
variation in ¢y * iwd across the body and thus generate a force or the body.
Such a variation is not experienced by lifting surfaces since they are of zero
thickness. The only variation is caused by the local potential jump, 4¢,
which generates the local ACp. The contribution to the loading from the
slender body singularities is easily obtained using the theory of Miles. The
contributions due to the rest of the singulaiities will be determined
numerically.

A11 of the singularities used to model the aircraft can be expressed in
terms of unsteady pressure doublets. It is sufficient, then, to develop an
expression for the force and moment on a body due to a point pressure doublet.
This expression is then applied to the equivalent pressure doublet distribu-
tion that has been substituted for the actual singularity distribution.

2.6.1 Reduction of All Singularity Distributions to Pressure Doublet Distributions

The reduction of the unsteady horseshoe vortices to doublets is straight-
forward since the hcrseshoe vortex is simply an integration of the pressure
doublet in the spanwise direction over a short element. The unsteady horseshoe
vortex is simply replaced by one or wore poirt doublets depending on the
accuracy requirved and the distance between the horseshoe vortex and body.
Currently in the present method, only one point pressure doublet is used.

The total doublet strength of an unsteady horseshoe vortex of strength 4C
is ACPSA where oA is the area of the element associated with the horseshoe
vortex. In the analy.is ~f Appendix D it is assumed that

a1l point pressure
douhlet strengths are given Ly LCp:A even Lhough the doublet may be due to

an axial element anu not a 1ifting surface element

~

Consider now the axial doublet ot strength ¥ associated with the
modified acceleration poten-ial (Appendix A, Egqs. (A-19, -20)). The points
of concentrated prec. ..o (Jelta functions), which correspond io the origin of
an equivalent peescur: coubiet, ere obtained from Lgs. {A-21) and (A-27) as

_ _ian y, ) - ost/yy,
*Cp = %; zaﬁe v ie (2.6-1)
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where

AQ = §(n — Nys G- Ca)ﬁ(ﬁ) (2.6-2)

dere ¢ 1is a two-dimensional Dirac delta function, and

c 7 Freb sty

Thus 5c is the center of a doublet element running from 1 to 7,. When
¢ is outside of the range shown, £c jumps to the center of the next element.

Thus, gc(g) is a step function at ¢ = &1 and £oe For an isolated element

Also for an isolated element
A =0 g<gy o £> %

that is, the doublet strength drops to zerc off of the element as a step
function in ¢.

- Twg /Y,
The product 4G e then is also a step function at ¢ = £ and &,.

The derivative of this step function is zero everywhere except at ¢ = £
and £o at which point it is infinite. The results are two delta functions.

_ N i wﬁg/?l]m
ACPGA = 8(n=ngs =g lele— &) ue (2.6-3)

o _ _ N
~e(n=ngs o g )e(e - gy) e

where

These expressjons @epresent two-point pressure doublets: one at £ = £ of
strength ﬁneT wbt/Us, and one at ¢ = g, of strength ﬁne'1 wbt /U,
Sketch 2.6-1 presents a graphical 131ustrétion of the singularity (the
imaginary part is omitted for clarity).
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Sketch 2.6-1

Usually the doublet elements are not isolated but are linked end-to-end
down the center of a body. In this case each end point possesses two point
pressure doublets whose strengths may be summed.

i wagg/2l,

ACPSA =y = use — Yg_1

-i wAES_]/ZUw

e (2.6-4)

where s indicates the element subscript, i.e., element s lies directly

aft of element (s — 1) on the same body.

The same analysis is valid for quadrilateral vortex rings except that horse-
shoe vortices are used in place of pressure doublets. At a particular end point
of an element there exist two horseshoe vortices: one emanating from the element
upstream cf the point and one from the downstream element. These two horseshoe
vortices are each replaced by one or more pressure doublets just as the Tifting
surface horseshoe vortices were replaced by pressure doublets. The fact that
the upstream elermznt may be larger in span than the downstream elemeni ooses
no problem. The element width only enters in the determination of the element
area. The expression for the equivalent pressure doublet strength for quadri-
lateral vortices is,
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_ i wAES/ZUoo
ACPGA = AQSZdSe

-1 wAg, /72U
§-1 ®
- AES_]ZdS_-‘e

(206-5)
where a02d may be considered a doublet strength, ¥, since 2d is the width
of the trapezoidal vortex. In fact, for use with bodies, the doublet strength

u, s used instead of AQ. Thus, Eq. (2.6-3) may be used for both doublets
and trapezoidal elements.

The loads due tc slender body elements can be obtained directly using
Miles’ slender body theory.

oW

= -2 -
s, = sz * 5% M (2.6-6)
b, M b .
ACy = WyL -a—+ 3% M 3 \(4.6-7)
= { ] e
L= x{2 aao/ax + 12krao/c)
—_ (2.6-8)
M= a(/c

where a, is the local body width and b/a is the ratio of the semi-
minor to semimajor axis. The terms W, and W, indicate upwash and sidewash,
respectively. The relation between the axial loading aF/ax, and the pres-
sure, Ac,, AC is:

Yy
aF_/q
A -
TR = A&ZZaO (2.6 9)
aF /q
A b -
Y AcyZao 3 (2:6 10)

To simplify the logic of the computer program, these loads are converted to
point pressure doublets and treated like all of the other pressure doublets.

oF

sy = 1 1
(ACpGA; = uSZ = X (1 + b/a) (2.6-11)
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oF
(aC o), = 'ﬁsy - a_xm ax (1 + a/b) (2.6-12)

{ The term ax is the slender body element length. The factors (1 + b/a) for
ﬁs and (1 + a/b) for ﬁg are applied because of the cross-sectional
ef?ectivity. For example, a'circle (a/b = b/a = 1) transmits only half

the point pressure doublet strength to the body; thus, the doublet strength
has to be multiplied by (1 + a/b) = (1 + b/a) = 2.

2.6.2 Calculation of Force and Moment on a Body in the Presence of a Point
Pressure Doublet

The expression for the pressure at all points in a flow field due to a
point pressure doublet is given in Appendix D as:

AC (&sn,z)sA . -1R
- P i(x-g) 3 |e ™| _
Cp(xs.V:z) iy e N R i (2.6 13)
where AC_SA 1is the strength of the point pressure doublet Lawrence and
Flax"*7 have integrated the steady version of this equation making use of the
following assumption<. 1) doublet Ties at a large distance from body, 2) body
is circular, 3) the pressure doublet is oriented in the z-direction and also

lies in the z = 0 plane, and 4) only the force in the z-direction is

desired. The basic idea of the Lawrence and Flax method is to integrate the
steady version of Eq. (2.6-13) around the cross section for an arbitrary value
of x thus producing a distribution of force along the body axis. A second
method to be discussed later, integrates first in the x-direction (analytically)
t and then integrates numerically around the cress sec ¢ produce the total
force (and moment). This method does not produce a distribution for a single
doublet since the total force and moment are lumped at the same x-direction

as that of the doublet.

A generalization of the steady flow method of Lawrence and Flax is
werived ia Appendix G. Specifically, the force distribution in both the y-
and z-directions is derived for a doublet Tocated at any point in the flow
field which has an arbitrary orientation. If N is a unit vector in the
1 direction of the doublet, and if n and ¢ are the cocrdinates of the
doubiet, then:
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3(f7Q)/3X = -—%——-—jg— > i r.>a (2.6-14)
a

(
ac oA 822 | 3r2g?
0 ; a -
w i, +u -
" olo " Mp

where

=2 &N
n
—
>
|
vy

N

)2

2,
ry = (¥ —=ng)" +{z —¢,

a
and where s is the radial distance from the circle origin to the doublet,

and T; and i“ are unit vectors in the #- and r -d1rect10ns, respectively.
If this result is integraled to obtain the total 11ft on a body of constant

cross section, then

2

N a

F/q = -‘g_—;‘% (ue‘fe - urTr) r > a (2.6-15)
a

The total moment on the body is zero since the distribution is symmetrical

in x for the steady case. An amazing result is observed from Eq. (2.6-~15).
The total force obtained by integrating the approximate formula of Eq.
(2.6-14) is exactly correct as seer by comparison with equation F-13 of
Appendix F. Equation (2,6-14) was derived for values of Ra which dare large,

however the integrated value is exact for all values of Ra where ry > 25

A similar expansion for small ra/a gives the following result for

aoubiets that 1ie within the body
N AC_SA szai - -
3(F/q)/ox = =3 (o * i) ry €, (2.6-16)
a
where
ﬁg = (x—g)? ezag

Again if this equation is integrated over a constant cross-sectional body.
then:

4

-

F/q = __..éL__ (hgig * i) ra < (2.6-17)

This result corresponds to the exact values obtained in Appendix F.
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Such encouraging results for the steady case (body of circular cross
section) indicate that a similar approximate analysis might work for both
the unsteady case and the case of noncircular cross sections. A derivation
for the unsteady case (circular body) is given in Appendix G. For the case
where the doublet lies outside of the body, i.e., ra > 24 the resutt is:

AC_8A

= - _p 2.2 iA[M(x-g)~Ra] - - 5
AF/q)/ax T—8ae (T, +7,.7,) r,>a, (2.6-18)
where

el
Ra Ra
1Ar262 382r2 ixezrz
T,o=T, {1-—2— -2+ — 8
r 8 Ra R R
a a
Here
v o= aMsiy =2 M1 (2.6-19)
® r 2
g™ ¢C
For the case where the duublet lies on or inside the body, i.e., Yo S35 the
result is:
aC_sA . = .

2 2.2 _iAM(x-£)-R 1 ix { )= - .

3(F/a)/ox = —i— glale MMx-E) Ry {%"’L %-}{19116 : 1‘,ur} (2.6-20)
a a
ra 2,

These results can be integrated over a constant cross-sectional body to
give the total force. The term ?7q + 3 can be integrated aralytically to

e
give
AC.6A a?
- o [in\ 4(2) (¢
Fo/a = —5— ;Q-E'(iﬂ) H3% (k) (2.6-21)
a

where K = wr‘aM/Uco and where H§2) is the Hankle function of the second
kind and zeroth order. The result for Fr/q must be integrated numerically.
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Just as in the steady case the total forces integrated over a body of
constant cross section are exact. The resuits of (2.6-21) and the results
of numerically integrating Fr/q are plotted in Sketcn 2.6-2. The exact
results are obtained by the method presented in Appendices D and E (for the
total force).

The results for a(?Vq)/SX are given above in terms of “e?; , and

- . .
u.1.. A conversion to the y-z nlane gives:

rr
o(Fa) o) ar ™)
™ = NZ T + Ny T (2.6-22a)
o(Fj0)  a(FY ) alr )
X = Ny ™ + NZ Y (2.6-22b)
where
(F{2)/q) o(F /), alF/q)
Z = cosze ——* 3in"g 4
3X 1 oX 1 X
(y)
5(F377/q) 5(F_/q) a(F./q)
Sty a2 2 r
aX ST 6y —5x * cos e axX
3(FY) 1q) gy (25 3UE)
—5 = cosgy sing )
and where
N - I, + KW,
L —2Z
a
tane-l = (ﬂ _ya)
3(F /) 2(F/q)
X X g
B(Fr/Q) 3(F/q) y
X aXx r
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The circumferential integration for a circular cross section has been
performed. In the present method the force distribution is given, not at
every value of x, but at a set of points which correspond to the midpoints
of a set of body elements (the siender body eiements). The value of the
circumferential integration, o(F/q)ux, must be averaged over these elements.
1f not, then errors could be introduced due to local variations cver the
elements. The average of a(qu)ax over an element is obtained by integrating
it and dividing by ax. Ultimately the total force, F/q on the element is
required, thus the division by ax can be left out.

xA-(Ax/Z)

where Xp and ax are the element center and length, respectively. In
equation (2.6-22) the elements that go to make up a(F/q)/ax are
a(ng)/q)/ax, 3(F§y)/q)ax, and a(Fiy)/qlax. These are all integrated in
the same manner as is a(?Vq)ax producing:

ng) XA+(AX/2) 3(F(Z)/Q)

— Z -
- " — dx (2.6-23a)

'%?‘“ = —_— X (2.6-23b)

fy) xpt(ax/2) ang)/q)

z - _ Ry
-l — dx (2.6-23c)

Xy~ (ax/2)
Also, required for future analysis is F§Z)/q. This case is

(2 = F¥) g (2.6-23d)
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In addi.ion, future calculation will requiie moments on the elements. For
this method {circular bodies) the moments are zero.

The above simplified approaches for the steady and unsteady cases (which
will be called Approach I) are based on expansicas in terms of aO/Ra or
ra/Ra. As such they are approximate even though the total forces are exact
(the total moment is correct for the steady case also).

For the case of an elliptic cross section, the simple expansion technigues
used above and derived in Appendix G (Approach I) fail to converge to sufficient
accuracy for the total intuirated values. Therefore, these results are not
presented. A different approach (Approach II) will have to be taken for the
case of noncirculer cross sections .

The basic idea of the second approach is to reverse the order of integra-
tion in finding the total force on the body. That is, Eq. {2.6-13) is
integrated in the x-direction first and then integrated around the cross
section. The advantages of this method are that: 1) unsteady flow can be
considered for bodies of arbitrary cross section since Eq. (2.6-13) can be
integrated analytically along the body, and 2) only a single term arises from
the expression and not an entire distribution for each pressure doublet., The
disadvantage of this method is that although the force and moment are correct,
the detailed distribution is not given. (See Sketch 2.6-3 for a graphical
representation of approach II.) In a practical problem there are many
pressure doublets and approach 11 produces a distribution since there is a
distribution of pressure doublets. The distribution, however, is more abrupt
than the actual since the force and moment are concentrated at one point.

The integration of Eq. (2.6-13) to obtain the total force and moment is
carried out in Appendix D. The integration in the x-direction is performed
analytically in terms of two Hankel functions. The results are:
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( 3 2 (k) Teds (2.6-24)
| M AC 6A T, 'IT_\
( 3" - @rp(k‘) - Tpds (2.6-25)
where
#(F) = -i ZRE) (R
b(F) = M gmg?)( )
H'(A?')(E) = Hankel function of second kind
k = 2krM r/c
k. = t/2U,
fl = direction of pressure doublet
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?} = direction of force F
.?r = direction of redius 'F
FeT Yly-mftz=0f=Ty-n+Rz=2)

and where the contour integral is to be taken arcund the cross section. The
cross-sectional shape under consideraticn is the one possessed by the body at
the longitudinal location of the point pressure doublet. Currently, for
simplicity, the constant cross section designated by a and b 1s uced
instead of the local values, a, and b_. Appendix D shows that higher-

)
order moments diverge and thus cannot be used.

The integrals found in Eqs. (2.6-24, -25) can be evaluated analytically
for only the simplest cases. One such case is the one considered earlier in
this section, i.e., a circle in steady low. Appendix F gives the details of
this integration. The results are:

F
F. I 2 6-
3 ACpéA (2.6-26)
S %-TF - Pressure doublet inside body
I = , (2.6-27)
(‘%-T} N}l(a/ra)2 Pressure douhlet outside body

wiiere ¢ iy Lhe circie radijus, r ic the radial distance from the pressure
puint to the circle center, and

-

Ny = K sin {6 —28) —3 cos (¢ — 26)

where ¢ and ¢ ave defined implicitly as follows:

N =K sin ¢ + J cos ¢
. ) -— - . —— - —
"o = lrol {k sin ¢ + j cos 0}
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For other cross-sections the integrals in Eqs. (2.6-24, -25) must be
done numerically. Appendix E gives the details of a successful numerical
scheme for evaluating these integrals.

The basic idea is to break up the contcur integrals into a sum of
integrals over short surface segments. On» each of these elements the values

of f(k) and p(k) may accurately be held constant. The integrals then
become:

AC_6A \N R I M I
F/q = —5- 2 f(k;) - ds (2.6-28)
J= -ej
N Q.
aC A . Jj
= % - . Y . e -
M/q —_P_—Zn Z p(kj) f i, n . i ds (2.6-29)
j=1 -ey

The integral over the small element extending from -e to +e in the
moment equation (2.6-29) is very simple since no singnlarities exist.
However, the 1/r singularity in the force integral requires special treat-
ment and 1ts accurate evaluation is difficult. Several procedures were tried
which ignored the curvature effect. These proved to be inaccurate ard had to
be abandoned. The major part of Appendix E is devoted to the evaluation of
the element integral in Eq. (2.6-11). It is convenient tn break f/q and
M/q irto their component parts

(z)

FZ - F e H - ?IL\

AU S

e(v)

z_-L@w-7 7.0

Q q r .
(2.6-30}

e(z)

4 = f. (ﬁ: k T : *)

q q T

(y) _ r > 2

F ~ (']-(l =~ J, ‘gF }

gl

Similar expressions may be written for W/q.
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To test the accuracy of the formulas in Appendix E, comparison is made to
the analytic solution for a circle given in Egs. (2.6-26, -27). Figure 4
presents results for the cases

A

(a) ip=N=k

(b) T.=WN=73F

(In Figure 4 as well as Figures 5, 6, 7 and 8, AC 6A is assumed to be unity.)
The numerical results are accurate even near the body surface. It is near the
surface, both inside and outside, where greatest difficully is encountered in
obtaining accurate solutions. There is a tendency for the internal solution to
drop below its correct constant value near the surface. Similar calculations
were carried out for elliptic cross sections. One such calculation is given

in Figure 5. The internal values stay constant except near the surface where

a slight variation is noticed. In Figure 5 the pressure doublet is Tocated

in the z =0 plane. In Figure 6 a similar piot is showr. Here, however,

the doublet lies in the y = 0 plane. No irregularities are observed.

The reascn for the difference in accuracy between Figures 5 and 6 is the fact
that near the surface the curvature is higher in Figure 5. Figure 7 is pre-
sented to furnish a chr *k on the unsteady case. The pressure doublet is
located on the axis o' 4 circle. In this case the integrals of Eqs. (2.6-24,
-25) are easily performed since r is not a function of the surface coordi-
nate s and can be taken out of the integral. The results are:

aC_3A

F_

E-23™ e
AC_6A

% = —5— p(R)aT

where
T=N1i- + N_ij
[
y Fy z FZ

In Figure 7, T and ACpéA are assumed to be unity. The comparison of the
analytic and calculated results is essentially perfect. HNotice thai for

the steady case, the pressure doublet of strengtn ACDGA producas a 1ift on
the body of strength ACpéA/Z. For other cross-sectional shapes, this
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factor changes. For an ellipse in steady flow with a z-oriented pressure
doublet Vocated inside the cross section. the variation of the force with
b/a s

F_ a
a = AbpdA <:.qu5-)

As the cross section becomes flat (b -~ 0), the bocy becomes more effective
until b = 0 at which point the body becomes like a 1ifting surface and the
force is equal to the pressure doublet strength, ACPGA. sigure 8 presents
a comparison of this formula with calculated numerical results. The agree-
ment is very good even for very small values of b/a ur a/b.

2.6.3 Fffects of Symmetry, Ground Effect and Images

The method outlined so far considers only a single point pressure doublet.

In actuality for every pressure doublet located on a Tifting surface, there
may be: 1) one for symmetry, 2) one for ground effect, 3) one for the inter-
action of symmetry and ground effect, 4) images in bodies associated with the
1ifting surface, and 5) images due to cymmetry and ground effect. The z-force
on body, b, due io pressure doublet located at ¢,n,; oriented normal to

a surface of dihedra® vy is:

FZ(b} = CO0S Y-F-§Z)(E>37n§) =~ sin Y-[-:-iy)(f,n,?;)

NAB .
oS CPIEE) (0,00, (0)) 4 SR, L (0), 0y
b=1
cos Y?(ZZ)(;,-n,:) + sin 'YF(Z"V)(E"'T;";) 1

t6( NAB o N )
N O L ﬁﬁ“?ﬁy)(a,-éb),g;“))J‘
b=1

Fla)(

S, (Fany-z) + sin vl?(zy)(a,n,-c)

[cos Y

NAB
+ E [?ﬁlgb)‘F_gZ)(g!nI"CI) + ’;llf,b)?gy)(g’nIa'CI)] J
b=1
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cos y?ﬁz)(g,-n,-c) — sin \?iy)(ﬂ,-n.-c)
+ 8¢
NAB
N “ (2.6-31)
+ >_4 [ugb)ng)(E,,-nI,'-(,I) + u)(,b)Fgw(u,"nI,-CI)]
b=1
where
(7},
() k) /4
Flz) o2 (2.6-32)

and a similar result holds for Fs’), FEZ), etc. The term NAB indicates the
bodies associated with the pressure doublet, i.e., those Pod*es that have
an image of the pressure doublet within them. The terms XZ and ﬁ

arise from the fact chai the iwmage peint pressure doubtat has a modified
strength a. shown in Appendix C, Eq. (C-5). If this equation is rewritten
in torms of real variables ~ad the circle codius a  ir replaced with Lhe

cadius of curvature a, . o,

I LA 20 b i B P S TR e
L2 -\
, ) ; ’ “y S .Yal - ‘Za) 1
(2.6-33)
where
? . -\ 2 -
IR LE N (R B

and where f', zd tre the coordinates of the Tocal center of curvature (for
a circle tnec2 oo the courdinates of the budy axis).

An expresst o <1\.}?r ty Eq. (2.6-31) may be written for the force in ihe
/

y-direction, 1.¢., . The iy chanyzs to be made are that Fiz) is

replared by FS‘) WIN F;J) is replaced hy r§Y). For the moment calcula-

troa, ~inged ) renlsie a'y b witn Ms. bg. (2.6-31) may be made to hold for

PEINT pressure oS e yinating o Lady axes by: 1) omitting all images,
Seiutng Voot coordented dounlets and . = -90°  for y-oriented

“:(“f)v
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So far, two basically different methods have been describad; one for
bodies of circular cross section and one for all other bodies. The first of

these metheds produces a distribution of forces on aii eiements ot the body
due to a single doublet. If we characterize all doublet strengths as ACpSA,
then the total force at an element is:
b) _ (b) (
2 = Dpr®) ac om (2.6-34)

where r represents the receiving element and s respresents the sending
doublet. A similar expression exists for EY%b). In matrix notation
r

{Fz§b)} = rz{b) (€, 6A) (2.6-352)
{FY§b)} - ry(P); (4C o) (2.6-35b)

The superscript b stands for body. There is a column matric FZ(b) and

1
FY%b) for each body.

For the second method, each doublet produces a point force and moment or
the body. As illustrated in Sketch 2.6-4, the longitudinal lucation of the

4

UNIFORM DISTRIBUTION
OF FORCE —\

HHHHLE'/

SLENDER BODY N
ELEMENTS

LIFTING

SURFACKE POIN ! FRESSURE

POXN DOULLTT T
Sketch 2.45-4
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center of force is at the location of the point pressure doublet. Again

the slender body element system is used to keep track of the loads on the
bodies. [f the longitudinal location of a point pressure doublet iies between
the Teading and trailing edges of a slender body element, the force and

moment are added to the load on that element. To smooth out this bookkeeping
procedure, it is assumed that the force is uniformly distributed over a short
segment, on the axis of the receiving body, whose length is equal to the length
of the element upon which the point pressure doublet Ties. Thus, the force

and moment due to one particular pressure doublet may be spread out over
several slender body elements. Sketch 2.6-4 gives a graphical example. The
Toad and moment due to the pressure doublet is distributed cver slender body
elements 3, 4 and 5. The center of load on these three elements lies at a,

b, and ¢, respectively. The fact that the load is off center contributes i
to the moment on the siender body elements.

2.6.4 Redistribution of Body Loads for Alternate !l

The previous sections have described the two methods of determining the l
force and moment distributions for bodies. For alternate II (general body
cross section) the contribution of each point pressure doublet emanating from
each singularity ard image, etc., is allocated to the proper slender bodv
element. The final result for a body, then, is a distribution of forces ;
among its slender body elements. The distribution thus obtained approaches
the exact distribution as the body radius becomes small. For thick bodies,
however, the resulting distribution is somewhat distorted even though the
total force and moment are correct. The oniy way to avoid this distortion
is to consider that each pint pressure doublet contributes to all slender
body etements as the result of its longitudinal distribution. To do this,
however, Eq. (2.6-13) would have %0 be integrated first around the contour.
Such an integration has been done for circular cross sections but has not been
done for eiliptic cross sections. Until such time as this integration can be
performed, alternate II will be used for such cases. There is a way to allevi-
ate some of the distortion of alternate II and that is by redistribution.

After the effects of all point pressure doublets have been allocalea among
the <1+ - body elements, assume that these forces have arisen solely from

an axi . .nt pressure doublet distribution within that pody. Only a
relatively small number of point pressure doublets are now ccnsidered. It is
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assumed that Eq. (2.6-20) gives a good approximation to the shape of the

Tongitudinal distribution of the force along the body, even though it only }
holds for circular cross sections. The body radius used is (ao + bo)/z, i
i.e., the average of semi-major and semi-minor axes. The redistribution thus

outTined will not, then, affect the total 1ift of the distribution. This

redistribution is then applied to each of the slender body elements. Even

thouyh the results obtaired using this method show good agreement with

experimental data, it is not proposed here as the final answer to the distri-

bution problem. Further work is required to integrate Eq. (2.6-13) around

arbitrary cross sections.

2.7 Generalized Forces and Aerodynamic Parameters

2.7.1 Generalized Forces

The pressures, forces and moments cbtained on 1ifting surfaces and bodies
along with their appropriate displacements are outlined as follows:

1. aC_, h, (normal to 1ifting surfaces)

p’
2. a(Fz/q /3%, h2 (z-direction on bodies)

Y
4, a(Mz/q

) .

3. a(Fy/q)/ax, h (y-direction on bodies) j
)/ox, dh_/dx (z-direction on bodies)

5. a(My/q)/ax, dhy/dx (y-direction on bodies)

The virtual work, 6wj, done by these pressure forces and moments during '
a virtual displacement is:

oW,
—1=fo aC_ sh ds
q p.
R.S. J

a(F /q 3(F /q)
[ +gf Gh dg+f ——-Y-—-J—ah dg
E ! B.

5(M /q) dh s(M_/q).  (dh, 1
+f gg (d€>d5 +f—-l——~la‘g a(€-> dgs (2.7-1)
B. B.
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where q is the dynamic pressure. The integration 1imit R.S. indicates that

only the 1lifting surfaces on the right-hand-side of the aircraft are considered.

1 if 1ifting surface 1ies in plane of symmetry (e.g., vertical fin)

2 otherwise

The integration Timit B. indicates all bodies lying on the right-hand side
of the aircraft.

f1 ¢ body 1ies on plane of symmetry (e.g., a fuselage)

g:

2 otherwise (e.g., a nacelle)

The integral over the 1ifting surface L.S. represents a series of integrals
over each of the lifting surfaces which go to muke up the total configuration.
The value of G for each of these surfaces may be different. A similar
argument is valid for the integral over the bodies B., thus the value of

g may vary from body to body.

The values of 3(F/q)/ax and 3{(M/q)/ax are the original values obtained
before redistribution.

‘iwo definitions for the generalized force will be introduced, i.e., Qij
and ﬁ}j.

sW.
) =g 3 5 7
3 CAZQH 8q, (2.7-2)
W,
- 2357 .60 2.7-3
L= -2 > T;550; (2.7-3)
Here a} is the i-th generalized coordinate, ¢ the reference chord length,

A the total refervnce area and s the reference semispan. With the intro-
duction of generalized coordinates, the displacements may be written:
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h = é;q1f
hz N Cjiqifzi
h, = ziqifyi (2.7-4)

Introducing the virtual displacements of Eq. (2.7-4) (and its derivative)
into Eq. (2.7-1), and equating (2.7-1) to (2.7-2, -3) gives the results for

the generalized forces Qij and ﬁ}j.

_ 1 /J[
QTJ = 'A' G. ACpf1ds
L.s. 9

o 208 [

3(M,/q). dfz, 3(M,/q) . dfy.
o f z_J 7 (2.7-
* f 9L dt g + Y3 dc deg (2.7-5)
B. B. 'l
= { Ac
es = S 2.7-
N5 = Qi k—253) (2.7-6)

! 2.7.2 Aerodynamic Parameters

Tt is desirable and sometimes necessary to generate conventional aern-

E dynamic data. Such data, in addition to being useful in itseif, provide an
excelient check for the computer program and/or specific cases <0 be run by
it.

The Tocal ncrmal force coefficient and pitching moment coefficient about
tie Tocal 1/4-chord pcint are:

—
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=1 (0 7.
Ch = T Jf Acpdg (2.7-7)
chord

”'i?'./ch (¢ —-51/4)d5 (nose up) (2.7-8)

where ¢ 1is the local chord length. The Tocal center of pressure is:

-Re(cm)
c.p.Re = —R—e-(?y*l- 0.25
n (2.7-9)
-Im{c_)
c.p.Im = -_IFI]T_)_+ C.25
The total vertical and side-force coefficients on 1ifting surfaces are
(1 +8) J{
CZ = A ccndn (2.7-10)
R.S.
_(1=3) (6 -/' . )
c, = 5 (ﬁ) cc, 4 (2.7-11)
R.S.
The total vertical and side-force coefficients on bodies are
F_/q)
L _(1+9) fa(z___
Lzb 7 9 e (2.7-12)
BO
a3(F_/q)
¢, * J/.-——X———-dg (2.7-13)
b

The niiching and yawing moment coefficients on lifting surfaces taken about
the point XM are:
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{148 S 2 1
C -i———lf \c cm—ccn(£:]/4—XM) dn

(nose up)

1 —36) (G 2 .
C.. = (=9 ( ) ./. {c Co "'ccn(€1/4 —-XM){dc (nose right)

R.S.

3

N - X (23
b Ac B.

The total rolling moment for the aircraft is:

L (- 5) f g f S(Fz/ai)
CQ Ty v ccnndn + 7 CCnCdC + J/. "‘“—ag—
R.S. R.S. B.
a(F /3g)
+g f_.-alg—— ;adg§ (right wing down)
B.
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3.0 CALCULATED RESULTS

3.1 Parameter Variation Studijes

Before discussing the correlations of the present method with other
theories and experimental data, a series of studies will be made to determine
the effect of varying some of the important parameters of the problem. These
studies not only show how results are changed by changing a parameter but also
indicate the range of validity of the present method.

3.1.1 The Effect of Body Radius

Figure 9 presents a comparison of spanwise 1ift distribution orn a wing
(exposed portion only) that is attached to a circular fuselage whose radius
has been varied. The exposed wing is the same in all cases — it is attached
to the fuselage center — and is oscillating in pitch at a reduced frequency
of unity. The fuselage is at zero incidence and thus the upwash generated
by the fuselage is not present. Thus, this figure gives only the interference
effect of the fuselage. The effects of zero radius and infinite radius are the
same. Consider the 1ift coefficient at the wing root. When the diameter-to-
chord ratio is increased from zero to 0.125, then the Tift drops. A further
increase to 0.50 produces an increase in 1ift coefficient over the zero value
case. Further increases eventually bring the fuselage effect back to the
zero diameter case.

The effect of the fuselage when it too is given an angle of attack is
m'ch different. The effect is monotonic in fuselage diameter-to-chord ratio
and in the limit of infinite radius the 1ift coefficient is twice the zero

3.1.2 The Effect of Cross-Sectional Shape

The effect of fuselage ellipticity is illustrated in Figure 10. Specifically,
the distribution of 1ift coefficient for a wing-fuselage combination is pre-
sented for the aspect ratic b/a ranging from zero to infinity. The semi-width

a is constant and equal to 0.2s for all calculations. The case b/a = 0.0
is spc.ial and is obtained by replacing the body hy a flat-1ifting surface.

The case b/a = o 1is also special and is oblained by placing a plane of
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synmetry at the wing —oot (this case is given the designation of “wing alone").
A1l of the intermediate cases which are not special should lie within the
envelope formed by the two special cases described above. The curve corres-
ponding to the lowest value of b/a (=0.25) does not fall within the envelope.
The curve corresponding to the highest value of b/a (=2.G) still lies inside
the envelope but comes very close te passing outside of it. The upper bound
of validity, for b/a, of the present method, is then somewhere near or
below 2.0. The lower bound of validity for b/a is somewhere beiwecen 0.5

and 0.25. If configurations are to be analyzed that fall outside of this
range, then it is recommended that either the body be replaced by a Tifting
surface (b/a < 0.5) or a plane wall for (b/a > 2.0). An additional alter-

nate is to place 1ifting surface singularities on the body surface in addition
to, or in nlace of, the image system.

The use of lifting surface singularities on the body surface, as described
in Part I of this report, does not always increase the accuracy of the solution.
Figure 11 presents a comparison of the present method with the method of Part
for the wing-fuselage combination (b/a = 2.0) of Figure 10. Two separate
idealizations are used to describe the fuselage. The first idealization uses
three panels or strips to describe a quarter of the fuselage. The resulting
calculation falls below that of the present method. Wher the nhumber of fuselage
elements is doubled, the agreement is improved. The actual spanwise distribu-
tion of 1ift coefficient probably Ties between the present method and the six
strip idealization since Figure 10 indicates that the present method may be

high by a slight amount and Figure 11 indicates that the method of Part I may
be Tow.

A third calculation wkich has not yet been discussed is the use of 1ifting
surface panels and images in the present method. This calculation has not been
done for the steady case of Figure 11; however, Figure 14 shows such a calcula-
tion for the unsteady case, and is discussed below.

3.1.3 The Effects of Frequency

A comparison of the 1ift coefficient, as calculated by the present method
and the method of Part 1 for a wing-fuselage combination, is given ir Figure 12.
The movion of the wing may be described as a modified pitch where the normalwash
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corresponds to that of steady pitch. The effects of frequency enter through
the influence matrix [DT]. The fuselage has a circular cross section and is
not in motion. Agreement between the two methods is good for the two common
frequencies (k. = 0.0 and 1.0). Intermediate frequencies, k. = 0.1 and 0.5
are also plotted to show the variation with frecuency.

3.1.4 A High-Wing Configuration

A comparison between the results of the present method and the method
of Part I is shown in Figure 13. The wing-fuselage combination associated
with Figures 10 through 12 is used except for a small extension of the
exposed area of the wing at the root section. The total semispan is nheld
constant and in order tc join the wing to the fuselage; a small extension
to the wing surface is required at the wing root. The comparison between the
two methods shows the same trends observed in Figure 11, i.e., that the
results of the method of Part I 1ie below those of the present method.

Also shown in Figure 12 are results obtained for the midwing case. These
resuits lie below those fur the high-wing case.

Figure 14 presents a similar comparison except that the frequency is 1.0
instead of 0.0 as in Figure 13. The wing is pitching about its root leading
edge. The body is at rest. In this casa the real parts are in good agreement.
The imaginary parts, however, differ near the wing-fuselage juncture. The
imaginary 1ift coefficients for the present method 1ie below that calculated
by the method of Part I. This seems to be contrary to what is expected since
the results of the present method have been greater than the results of the
method of Pari I in Figures i1 and 13. A third calculation is presented to
help decide which solution is most accurate. Specifically, the third solution
consists of placing 1ifting surface elements on the body surface in addition
to the images of the present method. The results agree almost perfectly with
the present method near the wing-fuselage intersection. However, over the
outboard half of the wing this calculation agrees best with the method of
Part I. However, it may be observed that the difference among any of the
solutions is fairly small over the outboard half of the span. This figure
indicates that the image method is most accurate for this case.
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3.1.5 End Plating Effects

In all of the catculations presented thus far, the configurations have
been symmetrical about the y = 0 plane. If the left-hand wing half is
omitted from the calculation, then the effect of body end-plating can be
ascertainea. Such a calculation is presented in Figure 15, Again the same
midwing configuration, as fovad in Figures 10 through 12, is used except for
the missing left wing half. It is expected that the end-plating effects, as
obtained by the present method, are slightly smaller than they should be. Two
reasons are offered for this: 1) the image within the ellipse is cuat off once
it crosses the y = 0 plane, and 2) the interference singularities cannot
account for a flow that is antisymmetric across the body. If the body were
circular, then the image would fully account for the end-pilating effect and
the onset flow to the body would be symmetric across the body thus allowing
the axidal singularities to properly account for interference. However, for
the elliptical case, some of the end-plating effect may be lost due to the
approximated and abbreviated image system. The resulting residual flow should
make up for this loss in end-plating. However, flows that are antisymmetric
to the hody surface cannot be accounted for because of the truncation of the
multipole series. 1f one furtner term were added to this series, then this
effect could be accounted for even for highly elliptic cases (b/a - 1.0).

A comparison of 1ifi coefficient distribution as calculated by the present
method and the method of Part I, is presentec in Figure 15. The wing is given
an angle-of-attack ot 1.0 radians. The body incidence is zero. The two
methods appear to be in very close agreement. Figure 11 presents the identical
case except for symmetry. In Figure 1% the caiculated results ot the present
method lie everywhere above those of the method of Part I. However, ir
Figure 15 the 1ift distribution as calculated by the present method falls
below that of the method of Part I over most of the span. This shows that,
relative to the method of Part I, the present method has lost some of its
end-plating effect.

The end-plating effect of a body whose ellipticity b/a falls below
unity (b/a < 1.0) is a different matter. In this case the important component
of the residual flow to the Yody is symmetric. As the body becomes flattzr, the
residual flow may lose some accuracy, as already illustrated in Figure 10, but
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the ability to furnish an end-plating effect remains intact even for very

small b/a ratios. Of course, if b/a becomes small enough, the body can
be replaced by a 1ifting suvface.

3.1.6 The Effect of Pickup Point Location

The averaging process (applied to tha residual onset flow) outlined in
Section 2.5.6 involves finding the flow normal to the body surface at various
points around the cross section. These points are input quantities to the
computer program of the Present Method. Figure 16 illustrates the effect of
increasing the nuaber of these points. In the lower curve, pz/u* represents
the z-component of the interference doublet strength normaliced by the doublet
strength that would exist in the fuselage if it were pitched up at the same
angle-of-attack as the wing. In this case the wing alone is pitched wp to
one degree and the value of u* s 0.001095. The upper curve gives the value
of My/,*. Of course, for this symmetric case, this quantity should be zero.
If the values of +-- were chosen symmetrically (say ¢ = 45°, 135, 225, 315)
then the ficticious Jy/u* wolld not .ppear. As the values of a5 are
rotated eway from the symmetric position, the ficticious uy/u* appears. At
15° of rotation it is at its worst (upper curve given by circles). At this
worst possible point the number of points is doubled. The vesult is a two-
thirds reduction of the error. Thus, as the number of intearativs points
‘ncreases, the accuracy increasss. iiowever, a judicious choice ¢f the.e
points wiil allow fewer of them tc be considered for the same accuracy.

3.2 (Correlation of the Present Method with Other Methods and Experimental Data

3.2.1 Wing-Fuselage Combinations (Emphasis on Wing Loads)

A wing-fuselage comparisor presented in Reference 8 is represented in
Figure 17. In addition, calculations using the Presant Method are shown.
The span load for a wing (at 4.7° angle-of-attack) attached to a cirrular
fuselage (at 0.7° angle-of-attack) is given in this figure. The agreement
between the Present Method and che method of Reference & is excelleat as is
the correlation with the experimental data®?. Since this is a <teady case,
the agreenment between the two me*"ods shuuld be perfect; however, a change in
the numper of spanwise strips riear the tip has caused a slight disparity.
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A second wing-fuselage comparison presented originally in Reference 18
and in Part I of this report, is reproduced in Figure 18, Shown in this
figure are span loads for two modes of motion;

COX\ 4
Body Pitch, h, = E(Z‘-— -5) el®t
c

eiwt

c
- Rmax
Body Camber, h < T

rloj

IS
|

n]i <
O

Z

The first of these is pitching (of the badv only) about the point X which is
tle coordinate of the center of the boay. The second mode is a cambering of
tle body only. The nodal point is at Xer The maximum amplitude of oscillation
occurs at the body leading and trailing edges and is eyual to the maximum body
radius at its center. The body length is L,

The original version of Figure 18 contained a comparison of three differ-
ent methods. To this list the Present Method is added. Again the Present
Method agrees with the method of Reference 8. (Actually, for this figure,
the method of Reference 8 has been modified to account for the doutlet distribu-
tion on a body of varying radius.) The other methods referred to are those
of Woodward 1% and the method of Part I of this report. There are no voiume
effects for this probiem since axial sources will not affect the wing as it is
placed on the fuselage for this case. Actually, the nonlifting (source) effects
of volume are not large in most cases and .an usually be ignoved. Also, in
unsteady flow there are ro noniifting (source) volumc effects since the volume is

not changing with time. Currently, no volume effects are contained in the Present
Method.

The results presented in Figure 18 are for steady flow. The method
of Reference 8 and Woodward's method are restricted to steady flow; however,
the method of Part I is not. Figure 19 presents a comparison of the Present
Method with the method of Part I for the same configuration considered in
Figure 18 but oscillating at a frequency of 1.0. This figure is a duplication
of one found in Reference 18 and Part I of this report, with the results of
the Present Method added. The real part of the span 1oad due to body camber
was plotted with the wrong sign in the original figures but is corrected hare.
Also, in Reference 18 there appears an error in tne labeiing cf the ordinate.
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The agreement between the two results is good for the body pitch mode
but is only fair for the body camber mode. The results o€ the Present Method
Tock more realistic, especially for the imaginary part of the span loads due
to body camber. The probable reason for the disparity is the idealization of
the body for the method of Part I. If more panels were placed on the body,
an increase in accuracy would probably result (refer to Figure 11).

3.2.2 Wing-Fuselage Combination (Emphasis on Fuselage Loads)

The four ethods compared in Figure 18 are again compared in Fiqgure 20,
The original version of this figure appeared in Reference 13. To this fig-
ure the results of the Present Method have been added. The configuration
consists of a simple swept wing attached to a very large aiameter circular
fuselage. The wing is at 1.0 radian angle of attack while the fuselage is
held to zero incidence. A1l methods are in good agreement. However, the
Present Method is in better agreenent with ihe method of Reference 8 while
the Weodward method is in better agreement with the method of Part I. Again,
the method of Part I predicts a 1ift coefficient distribution that lies below
that of thes Present Method.

Special attention should be pzid to the fuselage span Toad. The usual ourput
of the Present Method is a Tongitudinal loading aiong the fuselage length (see
Figure 21). Also the total 1ift is known for each body. If this tetallift
is normalized by the roo*-chord length and the span over which it acts, then
an average span load is the result. This average is shown as a horizontal
dashed 1ine across the fuselage. The area under the horizontal dashed Tine
seems tc be lTow compared with the arsas preduced by the cther methods; however,

this is deceptive and requires an explanation.

For steady flow and circular fuselages, it can be shown that an excellent
approximation to the fuselage span Toad is made up of a constant load minus
an elliptic one. The constant has the value of the 1ift coefficient at the
root and this constant value extends from the fuselage center to the wing root
and no further. The 1ift loss due to the elliptic distribution extends from
the fuselage center to the edge of the fuselage. As in this case (Figure 20),
the fuselage edge extends out beyond the wing root position and thus there is
a region between the wing root and fuselage edge where there exists only the
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negati. ¢ elliptic distribution. Combining these two loadings gives the dashed
curve across the fuselage in Figtre 20. Notice that the two curves combine to
give a posi» e span load acrass that part of the fuselage that dJoes not
overlap the wing. Over the overlcpping part, the 1ift is negative. The &areas
under the two dashed curves (one constant) are equal. The agreement between
the method of Reference 8 and the Present Method is excellent over that part

of the fuselage not overiapping the wing. It is convertional to take the
negative 1ift distribution that exists in the overlapping region and add it to
the wing span load. If this is done, ali curves are in close agreemert. The
deceptive aspect of this plot is the fact that the span load in the overlanping
region of the fuselace and wing is atcributed to the fuselage alone. The

fact is, however, that the soan load on the fuselage in this region is actually
negative. This explains why the area under the dashed horizontal curve (which
applies only to the fuselage) is equal to that under the curved dashed Tine.

The spanwise distribution of fuselage 1:ad is given in Figure 20,
Figure 21 presents the longitudinal variation ov the same fuselage 1ift.
Four curves are shown: one due to the method of Part I and three due to the
Present Method. The loading on the Tuselage is due entirely to the wing
(1ift carryover) since the fuselage is at zero incidence. ©fs expected, the
Present Method Alternate II does not cempare very well since the body has a
large diameter compared to the wing dimensions. As noted in Figure 20, how-
ever, the total 1ift is in ercellent agreement with the other methods. The
moment (not shown) is also very good; however, the distribution of force is
skewed due to the assumptions made in alternate II. Some of this skewness
can be elimirated if the approximate redistribution technique, describad in
Section 2.6.1, is emploved. The curve marked Present Method Alternate 11
(redistributed) is in closer agreement with the method of Part I. Since the
body is circular, Alternate I may also be used. The curve marked Present
Method Alternate I shows excellent agreement with the results of Part I. The
resuits of the Present Method Alternate I Tie slightly above the results of
Part I but this i3 expected since the wing joading shows the same trerd.

Figures 22 through 32 present a correlation of the Present Method with
the experimental data of KornerS! and the theory of Labrujere?® et al. Theve
are a total of four configurations considered: 1) a swept wing alone (see
Figure 23), 2) a swept wing and a fuselage (D/c = 1.0) (see Figure 24),
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3) a swept wing and a fuselage (D/c = 0.68) (see Figure 26}, 4) and a straic t
wing-fuselage combination (D/c = 1.C) (see Figure 30). The swept wingsin at’
of the configurations are similar. Each has a constant chord and is swept 4% .
The span is the same for all configurations and the only changes to the

wings are those necessary lo extend the wing root to the fuselage surface.

In the case of the wing alone, the wing is extended to the y = 0 plane.
Figure 22 presents the idealization of configuration 2, i.e., swept wing with
D/c = 1.0. This idealization is typical of all the others. The solid Tines
represent 1ifting surface ur body interference element boundaries. The dashed
Tines represent slender body element boundaries.

The experimental data of Reference 51 are given for various angies of
attack. The value of Coy (per degree) may be cbtained from this data.
Figure 23 presents a comparison of the distribution of 1ift-cuvve-siope as
calculated for a wing a one using the Present Method and as obtained from
experimental data. Experimentally, there is an obvious Toss of 1ift due to
viscosity. totice that Czn is lower at o = 6° than at 3°. This is
a clear indic~tion of a nonlinear viscous effect in the data.

Figure 24 precents a similar comparison except that the configuration
consists of a wirg and fuselece. The fucelage is at zero incidence while the
wing is pitched up. Again cza across both the wing and fuselege shows
the characteristic loss cf 1i{t due to viscosity.

This loss of 1ift due to viscosity 1> accentuated when the fuselage is
given the same angle of attack as the wing. Figure 25 presents such a

comparison

Figures 26 and 27 show comparisons similar to those given in Figures 24
and 25. The configuration js almost identical except for the fact that the
fuselage is smalier (D/c = 0.68). The span lcad hehaves in an interesting
manner in Figure 27. The comparison seems tu be very good over the outboard
nalf semispan. The agreement then detericrates toward the wing-fuselage
jntersection. This could be due to the thickening of the boundary layer in
the region of the wing-fuselage intersection.

The tongitudinal loading, as calculated by the Present Method, is
compared to that det:rmined experimentally in Figures 28 and 29. The fuselage
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incidence is zo»o in Figure 28 and equal to that of the wing in Figure 7.

In the region near the wing Alternate T and the redistributed Alternate II
are in good agreement with the experimental data. A large disagrzement
between Alternate I and Alternate II appears at the leading and trailing
edgr: of the body in Figure 29. The basic reason for this is the fact that
the ' stal 1ift of a slender body element is Tumped at that element in the
method ¢ A¥i»vnate II where as it is cistrioutea cver tne vody fer Alteriate
I and Alvernate II (vedistributed).

Labrujere et ai. O compared their steady flow theory with Kérner's data
for an unswept-wing/L | .ombination. {igures 30 and 31 pretent comparisons
of the spanwise 1ift coe ricient distribution for a wing at 6° angle of attack.
The fuselage is at zero degrees incidance in Iigure 30 and at 5° in Figure 31.
For the case of zero fuselage inciderce the r~esent Method is in closer
agreement with the method of Labrujere : . al. than with the experimental dcta.
However, for the case where the wing anc -uselage are ¢t the same incidence,
the distribution claculatec by the Preser . Method lies .Imost cquidistant
between the date and the method of Labrujer: et al. The discontinuity in
the span load apparent in the theory of Laurtjare et al, 's caused by the fact
that the fuselage does not close, due to &.¢ v'nd tunnel s nqg, and thus there
exists a resujtant slender body 11ft.

Figure 32 presents a comparison of experimen- al and calc.lated Tongitudinal
Teading for the zero incidence fuselage case. The .adistribute Tloading (Alter-
nate Ii) is in very good agreement with the experimen.a, data as is Alternate I,
The original distribution, aiso now shown, nowever, sh s iarge variations. The
straight wing case exaggerates these variations because .e contriuution of
every wing lifting surface element occurs on the body surla e in that sho~t
space lying between the root chord leading and traiiing edges. There is a
negative dr~. .- the longitudinal loading which is due to the fuseiage ir .ep-
ference elenri, -, These interference elements react to the upwash generated
at the body ¢... to the bound vortices on the wing.

The Tast two correlations of this section are found in Figures 33 and 34.
The experimental and calculated longitudinal loading on a transport aircraft
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are compared for two values of Mach number. In both cases the redistributed
loadings are vsed for alternate II. The agreement is good especially

for the M = 0,6 case. At ihe higher Mach number it may be that shock waves
have interferred with the flow at the point near the wing root trailing edge,
where the exp:rimental data takes a sharp jump.

3.3 T-Tail Fuselage Combination

Zwaan>?»53 has developed a kernel function technique for T-tails. Of
particular interest are the span load plots of Reference 52 for a T-tail
tested with ooth « ground plane and a fuselage. Figure 35 presents a compari-
son of sranwice loading as calcuiated by the Present Method, by Zwaan and as
determined experimentaliy for a T-tail in yaw. Results for the Present Method
are given both for the T-tail with ground plane and fuselage. The experimental

data are given only for the T-tail with ground plane. Difficulty was experienced

ir interpreting Zwaan's results. 1In Reference 52 a symbol | k | was

gisen as the absolute vaiue of the loading. This symbol was not defired in
this r-ference. Integration of experimental pressure data indicates that |kl
is (ccz)/(Eﬁy), ahere ?y is based on the total area of the vertical fin.
Using this definition, the correlation of the data with the Present Method

for *the vertical stabilizer is good. (Refer. to the calculation of the Present
Method marked "Groun¢ Effect.") Both the absolute magnitude and phase angle
compare weli. If the same definition of |k| holds for the norizontal stabil-
izer, ther there is an inconsistency in Zwaan's calculation as oresented in
Refevence 52, Tigure 8. The jump in k| on the vertical fin at the intersec-
tion of the horizontal stabilizer should be twice the value of k at this
intersection on the horizontal stabilizer. If the area of the horizontal
stabilizer is used in the definition of Cy then Zwaan's calculated results
become consistent. (The value of |k| on the lLorizontal at the root then
becomes approximately 0.415 while hali the jup on the vertical is about
C.425.) The new definition for both Zvaan's calc:lation and the experimental
data are used to give the results of Figure 35 for the stabilizer. The agree-
ment is good.

The effects of using a ground plane iit place of the fuselage are shown in
Figure 35. The two calculations,done using the Present Method, show that the
g-ound plane increases the loading substantially, both on the vertical fin and
horizontal stabilizer.
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Experimental data have also been obtained for the T-tail and fuselage in
steady flow (yaw). The shape of the fuselage was taken from a small sketch
given in Reference 52, Figure 12. This sketch is reproduced in Figure 35.
Figure 36 shows a similar sketch with the addition of the idealized fuselage

that is used with the Present Method. The results correlate well except
near the fuselage.

3.4 MWing and Tip Mounted Nacelle Combination

The only zxperimental data that have been found for a wing/body configu-
ration in osciliatory motion is that reported by Cazemier and BerghS5%.55,56,
A wooden model of a low-aspect-ratio wing, fitted with a Targe wing-tip
nacelle was tested over a wide range of frequencies. The wind tunnel Reynolds
number was iow, Re = 4.7 x 106/meter, and the model was about one meter in
semispan. The test was set up to read the 1ifting pressure
[Cp (Tower) —-Cp (upper)] directly. The pressures were transmitted from
the model through calibrated tubes. The tubes were calibrated to eliminate
the phase shift caused by the trarsmission time required to communicate the
pressure from the model to the pick-up point.

An extensive correlation of the Present Method with this experimental

data is presented -- since it is the oniy data of its kind available. Figures
38 through 57 are devoted to this correlation,

Figure 37 illustrates the idealization of the two configurations con-
sidered, a wing alone and a wing/nacelie. The wings in the two configurations

are slightly different. The first wing strip, in the wing/nacelle configuration,

is missing on the wing-aione configuration. The last strip on the aileron is
filled in for the wing alone configuration. The interference 2lements are
shown on the nacelle; however, the siender body elements are not. On the wing
the inboard control surface is called the flap and the gutboard control surface
is called the aileron. The pitch and roll axes are presented in Fi.sure 37,

as are the stations at which experimental pressures were taken.

A ccmparison ¢f Yifting pressure for the wing alone in steady pitch is
given in Fiqure 38, The experimente] data 1ies above the calculated results
for all stations presented. This is very extraordinary since experimental
data usually lies below the caiculated results. Normally the wing will be
less effective &s a lifting surface due to the action of viscosity. The
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reason for this peculiar behavior is not kaown. A similar comparison for 2
deflected flap is shown in F.gure 39. The correlation is good and shows the
correct relationship between calculated results and experimental data. A
further comparison for a deflected aileron is given in Figure 40. The correia-
tion is not quite as good as for the flap.

In all of the comparisons the pressures are normalized as follows:

ACp = AP/qB
s = 1.097m, plunge
o » pitch
B =/% , flap
84 , aileron
¢ s roli

where o, 6f, Ga’ and ¢ are the angle-of-attack, fiap and iz, aiieron angle
and roll angle. The reduced frequency is based on ¢ = 1.05r. vcr both the
wing alone and wing/nacelle cases. The reduned frequenc as detined in
References 54, 55 and 56 is wE]Um, which is twice s jarge ¢< that defined
in this report, wc/2U_. Thus, reduced frequencies of 0.5 and 1.0 Tistad in
the figures of this report represent frequencies of 1.0 and 2.0 ir the nota-
tion of References 54, 55 and 56.

A comparison of TiTting pressures for the wing a'one oscilla'ing at a
reduced frequency of G.5 is given in Figure 41. The r:al part of the Tifting
pressure for pitching motion is very similar to the steady case. The correla-
tion at this reduced frequency leaves something to be desired, especially for
the plunging case. Pressure plots for rolling and aileron motion are given
in Figure 42. The case of rolling is very similar to that of plunging, as it
should be. The aileron correlation is good. Figure 43 is tae same as 41
except the frequency is 1.0 instead of 0.5. Surprisingly, the agreement
between data and calculated results is better at this reduced frequency (1.0)
than it is at 0.5. The same comment can be niade of the plunge case shown in
the same figure. An extra station is included for the pitching case to
compare Laschka's method37 with the Present Method and the experimental data.
Laschka's theory (as read from a very small figure) is given for strip number
5. Essentially, the results by Laschka are the same as the Present Method.
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A comparison of pressures for rolling and flanping is prasented in Figure 44.
Again the correlation is somewhat better for the reduced frequency of 1.0
than it is f.r 0.5,

The above comparisons refer to the wing-alone calculation. These were
presented so thal the nacelle effects present in the next set of comparisons
could be pronerly assessed.

The 1ifting pressure distribution for the wing/nacelle at station 2 is
presented in Figure 45; both calculated results and experimenial data are
shown. The comparison is as good as the wing-alone case. A comparison of
1ifting pressure for pitch, plunge and roll at a reduced frequency of 0.5 is
given in Figure 46. Generally, the agreement between the Present Method and
experimental data is better than for the wing-alone case. As much cannot be
said of the agreement at the reduced frequency of 1.0. Figure 47 presents

this comparison. The agreement beiween calculated results and experimental
cata for pitch is good, while that for plunge and roll is not as good. In all
cf the results where the agreement is not as good as it might be, there seens
to be a phase shift of the results.

The prassure plots just aiscussed are presented to compare experimental
and calculated chordwise loadings. In many instances, a comparison of these
two for the span load or 1ift coefficient distribution is more enlightening.
For this reason, the experimental 1ifting pressure data availatle in References
55 and 56 has been integrated to give 1ift coefficient. The method of integra-
tien was to connect the experimental data by straight 1ines and integrate by

Vmn o rdbme
planimeter.

The fir.. of the Tift coefficient distributior comparisons is given in
Figure 48 for the steady case. The upper curve gives a comparison of 1lift
coefficient, as calculated by the Present Method, and as determined experi-
mente1ly for the wing alone case. The agreement is generally cood except for
the <trange property that the experimental data iies above the calculated
results. The lower curve presents a similar comparison for the wing/nacelle
case. There are two curves marked "Present Method." The lower curve is the
result of using the ¢.ual method where axial elements in conjunction with
images are used to model the flow. The upper curve results were obtained
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after 1ifting surface elements were placed on the body surface (in conjunction
with images). This upper curve is in better agreement with the data. The
recults of the upper curve are obtained at the cost of doubling the number

of unknowns in the problem. Thus, accuracy and efficiency must be balanced

by the user of the Present Method. Also shown on the wing/nacelle (Tower) plot
is the wing-alone case. There is a very large difference between the wing-
alone and wing/nacelle Tift coefficient distributions. The Present Method

goes a long way toward predicting the fuli effect of the nacelle even when
1ifting surface elements are not placed on the body surface.

At a reduced frequency of 0.5, the comparison between calculated results
and experimental data shows good agreement for the real part and poor agreement
for the imaginary part. Figure 49 presents such a comparison for plunging
and pitching. A comparison for aileron motion is given in Figure 56. This
figure shows that the aileron is not as effective a. predicted, espeicaiiy for
the imaginary part. The comparison of 1ift coefficient distribution for a
reduced frequency of 1.0 is given in Figure 51 for roll and pitch. The agree-
ment between calculated and experimental data is worse for the real part ana
better for the imaginary part when compzred with the results at the reduced
frequency of 0.5. Thez results presented in Figure 52 are of interest when
compared with those of Figure 50. In Figure 50 the experimental data Tay
beTow the calculated results for both real and imaginary parts. In Figure 51
the real pavt of the data 11eS above the calculated results while the
imaginary part lies below.

The next set of comparisons is for the 1ift coefficient distribution fur
the wing/naceile combination. One peculiarity of these plots is that there
are discontiruities in the distributions at the ront and tip of the wing.
These ave caused py a dJiscontinuous chord Tength at these iocations. Refer-
ence back to Figure 37 will show immediately these planform peculiarities.

The agreement between calculated and experirental spanwise distribution
of 1ift coefficient for the wing/nacelle combination is about the same as that
for the wing alone. Figure 53 presents these results for plunge and pitch
motions. Except for some scatter (rtation 2) the real parts are in close agree-
ment while the experimental data lies below the calculated results for the
imaginary part. The comparison at a reduced frequency of 1.0 is shown in
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3 Figure 54 for rolling and pitching. Again the comparison is about the same as
é the wing-alone case.

In all of the comparisnns presented for the wing-alene and wing/naczlle
there seems ta be a phase shift between the calculated results and the
experimental data. The phase shift seems to increase as the frequency
increases. The reason for this is not known. It is felt that the agreement
should be better, espeically for the wing-alone calculation, since similar
comparisons have been made ir References 10, 12 and 13 and show good agreement.

Further analysis of the 1ift coefficient data has been done in an
attempt to isolate the nacelle effect on the wing. Specifically, the wing-
alone distributions have been subtracted from the wing/naceile distributions
both for the calculated results and the experimental data. Some irregularities
are introduced when this is done since the wing without the nacelle is not
exactly the same as that with the naceile. Some of the effects, then, will be
due to this difference and not due to the nacelle.

The steady flow results for pitch are given in Figure 55. The experimental
data lies generally between the two approaches of the Present Method (one with
axial body elements, one with surface elements, both with images). The same
type of comparison is given in Figure 56 for a reduced frequency of 0.5. The
cata shows scatter fur the real part both for plunge and pitch although the
agreement is excellent neur the wing/nacelle intersection. The agreement for
the imaginary parts for plunge and pitch is not very good. When the reduced
frequency i increased to 1.0, the correlatiun for the real part improves,
generally, as saown in Figure 57. The imaginary part, however, is not as good,
especially for pitch. Also shewn in Figure 57 are results obtained from
Part I of this report (also, Reference 18) for the wing in pitch. The effect
of the nacelle in these resultc is very large. This discrepancy may be due to
the fact that a slightly different wing planform was used in Part I. Specifically,
the gaps at the wing root and tip are not present in the calculation nresented
] in Part I. Also, the nacelle cross section was represented by a rectangle.

This rectangle was lerge enough to envelope the nacelle. Thus, the end~plating
effect was larger.
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3.5 Wing-Nacelle-Fuselage Combination

A good examp’e of a complex wing-nacelle-fuselage combination is found
in the B-58 bomber. Data were made available from General Dynamics,Fort Worth
Division, through Dr. R. G. Bradley. The data are for configurations
with and without nacelles. A detailed descrintion of the configuration
is found in Reference 58. The idealization of this configuration for calcuia-
tions by the Present Method is given in Figure 58. The fuselage was cambered
as well as the wing. The wing camber was restricted to a conical region at
the leading edge. This region is easily identified in Figure 58 as the one
containing the conical rays emanating from a point on the x-axis. The camber
s approximated by three constant slope conical wedges. A more conventional
idealization is developed for that region of the wing without camber and for
the pylon. The outboard pylon is omitted since it was thought to be too small
to effect the calculations. There is a gap between the wing and outboard
nacelle. The outboard nacelle is at a negative incidence and therefore the
leading edge is considerably lower than the trailing edge where it attaches
to the wing. The average gap at the center of the nacelle is the one shown
in the figure. The small arrows on the fuselage and nacelie axes indicate
the directions of force (and doublet orientation) that are allowed for the
calculation. The interference elements are shown on the fu.~lage and nacelles.
Shown on the fuselage alcne are the slender body elements indicated by tick
marks on the actual fuselage shape.

A comparison of the Present Method with experimental data for the configu-
ration with nacelles is presented in Figure 59. Specifically, tne span load for
the wing at 4 deqrees angie-of-attack (in addition to the conical camber) is
presented, The experimental data lie above the calculated values. Similar
results were obtained by Bradley and Miller?! for the B-58 bomber. The cause
of this is found in the vury high sweep of the leading edge. As is well known,
wings with large leading edge sweep angles develop a leading edge vortex which
causes an increase in the 1ift. Figure 60 presents a similar comparison for
the case c¢f the wing without the nacelles. Again the leading edge vortex
increases the 1ift over the calculated value.

To determine the effect of the nacelles on the wing span-1nading, the
calculated results of Figures 59 and 60 are replotted on a single curve
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in Figure 61. A calculation was made in which the nacelle diameters were
doubled. The results of this calculation are also shown in Figure 61. The
obvious conclusion that is drawn from this figure is that as the nacelle
diameter is increased, the 1ift on the wing is increased. The nacalles -s
well as the pyion tend to prevent spanwise flow and in this way increase
the 1ift.

The span load cn the B-58 wing in oscillatory mction is given in Figure 62.
Specifically, the aircraft was made to pitch about the wing “apex" (determined
by an extension of the wing leading edge to the center of the fuselage) at a
reduced frequency of 0.5 (c = 19.15 in.). The normalizing chord length used
for the span load is Cp which is the root-chord length (34.7 in.). These
dimensions are for the wind tunrel model. One further calculation is pre-
sented i Figure 62. The aircraft is made to operate in oround effect, at a
height of 10 in. above the ground. The height/root cherd ratio is 0.288. The
effect of the ground is appreciable especially for the real part of the span
Toading inboard of the pylon. There the Toad is nearly doubled. Also, nearly
doubled for the ground effect case is the computing time. The reason for
this is th=t the kernel is evaluated twice as many times in the ground effect
case. Each wending point on the aircraft hes a counterpart in its ground
effect image.

The span load calculations presented in Figure 62 are for unit angle of
2ttack, nc cambering modes are present. For this case a simple idealization
of the wing is used.

The fuselage loading associated with the unsteady case (out of ground
effect) is presented in Figure 63. The original loading for Alternate II is
presented. ~  this case the original loading and the redistributed loading
should be very close because o7 the sienderness of the fuselage. The major
contribution to the fuselage 1ift is obtained in the region of the wing
(indicated in Figure 63 by a heavy line lying on the x-axis). It is inter-
esting to note that the point of maximum loading for the imaginary part lies a
considerable distance aft of the point of maximum loading for the real part.
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“he Toading on the nacelle is considerably less than that on the fuselag>.
Figure 64 shows that the maximum 1ift (or side force) coefficient is about
6.9, while Figure 63 shows the maximum for the fuseiage is about 30. Figure 64
presents the vertical loading on the inboard nacelle anc the horizontal load-
ing on the outboard nacelle. The Toad distributions given in Figure 64 have
not been redistributed and are the original ones of Alternate II.
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4.0 CONCLUSIONC AND RECOMMENUATIONS

4.1 Conclusions

A method for predicting osciilatory loads On very generai confiqura-
tions has been developed. Configurations may include a combination of any
or all of the following components: 1) lifting surfaces such as wings, pyions,
stabilizer, fin, etc., with arbitrary dihedral, 2) partial or full span
control surfaces and, 3) bodies such as fuselages, nacelles, stores, etc.
with elliptic cross-sectional shapes. The operating conditions are also
very general: 1) all frequencies of practical interest and all subsonic
Mach numbers, 2) symmetry and ground e®fect, 3) mutual interference of 1ifting

surfaces, and 4) multiple modes of osciliation (described by polyn-mials).

One of the main features of the Present Method is the efficiency with
whicn these configurations and conditions are handled. With the kernel
function techniques even simple plane wings present time consuming
numerical difficulties. If it were possible to extend the kernel furction
methoa Lo the status of the present method the computational effort might
be excessively large.

The effects of varying some of the important parameters irvolved have
been studied. Specifically the effects considered are those of: i) body
radius, 2) cross-sectional aspect ratio, 3) frequency, 4) wing pesition
an the fuselage, and 5) end plating effects of a body. The conclusions
drawn from these studies are outlined below:

1) The body radius has two distinct effects: one is due to the
flow field associated with a body at angle of attack and the other is
associated with interference. The fuselage angle of attack effect 1ncreases
the wing loading as the ratio of fuseisge diemeter to wing span is increased.
The fuselage interference effect shows variations as the radius ranges
from zero to infinity but is the same at the two extremes.

2) The interference effect of fuselage cross-sectirnal aspect ratio
(ratio of b/a where b = semi-height, a = semi-width) is monotonic,

'
8

reaching its greatest value when the fuselage is a vertical slit b/a =
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The angle of attack effect is just the opposite reaching a minimum when
b/a = ». The image system for elliptic cross sections starts to fail
when b/a is greater than 2.0 or less than 0.5.

Salaare . b 2SN

5) The effects of frequency for wing-body combinations are very
similar to the wing alone case.

4) Placing a wing high on a fuselage of elliptic cross section

tends to bring the left and riqht wing halves closer together  This
increases the interference effect of the body. The angle of attack effect,

however, is reduced.

R——— e

5) The Present Method predicts the end plating effect of a body very
accurately for a circular cross section (b/a = 1). However, when the
ratio of b/a is near the value of 2.0 (or greater) the predicted end plating
effect starts Lo fall velow the correct value. There are two reasons for
this behavior. The first is the fact that the image within the eliipse is
terminated at its centerline. The second reason is that the interfrrence
elements canrot account for an anti-symmetric flow across the body cross

section.

If conditions or configurations are simplified, then other methods may

| be used to compare with the oresent method. Cases which involve only 11fting
surfaces may be handled by the methods of LaschkaS? and Zwaa, 2. Comparisons
of these methods with the Present Method show good agreement. For the steady
case the theories oi Woodwardl? and Labrujere<® may be used for comparison.
Loads predicted by the Present Method fall slightly below the thick wing theory
of Labrujere but 1ie slightly above those of Woodward.

? The Present Method is aiso compared with the method of Part I of

this report. The method of Part I employs 1ifting surface elements on

! the body surface to account for the body interference effects. The results
are nighly dependent or the idea*ization. If the cross section is

| represented by orly a few defining elements then the results can be

inaccurate especially for unsteady flow.

Several general conclusions can he made about the comparison of the
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Presen®. Method and the method of Part I. In steady flow the lcading, as
calcilated by the method of Fart I, usually falls s”"-htiy below that
calcul.ted by the Present Method. As the number of body surface elements
is in.reased (for the method of Part I) the agreemen. ba*ween the two
methods improves. For unsteady flow the situation is more complicated.
There exist differences between the two methods especially near the wing-
fuselage intersection. If the representation, in the method of Part I,
15 crude then variations in the results occur that do not exist in the
results of the Present Method. In some instances a third calculation was
done in which both images and lifting surface elements were used. This
calculatinn confirmed the results of the Present Methcd ia most cases.
Tne exceptions to this were cases involving bodies placed at wing tips.

The total loads and moments on bodies, as calculated hy the Present
Method, are very accurate. The spanwise variation of 1ift coefficient agrees
very well with the method of Part I, Woodward's 19 method and tne method of
Reference 8. The longitudinal distribution of load along the hody surface
is not as accurate for Alternate II. The reason for this is that the total
load on the body due to one 1ifting surface element is found and Tumped at
the same longitudinal locetion as the 1ifting surface elemenc for this method.
The longitudinal distribution on the body arises then only from the longi-
tudinal distribution of 1ifting surface elements. A redistribution of the
load, based on an approximate procedure, increases the accuracy under most
coniiticns.

|5

£ s ncnmd Mol e
of the Present Metho e

Many comparisons of resent Method w
experimental data are presented in this report. Some of the resuits are
apparently contradictory. For this reason thz results will be discussed

for each of the experiments.

The data of Martina°0 for a wing-fuselage combination agrees very

well with the resuits of the Present Method. Similar data were obtained

51

by Kdrner™  for low Reynolds Number and Tuw Macn Number. The data show
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a characteristic joss of effectiveness relative to the calculated results
which is the direct result of the boundary layer. Specifically tne boundary
layer is much thicker on the upper surface and effectively produces an
"uncambering” of the wing. The boundary layer is also very thick at the
wing-fuselage intersection and thus it is nnt surprising that the loss of
Tift is found to be greatest there. The redistributed longitudinal loading
or the fuselage is in good agreement with the experimental data.

The only experimental data found for a wing/body combination in
oscilatory flow were reported by Cazemier and Berqh54’ %5, 56 who considered
a wing with a tip-nivunied engine nacelle. These data were obtained at low
Reynolds Number and Jow Mach Number. For reference purposes some of the
dete were obtained for the wing alone case. The experiment for the wing
alone in steady fiow was found to lie slightly above the calculated results.
This is a very strange result for this configuration and casts some doubt
on all of the comparisons. Usually the data are below the calculated results.
For the unsteady cases there seemed to be a phase shift between the data
and calculated results. Also plots are presented to isolate the effects
of the nacelle. 1Ir ¢-neral, the rea! ¢ in--phase components of the calculated
results and experimental data agreed we.1 but the imaginary paris did not
agree as well. Generally speaking, the comparisons of calculated and
experimental chordwise loading showed good to fair agreement. The
functional shapes of the pressure as determined experimentally and as
calculated are in gocd to fair agreement even though the integrated value
cf 1ift may, in some instances, not be.

Finally, a comparison is made between calculated and experimental
span loading for the B-38 bomber. The leading edge sweep of the B-58 is
60°. Because of this a leading edge vortex is formed. This causes the
experimental data to lie above the calculated results. The Present
Method does not account for this nonlinear effect.

4.2 Recommendations for Further Work

The recommendations for future work fall intu three categories:
1) improved efficiency, 2) improved modal representation and, 3) improved

body representation.
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A large amount of time is expended in calculating the kernel function.
The kernel is evaluated at three points on each lifting surface element*.
For each element there may be several images, a symmetry plane and a ground
effects plane. Efficiency would be improved if appropriate far field
formulas are used for receiving pnints that lie at 2 larae lateral distance
from the element. A second and wore radical method of improving the efficiency
is to cover ihe Tifting surfaces with trapezoidal vortices. The trapezoidal
vortex develjped in the Present Method is simple but not very efficient.
A new formula could be developed for the trapezoidal vortex that does not
require the evaluation of the complicated kernel. It world be simpler
because the trapezoidal vortex possesses no wake and thus the expres:ion
contains one less integration. The only place where a wake is required is
at the wing trailing edge.

The second recommendation pertains t. an improvement of the aircraft
modal representation. The polynomia! epproach lends itself to scientific
irvestigation where modes are simple. When the modes become complicated
however it may be desirable to incorporate other more practical modal input
methods. Several other methods have been outlined in Section 2.2 and will
be repeateu here. One possihility is to inuut a set of modal deflections
at various spanwise stations along the wing and use a spline fitting techniaue
to interpolate for intermediate values of deflections and siopes in both
the span and chordwise directions. A second method wouid be to generate
an aerodynamic influence coefficient matric [AIC] for such a set of structural
deflection points.

The third recommendztion deals with a series of improvements
of the body representation. The longitudinal distribution of load on the
body surface could be improved. Currently the unsteady pressure equation

—

*The value of the kernel at the outboard edge of an element is the same as
the kernel at the inboard edge of the element on the next strip outboard.
This fact is taken into account requiring that the kernel be evaiuated
only twice per element.
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is integrated first longitudinally and then around the cross section for
Alternate II. If possible, this integration procedure should be reversed
for elliptical cross sections sc that more accurate distributions could be
obtained. The computational effort would be increased but it may be worth
the effort. The theory for circular cross sections has not been automated.
It is anticipated that it will furnish more accurate results for bodies
with circular cross sections.

Currently, the tlow field due to a body is generated by one or two
singularities placed near the body axis. The resulting cross-sectional
shapes may not represent the actual body shape accurately. The flow field
rlose to the body is highly dependent on the detaiis of the shape of the
cross section. It may be worth while to investigate the possibility of
improving upon the current idealization. A more refined method of accounting
for the end plating effects of a body would be appropriate. Specifically, a
mere compiicated singularity should be developed tn account for an anti-
symmetric flow to the body surface.

The entire problem of wing-tail interference should be reconsidered.
The recommendations of Section 2.5.8 could be implemented along with a
method of accounting for wing wake convection and roll up. One of the
recommendations of Section 2.5.8 is to use two differant average fuselage
diameters, A diemeter sppropriate for the wing is used for wing-on-wing
and tail-on-wing interactions. A diameter appropriate for the tail would
pe used for wing-on-tail and tail-on-tail interaction.
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APPENDIX A. BASIC SINGULARITIES

The basic differential equat.on governing th: potential 1 compressible

1sentropice flow is:

- — - 2 G _
1 - - . + N~ (s 1
P, 9.+ O @ 4 2N o, \

X vy 77 T e—

2 2 R . -1t
where B I - M for subsonic flow and where O = e ior

oscillatory flow .,

The first step in the solution of (A-1) is to define v a- follows:

|
E & —(5 e—x)\Mx (A-2)
!
This equation reduces (A-1) tc
{
| 1 .,
@ - - -3
voo t 52 S b, N (A
!
2
E when X - wM/BT Uy (A-4)
L An clementary source solution, 41;5, for (A-3) for outgoing waves 1s:
!
vt TR (A-5)
R
where

[ oY)
[

2
R f(x—g) i pTr

¥

r

2
; Jy-m? v oo
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Applying Green's thcorem to the lifuing surfaces using (A-5)as the elen: entany

solution gives:

1
T /fal:wg,n.m
S

~ X
R

ON

(A-v)

where = represents a suirface over wwhich Av is distributed and where

¢ v AN

normil to the surface (N ).

represents a pomnt oscillatory comp ~essible doublet orrented

Using the relatioa betwoeen W and ¢ given

in (A=2), in Equation (A-u) gives the final expression tor ® interms of AQ,

Sl

4 - Ji,\M(x
4 n /:/ A (D €
S

Since A(M(x-§) - R) =

_g) 6]
ON

- 18— (x-§)

[ee]

cquation (A-7) can be rewrittep as:

o L =

O\K‘Y'Z) ﬂ A@‘&yny‘:) I.& ds

S
w
where I : e YT (x-8) 9 ( e
‘@ © ON -

Al \‘l.'!\.;‘-:'c AK Y e
¥ 7 ¥Yupper Y Yower

(_-1)\1{\
(‘”’E" ds {(A=T)
P2 — (x-§ - MR)
Uy B
(A~3)

w  (x-£ - MR)
1

U pe )

[¢9)
R

This 15 the final expression for the potential in terms of the potentizl jump

distribution on the surface "'S'.

oriented normal to the surface (1n tne N direction).

The espression for the bnearised pressure s

- 22 _ "
¢ - () + -

p o T. O g @)
( Ke (A ¢ fwt

) )
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The term L represent;s a point double’,
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The terms (})\l and @ cach satis{y Equation {A~-1) The pressure
coefficrent Aép then satisflies the equation also. To obtain a solutin®

for (ﬂ'p simply replace @ by CP in Equation{A -3}

- W

. X-5-MR)

. i A__ , _1——-; (X'g) bl ', 017{)@2 ( g \
\ . — -AC N . ——— X i LA~
(/p\-ny-/., ! ('p (6,7, 8) ¢ Ve S \—T—_) ds A-i0,

The nunus sign in front of AC _ ‘adicates a difference in the definition of

A1 e, the difference between upper and lower surface quantitics. For (ﬁ

aAQ - ¢

(upper ) q)(lower)
'y
i§
However for C !
p ;
AC - C C '
) p (lower) p (upper) 1
<
{hus
NG N N’ A=11)
p Us ( Mp\t 1 U, ) (A-1
Equation (A-10) will give the pressure field anywhere 1n the flul
due 1o a pressure loadinyg distribution on the surface "$”. Normally AC R
15 unknown. Anonategral cquation for ACD can be formed if an 2xpression ¢

relating potential or velocity to AEP can he found

Consrder the cxpression for the pressure (A-9). Interms of v the

pressu re g

N

)

Uy

1
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Define an acceleration potential such that

— - 2
C - — Q. e ©
Uoo b

Placiug (A 12) into (A-10), on the right-hand-side gives:

the change of variable t = X -§ gives:

l _ Us _
; o = gv ) L\Cp K¢ ds

-

¥ Ke - l ¢ J AN R

LA

where R

[ i S et .. T TR T I T,

| o ) i .
: s—lﬁ; (x-g)/x ¢ o ( eroﬁZ(t'MR))
dt

Dl ot Caiet g0

(A -12)

_"i
[ '3 ﬁl(x—g-MR)
SZX = - 8w Acp (gqé) € N P ds
S
%‘ Integrating both sides of this equation with respect co X from -o to x
» gives:
£ x S -
U Um/ & (e
. _ O (=) L — N —_— e =
$2(x,y,2) -R2(-o = S"J/ACP e J_ N ( P ) dx ds
S
j where X is the duminy integration variable, and § (-®) is zero. It
i can easily be shown that
| == x
| L
(A-13)

Substituting this equation in the expression for & - 4 { - ®) and making

(A 14)




The boundary conditions on the body surface can usually be given in terms

of velocity at the general pcint x, y, z in the direction normal to the

surface
TR A S ! ~
ch) = Uf.x) . n = 'Er ACP K ds (A"lS)
K = VKg- iy

The term K 1s the usual kernel function.

It 1s often stated that if the acceleration or pressure potential 1s
used (Equation (A~13) or (A-14) ) then the wake need not he considered
[ since the surface, S, over which the integration 1s performed does not
include the wake. The wake, ~f course, 1s present. In fact each pressure
doublet {of strength AC ) contains its own wake. The wake 1s .n actuality
a line doublet of strength e -l"{;—(g-go) extending dewnstream from the
point §0, to i1nfinity. This 1s eas?l‘/ proven using Equation (A-8). The

I Y

term L is the potential field due to a unit point doublet oriented 1n N

i direction. The potential due tc a continuous distribution of pcint doublets

1 -1 (E-
i of strength e iUm(g §o) gives:
i

w
! [ -1___‘*3 (g-g )

je Vo ° Ld)(x-§,y-fl, z-4%, M, w)d§
&5
!
1‘ which upon substitution for L becomes
- W

i (x-£ ) /m IU“’ﬁZ(X-g-MR)
l e U o j o ( e d§
| ON R
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Making the transformation t = x - £ gives

x—§0 W
w i=n2 (t-MR)
Um (X _go) UmB

8 (e )
+ e A e dt
® oN R

2
-1

This expression is just K¢ (Equation(A-14)). 1n summary then

w

Sige (6-8)
. ® Lepdf = Kg (A-16)

o

This proves that the point pressurc doublet :s 1n actuality a line doublet
-1 (8-
of varving strength (e 1U(,o 5 go))extendmg from the point §0 to down-

] stream infinity. See Sketch A-1l.

¢ =
X,

DOUBLET WAKE—\
go,ﬂo,éo) y."

“— PCINT PRESSURE
DOUBLET

T————

W
. -lb;-(g- go)
STRENGTH CF DOUBLET WAKE ~ e

SKETCH A-]
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Modified Acceleration Potential Approach

One further type of singularity that will be of usc is the modified
acceleration potential. Equation (A-13) gives

j =X

Q = &¢ Uy

or for surface distributions
W
-
AQ = Ad e
If a modiried acceleration potential 1s introduced, then

S

AD = L ane Uo'C (A-17)
U

where §C 1s a known functinn of £. Solving for Ad 1n terms of AQ gives:

U L e (E-E)
Ad = —Zio AQe Un ¢ (A-18)
Placing this expression into Equation (A-8) gives:
U i (g -8
& = -8%/[&0»3 Yo ¢ Lo ds
S
s - '81‘7‘ [[Aé Le 95 (A-19)
J J
where -
-ig (6 - )
U c
LQ =Y e % Lg (A-20)
The pressure AEP may be found using AQ in Equation (A-12) as follows:
A C\ wg
_ 1?3_—‘ "'1—LJ,_'—
AC = \AaQe @ ) e @ (A-21)
p €
where _ _ _
aQ = Qlower ) Qupper
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Axial Distributions

Thus far onl; surface distributions have been considered. In order
to solve body problems axial distributions of singularities must be used.
Consider the three types of surface distributions studied so far: velocity

potential, pressure and acceleration potential.

—_ 1 r o
¢ = "4—1;.[/ AY L¢ds (A
- 1 -
d = ﬁffACp K¢ds (A
- 1 rf —
o - EF,/J[ACJ chds (A

In order to convert thrse into axial distributions the surface distributions

must be considered as lumped 1nto a line at n= n, L= {’a' Thus

-22)

-23)

-24)

Ad = p(n-n, L-1) p(é) (A-25)
AEp =6(m-n,, L-8) £(8) (A-26)
AQ = s(n-m_, L-84) @) (A-27)

where 5(n - N, ¢- ga) is @ delta function acting at the body axis . 4

o

a
with the units of length. Placing these values into the surface integrals

above gives:

3= gy [ w®) Ly, £-0) dt (A-28)
b = -81—n/f(§) Ke(h-n, L-1L) df (A-29)
% = -Sl—ﬁfﬁ(é) Lo (M-m, £-1¢) df (A-30)

As the frequency goes to zero {i(§) becomes p(§).
lim ~
S EE) — p(6)
L
Q — Ly
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APPENDIX B. DISCRETIZATION OF SURFACE
AND AXIAL INTEGRALS

i PR

Equations(A-22) and (A-25) may be discretized as follows:

$ = 4—11; Z Adps /qu,ds , surface (B-1)
ASg

s=1
é = 41_“: Z HS A{L¢ (n - ﬂa: § = éa) d§¢ , axis (B-2)
s-1

The terms ASS and A§S indic ate small elements of arca and axaial length,
respectively. In steady flow the integral over the small area ASS produces
a vortex quadrilateral, 1i.e., a vortex that lies along the parameter of the
element. This type of element possesses no wake; therefore, for a lifting
surface, a wake must be added. The integral over a2 small axial element

produces a line doublet the length of the element.

Equations (A-23) and (A-26) may be discretized as follows:

[ l - - 2
3 = oo z Acp A fK¢, (& = 51/4) dn , surface (B-3)
=] s AT
1
$ = —87‘[- 1 fs Ag Kd)(g = ‘51/4. n-= T)a, { = éa)’ axis (B-4)
s:

The term AT indicates the width of the surface element in the plane of the
elemeni. The longitudinal integration is performed by lumping the value
of the integrard at the 1/4-chord point of the element. The length of the
element 1s A£ for both the surface and axial line integral. The 1/4-chord
line of wh¢ elemeant may be swept, therefore,

] )
In steady flow the surface incegral produces a horseshoc¢ vartex whose bound
portion lies along the 1/4—chord line of each element. This integral 1s the
basis of the Vortex-Lattice Method in steady flow and the Doublet-Lattice

Method in unsteady flow. The axial integral produces a semi-infinite line

184

PR =t g v—— L. a— e mem g - i —— A



e

doublet whese origin lies at the 1/4~chord point of the element. The dis-
cretizations given in Equations(B-1), {B-2), (B-3) and (B-4) are consistent
with each other even though a simpler technique was employed for Equations
(B-3) and (B-4). A system of vortex quadrilaterals covering a surface and
wake can be made into a horseshoe vortex system covering only the surface
and vice versa. Similarly, a system of {inite length axial doublets can be

made into a semi-infinite axial doublet system.

Equations (A-24) and {A-27) may be discretized as jollows-

—_ - _l_ h) A-— d 13 5

d = 5 Qs f I“Q s surface (B-5)
s=1 A .s

5 1 ~ - .

(‘f' = g; E {J.s f LJQ (77= na, g = ga) dg H axis (B_é)
ES Ak

The integrations over the small area and line segrnents could be performed
as they stanc; however, further analysis will show thez. these integrals can
be built up of expressions previously derived. Consider first the axis inte-
gral where the actual limits il and §Z (leading and trailing edges of the

element A§s) have been introduced. Define the axial integral as I”s where

£, i
Irs =f S LQ dé {(B-7)
rs
gl

S

Using the expression for L¢) given in Equation (A-20) gives:

b (-8
§1s
The term §C is a known function of £&. De~fine gc as the center of the ele-
ment s, where
Els + %25

§. = —= : £, € §<¢, (B-8)
s 2 s s
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The function $C (€) is then a series of step functions. The integral I__S

may be split into two parts:

1
S
6y - &) e i 6y
I, = e s e ® Lgdé (B-9)
15
ive, sc)/'m G 2
- e & e Lg dé
S

Reference to Equation (A-16) shows that

© o3 _ \)
ono(é 515) ]
e L¢,d€=K¢(x-€1,...)
§1 s
s (B-10)
o W og
[
¢ e Lydé = Koix-§,, )
2 s
s
WAés
._(;)_ A 3
Thus e Zfs 1Uc0 >
Irs = e I\¢(x-€1,...)-e K@(x-ﬁz,...)
S S (-)-1
The K¢ terms posss 55 wakes but the integral I must not possess a wake.
The wake of the first term in Equation (B-11) is cancelled by th: wake of
tne second term. This equatiorcxu represents a short segment of doublet
IR Ry S
strength, which saries like e IUC,D(é 5';), that lies between 61 and 62.
(tn Sketch 2. 6-1 the double arrows indicate that two equal but vpposite
wake strengths exist at one point.) This expression can also be used 1n
the doublc integral of Equation (B-5).
- 1 = = .
¢ = in Z AQS fIrs dn , surface (B-12)
s=1 =
n
- 1 - .
I o 2 i Irs , axis (B-13)
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‘The surface integral, given in Equation (B-12) by the imiegral of Irs'
represeats an unsteady quadrilateral vortex composed of two unsteady
horseshoe vortices (see Sketch (B-1)).

into Equations (B-12) and (B-13) and it is assumed that AES is not a

function of M , then

wAes
1 v — 1; U‘° .
E;AQS e /K¢(x-€15,...)dn
n
WAL
B S
2
e Udof K¢ x - 13 ) dn surface
1 2 r . . . ]
o S
A
wA‘S
1 e, ‘2 II""-
W dy Fsye Felofyoo)
wAfs
T,
e K¢(:--€2,.. ) , axis
s

If Equation (B-11) is placed

(B-14)

(B-15)

The first int2gral of Equation (B-14) 15 2n unstea 'y horceshoe vortex lying

along the une £ = 61, while the second integral is on unsteady horseshoe

vortex lying zlong the line €= 52 (compar Equations (A-40) and (A-41) with

(B-3) and (B-t)). If the element length Aé‘q Jdoes vary with 1 it is an easy

matter to place it within the integrals and hirdle it in the same way as Ky

itself :s handled.
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APPENDIX C. IMAGE POINTS

Circular Bodies

The flov. about a circle in the presence of a singularity may be solved
using Thompson's Circle Thenrem (see Milne-Thompson,Reference (43).
This theorem states that if £(Z), (7 = y+ iz) is the onset flow complex

potential of the singularity then the total flow potentiai is given by F(Z ) as

F(Z) = f.2) + 1(:%/z) (C-1)

if the circle is located at the origin of coordinates. The term ?(az/Z) is
the flow necessary to render the circle a streamline in the presence of
the onset flow f(Z). The term f(aZ/Z,) is the potential due to the image

singularitv. If f(Z) is the potential due to a vortex located at § then

((z) = 35 mz -
and
T (a2 Y G Z
(a/Z) - ‘2." n 7 -
_ -il“‘l 7z 2) l(z/")z
= —Z?ln( -_%_ - In|- ?_;‘

The first log term 15 the usual image and the second term is a vortex
located at the center of the circle. This vortex is expendable since it
does not affect the flow normal to €, the circle boundary. The result is:

il 2

lmage L gz -

Potential

T %z )

a
4
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The image vortex is of opposite sign of the exterior vortex and the

. . . 2,7
location of the image vortex is at +a” /§

Image Strength = -T (C-2)
Imzge Location = aZ/g = ‘a~2— 4
p
po= |t

The sketch shows the image location

SKETCE C-1

Applying the Circle theorem for the point source singularity gives

for the image potentizal:

2
- 2 (] a - -1
f(a”/2) = > (ln (Z -———Z ) - InZ - 1n(-—z-))

The very last 10g term is a constant and may be ignored. The middle log
term meay not be ignored since 1t affects the flow about the circle. It

represents a sink at the origin. The final solution for a source requires

two images; one at the usual image point aund one at the origin.
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Image Strength = + C
22 first image
Image Location = —-—§&
p2
(C-3)
Image Strength = o
second image
Inmiage Location = 0
The sink at the origin simply keeps the circle {rom producing a net out-
ward flux of fluid.
The doublet potential is
P 1
f (Z) - = 217 7 - g
The image potential is
2 T
f(a’/z2) = -~ T 2 - (C-4)
2_ -t
Z

If we wish this potential to go to zero at infinity then the ‘»llowing constant
must be added:

- i_ e
o= 27 ¢
. =, 2 .
Adding C to f {a"/Z) gives:
- — 2
_f(ad/Z) = - (-”)-_a_t—— (_1___:)
2w ¢2 Z - al/t
Thus for doublets
Image Strength = - R za.?'/?;—2
(C-5)
. 2, 2
Image Location = (a /p") 4

T P - - ram o = wmar m b
. - ey S - LN . & T i 8 et A mAen S

T Y
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Elliptical Bodies

For any body other than a circle the image approach does not
furnish an exact solution. It may however furnish usable approximations
if suitably modified. Borland, Reference (35), suggcsis a generalization
of the intage approach, for vortices. through a transformation. Specifically,
the circle-ellipse transformation 1s applied to the exterior vortex and image
vortex positions. The position of the image vortex. ” v with reference to

the exterior vertex 1n the ellipse or physical plane is

SR N N AV S S
2;1 = (C~6)
22 (T TP - kP
a+ b
where r = P
[
2 1 2 2
K = 1 (a - b")

where a and b are the semi-major and semi-minor axes, respectively.

This formula possesses a restriction on the location of the exterior

vortex. If the exterior vortex point & lies outside the ellipse

2 2
. 6 n’ = (C=T7)
2 K \z2 2 K 2
(__r._ ::_!Kl) + (r =— Kl)
| K | 2 , IKI 2

then the image point will fzll on the wrong Riemann sheet. Thus vortex
images may be considered only for voriices lying within the ellipse
given in (C-7). H K—0, i.2., a circle,the ellipse of (C~7) becomes

infinitely large and thus all vortex points may be considered.

A generalization of this approach for doubl=ts rmust include a
variation in image doublet strength in addi*ior. to the variation in location.

If a doublet ig constructed of two vortices of equal and opposite strength
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located at { and § + AL then there exists an image aoublet located
at §  and 5.+ AL

I I
b= - DAL, Bo= I[AT
Al — At
11 = I"AL = F—=l- - T _._'I_
1 A‘:I 1 T Al AL
If the limit is taken then
dl,i,l
Hl = B — (C 8)
dg
For a circie dél/dz = - aélg2 and this is exactly the solution given
ir (C-3) Differentiating Equation (C-6) gives:
4 1 .z |+ 2 2 )2
dQI -r +ZK(§+JS - 4K 1
U = - (C-9)
dt —l&—rz (T +JT% - ax?) \ % . 4x®

A second and more easily understuod approach is to define an
eauivalent circle for each singularity {vortes, doublet, source). The
equivalent circle has the correct curvaturc of the cllipse at a particular

oint. Sketch C-2 shows an example.
P P
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SKETCH C-2

The curvature of the surface of an ellipse (1/3) is

2 2
L lLZZ_J s L2 X (C-10)
E | ds ds
where dzy _ ~a cos 6 b2
dsz (a2 sinze + bacosze)z
a2 -bsin a’
ds2 (aL2 sinze + bzcosze )2

where the angular measure 6 is defined mnplicitiy as

y = acosb

z = bsinb (C-11)
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The result for a is

2 .2 2 2 .3/2
3 = (a”sin”"9 + b cos 0) (C-12)
ab

The vector to the center of the circle with radius 2 is:

where T is the vector to the point on the ell:pse and where the radius of

e

-, . .
curvature 1s 3. The vector ™ is the normal vector at the same point and

is given as

2 2 2
T = -—;(a_—b__) cos36 by (E_-_a_) sin30 (C-13)
b

This curve is called the "evolute of the ellipse',
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APPENDIX D. LONGITUDINAL INTEGRATION OF THE SURFACE
PRESSURE, ON A BODY OF ARBITRARY
CROSS SECTION, FOR FORCII AND MOMENT

The expression for the pressure field due to a point pressure doublet

is:

AC (§, M, L)6 A . -iAR
C_(x,y,2) = P e iAMx & fe ) -

P 47 3N R

where & A is the elemental area over which the load ACP acts. The
v —3>> .
coordinates &,", 5 define the location of the pressure point and N its

direction. Also,

+ M
YT
R = J (X-§)2+ ﬁzrz
r = J(y-ﬂ)z-#('};wé)z

This pressure must be integrated over the entire body to give the lift and

moment.
/' [e4]
8F . ffcp dxn . i ds (D-2a2)
4 -
(%)
M | - j o xdxn ‘i‘F ds (D-2b)
q Yo ¥
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> . . .
The term n . ipis not a function of x since a constant crnss section body has
- .
been assumed. The vector n is the outward normal to the body cross section
-
and has components in the y and z directions only. The vector i_ denctes the

F
direction of F and ic used to determine the direction of M.

i .K) + N (TF.T)

M = M (iF

where M and N are positive nose up and nose right respectively. it is
assumed, without loss of generality, that the origin is lccated at the pressure

doublet an¢ that the mioments are taken about the origin.

Substituting Eq. (D-1) into (D-2a) and using the transformation t = x/fr

gives:
AC &8A
bF _ % o | = = _
q = i f@N n . 1Fds (D-3)
where 0
L iNBr (Mt N
dt
1 =
j AP
-
Making the substitution Bu = J2 41 - Mtand (A prp = My oo %
gives: Uw
t=o —_
e -1 k_ u ' M
I = - sign (t - — ) du

Ju? 1 p

@ e-lku _ -
- -zf S = Y, W43, )]
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This is just the Hankel function of the second kind times iwmw. Thus

1 = im HO(Z) (k) (D-4)
where

Y = wLr

k = U, M

It can be shown that Eq. (D-4) is proportional to the two-dimensionual source

potential for the unsteady wave quation. A direct method of arriving at (D-4)

is outlined as follows:

@ ei)\Mx e-i)\R
C SIS
e o R
Let = x-¢. Then

Consider the two-dimensional scurce potential

o ) K "weikMx o "iMR .
2-D 4 e R

which is obtained simply by integrating the point source along a line from

- to + © . Again miake the same transformation T = x - §
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@
i £ -1
o fc;;\M(w,\ iR
— drT
—

- |
2-D 4 L R J
o, p= 21 (3-5)

4

The two-dimensional source solution is obtained {rom the two-dimensicnal
unsteady wave equation:
2 —

POt rQ. ¢+ KZ O = 0 (D-o)

where oscillatory motion has been assumed. The source solution of ‘D-6)

for outgoing waves 1s:

_2_ Ho(2) ®) (D-7)

Thus fron. (D-7) and (D~-5) we obtain the results of Eq. (D-4).

Substituting (D-1%) back into (D-3) gives the proper expression for the

force.
AC_ 6A ou Py =
OF p . 0 ok = =
—_ = _r iw — n ip ds {D-8)
9 4 o
where
o ¥ k) 2~
A = - Hl (k)
ok
ok wM or T - -~
P = . — j N
ON Ug ON A T
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i

placing these into (D-8) gives:

_ ac 6Af i
q 27 2

2)= |1 . N
¥ HJ( )('12) oo N ’E.TF ds (D-9)

—
where ir is the two-dimensional radial unit vector from the nressure point

to a po.nt on the body cross section (see sketch D-1) on whicn the circuit

integral is to be taken In the steady case {k — 0) the bracketed term approaches

unity.

N

——
A
¥

Sketch D-1
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The expression for the moment is now considered.

- -AC 8A .
SM P f o I n ’TF ds (D-10)
q 4m N m
where
’,-°° iNBr (Mt -Nt° + 1)
- . e
Im pr J ) t — dt
N2 41
The term L, can be obtained from I as follows:
L= Pr ol (D-11)
irpr oM ‘ A3 r = const.
Now I = inH® [ and Apr = K/p; thus
o1 | _ T
— = -imn @B 2E (D-12)
—k- = coust X = const.
B g
K | 2P Mok o
oM | = Bm const = - B B {(D-13)
k
— = const.
p
Placing (D-13) into (D-12) and the result into (D-11) gives:
Pr _ -M _
I = — (i 8, Y @) (5 F
m ik/p B
= r M T Hl(z) (k) (D-14)
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F Placing this result into Eq. (D-10) gives
Ly AC 6 A — T. * -ﬁ -_— =N
OM - P fri[rl\/m Hl(z) k)] ——— 1. 1Fds
q 4w Or r
2) s«
5 _ - .. oH (k)
r—  [rMmH (2) (k)] = rMwm | H 2) ) + k _
or 1 1 ok
= rMnu [l—< HO(Z) (T()] (D-15)
! The final expressicn for the moment is then:
F
- AC_ BA i N
S f[rM—’;— u, ) @] L —— 5.1, ds (D-16)
2 F
q 2m r
2
AC) 6A (2 — E)Hl( ) L d
| = - — MW[H1 +k—a—l-_(- ]1.Nn ipds

] In the steady case (k — 0) the bracketed term approaches zero hike k In k.

| Higher Order Moments

. th . .
The n order mor.ent is defin:c as

6M AC bA £ o

q 41 dN
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’;1 SCh

where

N

n . 1 M (MX - R)
1 = X dx
o R

n
?r on
ik/p oMP

Consider the second order moment; 6—I\Zz/q.

T</p = const,

81 ‘ M T (2) 7
A S N - S )
oM B :
2 - 2 2=
8“1 k | 1xM Q. Mk o (@) 7 ;
R REEE { R Aen @ 5
oz _
, = 2 b ae v e P® - ME R (k)}
k
r 81 - - —
— L - i3 {Merl(Z) (0 + 1+ M)ru? (k)}
or

Finally the result for 6_1\712/q is :

(D~17)

6 M AC 6A 1 .N . . _ 5 _ 2y —
n _ p r > T {2) 2 2 (2) ]
. f — 7 [T {Mkr B9 00+ ot MO H (k)} ds

1

> e
Thus the second order moment, is unusable. It seems obvious that higher

For steady flow (k = 0) the Hankel Function i HO(Z)(T{) - Ink — -,

order moments, where n is even, will also give results that are unbounded.
The higher order moments, where n is odd, will give finite results since at
k = 0 the results are zero. Moments of higher order than one are of interest
in cetermining generalized forces; however, as shown above this method can-

not furnish them.
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£(k)

p(k)

=]

Zl

4

=Y

M

SUMMARY

2 & H
I % 2) 7
M=k Hy' (k)
2k, M r/¢
we
2U,

direction of pressure doublet
direction of F

I -
body cross section.

force in the direction if iF

—

TF‘ ds
71. TF ds

position vector from doublet to point on

(D-18)

(D-19)

moment normal to iF (positive nose up and nose right).
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APPENDIX E. NUMERICAL EVALUATION OF THE
FORCE AND MOMENT INTEGRALS

The expressions to evaluate are derived in Appendix D and are:
. -5

Ac  BA 3N
6F/q = _%’T— f(k)—%—— n- i, ds (E-1)
-Ac A — S RN
sM/q = —B— u[P(k) i- Nn- i"F ds (E-2)

2w /

The basic approach will be to break up the cross section into a series of

elements over which f\'é) and P(T() are assumed constant.

N e. = -
Ac 8A j1r~Nn-1F
§F/q = —B— f ds (E-3)
ZTI' “ Le. r
)= J
N e,
Ac_ SA
) Y
§M/q = —B—or / _i"r- N n- ;\F ds (E-4)
2w = -e,
)= j

There are no singularities involved in the integrand of Equation (£-4);

thus, a simple evaluation is permitted.

Ac  §A
sM/q = —B—u )
q r
2T ‘ﬂl—lJ
J:

v i

) Z2e.- (E-5)
Fs=0 J

Such is nct the case for 6F/q; As r —20 the integrand is singular like 1/r
and thus care must be taken in its evaluation. As a matter of fact several
procedures were tried and methods which ignored the currative of the sub-
elements were found to be inaccurate for field poi.uts (x, y, z) lying close
to the cross section. The reraainder of this appendix will be devoted to the

evaluation of this singular integral which will be termed 1.
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e 4 = A
re+ N n".F
JN L -6
Lo r

Z:é,kT

\ 2 (RADIUS OF CURVATURE)

4 ; \ -». y!n’r

(CENTER OF CURVAT URE)

SKETCH E-1.
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It is assumed that over each element the radius and center of curvature
S
is constant. The first quantity to evaluate is r.

is easy to see that:

From Eketch {(E-1) it

Y - -
r = st - €

R E-7
R + R (')

it is assumed that the element length is small compared with the radius
of curvature. Thus

e 2a (E-8)

A - A g
n o= n o+ ot = (E-9)
e e a
Noting from the sketch that
A A A
n, = k cos N - j sin )
A N A
te * ) cosh + k sin A (E-10)
2 A
R = (y-n) + (z-0)K
A A
Then solving for r in Equation (E-7) and n in Equation (E-9),using (E-10),
gives:
- | s . )
r = jo,-(y-M) + s cosh+ -:Z?—sm,\‘ +
2 (E-11)
S s’
k :-(Z-p) + s sin X\ —-"2'—5- cos)\}
- == oyl ™ i_s . !
n o= j |5 ccs N - sin A+ k | 3 sin N+ cos Ay (£-12)
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- . .2 .
Retaining terms linear in s"/a gives

! 2 =
] = - L o+ Bl (E-13)
3 r s + Bs+4 R (s  +Bs+R)
where
D = Rsin(\ - ¢‘R) )
(E-14)
B = -2R cos (N - ¢R)
and where the angle 2N is defined implicitly as follows
R cos ¢R = y-n
(E-15)
R sin ¢R = z- 4
The angle d"R is shown in Sketch (E-1). If
N = j NY + k Nz
(E-16)
' 3 Ti. + X
i.o= ji i
| F Fy F
! then the numerator of the integrand of Equation (E-6) is (retaining only
i 2
terms linear in s”/a)
A s s 1 2 LR
( r * N n * ip = F s + (J+—§-—)s + RK (E-17)
3 where
k T = N i 13/2 cos? - 21 4 N i 1372 sinxcos!
o y Fool 2 | z 'F_ | s
3 Y (E-18)
+ N i ‘3/2 sinz)\ -—]-! PN §3/25in)\cos>\l
z F_ | 2y y F_ 1 ‘
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_ . ( . . { , 2
J = N 1F I cos)\s1n>\€+Nz1F l sin )\}

y
v y (E-19)
; f . . L2
+ NZ IF, l cosh sin\ | + NY IF, cos x‘
Z z
- o N : f_ o 3
L = Ny in | cos ¢>R cos >\‘ + Nz e | sin ¢>R cos )\‘
Y y (E-20)
[ o . [ .
+ Nz IF& sin ¢R sin M\ [t N 1Fz l cos ¢>R sin )\5
K = 1 i. Jcoso. sinn] + N i. |siné. sin|
y 'F. | R z 'F_ | R f
y ¥ (E-21)
{
. s ] . . )
+ NZ 1FZ | cin ¢>R cos )\‘ + NY IF? | cos d’R cos x‘
For convenience let
K R (E-22)
Then
Y RGN - 1 2 -—
r-Nn-1F = = s + Js + RK (E-23)
The integral I then becomes
€ -
I=‘/‘—5L—sz+—fs+RK§ L 5
_el s + Bs + R (E-24)
L —_—
s° Df/a
+ > ds
(R™ + Bs + R)

Expansion for R/s >1.0

When R/s is larger than 1. 0 an expansion for Jarge R/s is appropriate.
.. . 1 s .
Retaining werms of order T |R and lower gives:
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S e 2 (e) |TR | (B) T
- F ZK(R) t3 (R) [Ia (R>J
D B>
+ I\(E-l'i-?—)]
2 [e)? ((R o 2D D”
+s(’ﬁ/ l1<1'3)z*1'—a—+7

Specifically, Equation (E-25) is used when

(R/e) > 1.5

Inner or Exact Solution

For R/e < 1.5 an inner solution is required. The integral E-24 can

be performed analytically. A complicated expression results:

| 2 2 2(4R% - B%)
2 STy
, DRK?2 | 2 tan—l(e Jar? g2
a3 (4R - BY) | JirZ . B2 RZ . ¢°
_ _ _ 2 2 . -
e 2B TR w (GrRpren), Iz
| ¢® + RS - eB a
5 ,
+__D_35[ (3R* - B%) Be + 2R* - 1) R® ]
2 2
5 4R% - B%) (€% + Be + %)
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[ -3R% - B%) Be + 2R® - B%) R® ] }
(4R2 - BZ) (e2 - Be + RZ)

%) ¢ + BR® ]

4rR® - B%) (¢ + Be + RY) |

, DRK {[(BZ - 2R
a

] [—(BZ-ZRZ)e+BR2 }I
(4R2 - BZ) (e2 - Be + RZ) ‘

Simplification of this expression is desirable to reduce the computing

cffort. Equation (E-26) holds only when the field point 1s close to the

cross section. The elements can be arranged so that the element closest

to the field point 1s centered with respect to the field point. Specifically.

the center of the closest element lies on a ''normal" coordinate line pass-

ing through the fieid point. Sketch (E-2) shows an example for an cllipse.
z

!

v,

~

ETCH E-2.

"
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An expression for this normal coordinate will be developed later for an
elliptic cross section. Under these circumstances the difference in angles
N\ - ¢R is close to 90°. Since B is proportional to cos (X - ¢R) it is small.

An expansion for small B may be made retaining only Jinear terms. The

result is
_RYT I B 3 DI B RKD/| 1 \
I={'a - —5 tRK -y + za}'ﬁ
_1/ 2Re 2e T
an = + — + \n;_z
\Rz-ea a f\
i - D DTIBe (3¢°+Kk*) DKRe
5 > {eBJ <1+-§>+ > > - z
e“ + R 28 (e + R")
/
{or R/e < 1.5

Special Considerations for an Elliptic Cross Section

The location of the element closest to the field point must be chosen
such that its center lies along the normal coordinate curve (which is a hyper-

bola) from the field point to the ellipse. See Sketch (E-2). The first thing

that must be done is to find the elliptic parameter 6, which is constant along

1

this line. Once 61 1> nuuwan the puini un Lie ellipse where the hyperpola

interscc.s it can be computed. The equation for the hyperbola is:

2 2
TP L (E-28)
cos el sin 91

where y, z are the coordinates of the field »oint and a and b are the semi-
width and semi-height of the c<llipse, respectively. Equaticn (E-28) may be

solved for sin 81
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) - A+ NA® 4 4% -bP) 2°
sin p = 2 (aZ _ bZ) (E-29)
A = (2 + 2%+ vl - aZ\Z
when n.z = b2
sinzé‘r1 = z2 / (z2 + yz) (E-30)

sin 91 = '\/—sin 91 sign 2
———- (E-31)
cos el = N1 - cosZOl sign y

The equation of the ellipse is given again as

a cos 0

<
1l

(E-32)
Zz = b sin6

The location of the center of the first element is then obtained by placing

the value of Gl in place of 6 in Equation (E-32).

The first element has been located. The other elements are found by
dividing the 6 coordinate equally from 6 = 0-—-360°in N equal parts.

The half width of an element centered at 0 is

Zi=

-;._ NI a2 sinZO + b2 ccs2 0 (E-33)
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The radius of curvature of an element centered at 0 is:

372
- (a2 sinZO + b? cos Q)
a =

ab

The slcpe of an element centered at 6 is

N = Lan_l (?— cot 0)

All quantities are now known for the evaluation of §F/q and §M/q ior

clliptic cross section.

3%
——t
E=5

(E-34)

(E-35)
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APPENDIX F. EVALUATION OF THE STEADY LIFT FOR
CIRCULAR CROSS SECTIONS

The most important contribucion to the lift is the one due to the stea.y

part. Setting f(ko) = 1 in Equation l,Appendix E, gives:

AC §A (Tr. N) L.
P ——— (0. ig) ds (F-1)
q 2w r

E\F(s)

=

)

in the direction of_i;,.

The evaluation of this integral for various cross sections will b2 the sub-

where Z.\Cp acts 1.2 the direction of N and 6F(s
ject of this appendix.

The Circular Cross Section

For a circle Eq. (1) becomes

A
61‘_(s) . Cp SA .
q 2w ©
em _; . _Na _n\ _?F adb
where I = / (F-2)
o) rZ
- —
and where r = ir r.
T. N ';_1} = —;F—;é (-rapLR)sinO

P ié apRcos 0 sin 6 +

IF" ig apécose sin 8 + (F-3)
- - . 2
lF' ig ape—)sm 8] +

- -

i IR by (apg cos® o - r, cos 6)
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where a rotated coordinate system 1s used

> o= ya _ 2
‘R~ J '?; + k 2 (F-1)
Ta
z
'T- _T;“ji‘_ - j =2
r r
a a

Here(y,, z ) are the coordinales from the bcdy axis to th. pressure doublet.

a

Also needed in Eq. (2) is rz.
' 2
r = r + a - Zara cos 0 (F-5)

Placing (F-3) and (F-5) into (F-2) and deleting integrals that vanish gives:

= = 2 - _
IO = . i a }l_ls + ip - Ig apR( raIc + aICC) (F-6)
where
= <in® © d e
s A - Bcose
[ = cos 8 d©
¢ A-Bcosb
2T
I = f cos 9 de
ce o A - Bcosb
and A = ra + o.
= 2ar

The techimique of splitting integrals into odd and even parts will be used

The techrique will be illustrated for Is only.
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Lo

2w i
sin” 6 d6 sin® 0.d g "sin” 0 d6
I = A-Bcos® - J A-Bcos6 ' | AtBcose *
o o
m
sin2 6 d6 TTsinz 6 de
o A-BcosH o A+B cos©
Combining the first two and last two integrals gives:
/n sinze de T cos @sin@ do
I = 2A + 2B
s o A%.g? cos’0 o A%.B® cos®e

The second of these integrals is the "odd" contribution and is zero.

1 = 4A7 (F-7)
s s
ﬂ/Z
sin 6 -w/2 '
where I = 5 2 5 do = T T ‘ raz-a Zl -(1a2+a 2)‘
A -B cos © 4a” T A l ’
o a
or .
T .
IS = > 5 Q {F'-8)
a” r
a
1 2 2 \ s L2 ]
where Q = -3 :lr -a -(ra +a )‘

In a similar manner

I = ZBIn (f~9a)

1 = 2Al (F-9b)

N
—
~I
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where I
n

72 cos2 6 do T Q
2 -5 5 = Py : (F-9¢)
/; AZ-B2 cosze 2a2r - I r 2 -azl

The term (-ralC + alcc) is to be formed for Equation (6).

-r I + al = -Zalr " -a)l (F-10)

Placing (i -9¢) into (F-10) and the result into (F-6) aiong with the result
for Is gives:

é_~ - "Q — —_ —WQ . 2 2
I, = dp. 1§ kg . 5 + ip v ig “R - ] 2 sign (ra -a )
2 a (F-11)
oLl (I 2 2 N
where Q = - 2 r -a - (ra +a )‘

€

r_>a (doublet outside body) Q = az, sign (ra2 - az) = +

r <a (unublet inside body) Q

I

2 . 2 2
r,51gn(ra -a )

Equation (F-11) can be written as two expressions depending on whether
the doublet lies internal or external to the body. Placing these two

expressions intn (F-1) gives:

Doublet Inside Body

(s) - —_
bF - (ACE 5A) X (F-12)
q 2
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Doublet Outsice Body

‘H(s)
o _ - N
5 = IF N1 (F-13)
where N = ) ig- + HR in
N1 = ) i’e‘ - MR iR

Equations (F~12) and F-13) describe a very peculiar bchavior. Take for

instance the casc where these equations have a common point ¢ - a.
(s) ) ACpéA - - ACPSA ‘ . - - o
6F/q = —2— G . N -_-2—-{(11:. ig)ig t (i - lR)p.R}, v, ca -«
(F-1")
6}_«"(5)/ ) /_\.Cp(SA - s ACpéA ‘ . » . o
q = —2—- ‘F' ] T {(11?. “8)“@ (IF'IR”R}’ la-d*’f‘

Notice that the contribution of the component B (one oriented normal to the
radius vectcor from the circle center, see sketch) 1s continuous when the
doublet passes through the body surface. However,ra~h is not the case

for the component EY (oriented parallel to the radius vecior).

When the doublet passes inside the body the force on the body due to Fr

changes sign. Vhen the doublet is anywhere inside the body, the force

is equal to A_(%péA and 1s in the direction of the doublet, T'\-Ib .
2 AC 6A ,
When the doublet is outside of the body the force is wyual to > ! (r,1 /a)

—
and is in the direction of Ny.

219

R L. WO mTE e w0 LDVURLR L, CWTITTL OCATSSAT LR TV TR A e T



U g EEmYR T e - 1 AR Rt TN L b 2A AR S § Yoot AR b

L PRESSURE
DOUBLET

\'__,./

SKETCH F-1

220




R

APPENDIX G. CIRCUMFERENTIAL INTEGRATION OF
THE PRESSURE FOR BODIES OF CIRCULAR
CROSS SECTION IN BCTH STEADY
AND OSCILLATORY FLOW

Steady Flow_
The expression for the pressure field due to a point pressure doublet

.12 steady fiow is

: L) = CpoA 8 (1
Cp (s y. ) = SRR L (1) G-1)
where
R? = (x-§)% + B%?

e ]
o

(y -m?2+ (z - {)?

1
Lawren~e and Flax"’

have integrated this equation, in an approximate
marnrer, around a circular cro.s section. IEssentially, tney obtained only
the force in the z-direction (see Sketch G-1) due w0 a pressure doublet
oriented in the same direction. Their results will be rederived and
extended to obtain the force in the y-direction due to a pressu.« doublet
oriented in the same divec.on. Also, it will be shown that the force ia
the z-direction due to a doublet oriented in the y-direction (and vice versa)

is zero.

For sirnplicity of wotation the origin of coordinates is fixed at the
circle center and the pressure doublet is assumed to lie on the y-axis.
This results in no loss of generality since the y- and z-ax1s may be
thought nf as simply a coordinate system that has been translated and

rotated so ithat these assumptions are satisfied.

Equation (G-1) may be rewritten as: *

ACp § 2 - T - =
Cotoy) = BRI L @ D G-Tw) @
= > . . -
whetc N = ig 1\40 4 err

" Py and p_ are used to be consistent with Appendix F.
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Introducirg the coordinates of the circle, )-r- =a  cos 6, z = a sin @. noting

that £ = 0 and 7] = r, and expanding in terms of ao/Ra gives:

, ACp 6A B* 3a.r, 82 cosf
Cp X, V¥, Z) = 4pn. R 3 §1 - ORZZIB + . . .)
a a

- ’ (G_3)

>

a, sinf g + (a0 cos @ - r.) ;.Lr)

|

where
2 _ 2 2.2 _ 2
R* = RO+ B ac Zaoraﬂ cos @
and
R; = (x-£6)2%+ ﬁzri

Equation (G~3) may be integrated circumferentially to give the total force

per unit length.

e(Flg) _ {Cp (k sin@ +3’ cos 0) aode

ox
A 2,2 2 g2y (G-%)
_ 4Cp da ﬂgo{}l Bap (1-2128 jl
4 R? I 0 r RZ s
a a
r.o>ag
If (G-1) is ¢xpanded in terms of ra/Ra then tne results are
RN -~ o~ ‘
AE/q) . ACp 0A pras | 2 =¥ e
- = 5 =3 Ipek+ Hri (G-5i
r. s ag
where
R2 - _ 2 2.2
RZ = (x-§) + %

Notice that there are no cross terms; i.e., z-force Jue to y-doublet or
vice versa. Equations (G-4) and (G-5) cover the entire range of ¥

One way to measure the accuracy of these equations is to integrate tf :m
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longitudinally from - to +®, holding 2, constant, and compare the results

with the exact values obtained in Appendix .

Integraiion of Equation /G-4) gives:

~ WO 2
-3 - . 3 . 3
Bla = | o(/a)/ax ax = SCROA %%(uo k - B, j)
a
e (G-6)
) ra> aO
F/q = 4% ZéA (pe K+ b }‘) , T s a (G-T)

These results correspond precisely to the exact values even though approxi-
mate methods have been emplcyed in the derivation. It can be shown that
even though the total mitegrated values are exactly correct the distributions

are only approximately valid.

Oscillatory Flow

The results for stcady flow are very encouragirg. The exact total
integrated lift is obtained irom an aporoximate resullt., A similar line of

development may be made {or oscillatory {low.

The expression for the pressure field due to a point pressure doublet

in oscillatory flow is:

. -iAK )
_ ACpdA iMix £) o el
L’p (=%, ¥, Z) = 41 e N l R ‘ (G'g)
where
. wM
A= g,

Taking the N-derivative and substituting {= 0, 7= r, and, z = a, sin @

and y = a cos@ gives
o
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ACp 6A  iA(M (x - §) - R)

Cp(x, vy, 2) =~
am (G-9}
X 1+i\I}32‘p a sinf + u _(a cos()-r)z
R3 —R?—j l 6 "o Hri% a'f
If R is expanded in terms of aO/Ra, as in the steady case and if e—i)\R is
expanded in terms of A n af%cos 6/Ra then:
. . ila_r_fB2% cosf
el}\R B 61)\Ra<1+ oRa +\
a
Also
‘ 1 ; I ‘ 1 1}\' ‘ 3B2aora cos@ i)\ﬂzaora cos @
& PRy T RTR VTR TTTRY
a a a a
Thus
iAa r B% cos @
. C ‘ N8 Ta )
Cp(x, vy, 2) = Py {1+ R { X
o a ]
l'ue a_ sin6 + p_(a_cos @ -ra)$X
2 ; 2 v
‘__l_ . ix - 3B ar, cos irB ar, cc,s())
|\Rg "~ R2 R2 ) R {
a a a a §
where
AC &A i\rv IX_L)_P 1 5
C = _xg;.r_n_ MM =g al 5443
8(Fj;/q)
= Cpa_ sin6 df
ox °
J
{ o My ila r B?
) 1 1}\ f . s 2 O a
k, Cilgz + 33 (51r329+cose sin“@ -
® lRa Ra a
in3B"a?r? \
+ cos 29 sin26 -—TS_OJ—} d!9 +
a

wINE—— Ve



i)\aoraﬂz' l
cos?0 sin?e ) d()j

a
irg% ?r ?
14+ m —'T;g——— (G-10)
8(F=/q)
_ = f Cp a_cos6 do
ox o
R Y N T
= pn. C =3 T 5 j) lcosée -— cos0
r Ra Ra a,
. . n2 : 2p2 2
] + 1):%9-1—3'-’3— cos % - iiRriﬁ—cosze +3—ﬂf;-(z)ia-cosae
a a a
38% 2 os?p 33‘*3.21'_2
- 1;:2 + ik ——R—%—-—{— coss
a a
38% ra3 c0s39 |
- ik °53 J de
a
L ixp2a r T r ira r p? cos'o
- ____r_o 2 cos’® - =2 cos?e + o2
R a, Ra
iAr °82 cosdg
- 2 de
R
a
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8(F=/q) . iAr_2p?
ek AN [ 0 P P I I
ax r R._ R2 R
a a a
2. 2 by 2. 2
- E_[:._@__ + 1A~ E’ % *
Rac 4 Ra3
2 2
1AB3°a 1 _r_a . 17\a0‘ &) 3 G
" TR |~ R 1 (G-11)
a (o] a

To check the accuracy of the expressions given in Equations (G-10)
and (G-11) an integration will be perfoimed in the x-direction from -« to
+2 and the results compared with the method derived in Appendices D and

E which are the exact results.

If the highest order terias in equations, Eqs. {(G-10) are dropped,

then:
iA[M(x- £)-R_] ™
. . Acpdéa  ? al }1 i\ 2
o(Fz/q)/ox = By ——E;—— e 'ij“szBzao
a a
|
. ACp oA a02 ol iei)\[M(X-é) -Ra]l
= tp 4 r or z R $
a a
[e4]
F—/q = /a(Fz/q)/ax Jdx
-0
w -
ACpdA %o- o e”\[M(X'é’-Ra]d
- p. - X
e 4 ra 8ra Ra
-0
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The integral appearing here is precisely the integral I appearirg in Appendix

D, Equation(D-3).

I = inHo(Z)(iZ)

1
A
S

where HO(Z) (k) is the Hankle function of the second knd and zeroth order

o1 . 2) — WM
o = -17r1~11(") (k) T
a
then a2
. _ ACpdA o im (2) = =
Fz/q = by > ;—a—z ( > ) H1 (k) k (G-12)

Sketch (G-2) shows that the agreement between (G-12) and the results of
Appendices D and E is almost perfect. If the highest order terms are

dropped from Equation (G-11) and the results integrated numerically the
results again agree with the results of Appendices D and E. This result

is also shown in Sketch {(i-2). The simplified formulas are then:

I 6(FE/Q) AC . { .
; Sl Y ACpdA 5. 2 iAIM(x-¢) - Ralj 1, Al ..
: 8% = Mo 4 pTay" e lRag ' R-a2$ (G-13)

W
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-QO
ral3g
-0.5
1.0 . Exact (Integration of E-18)
O Approximate
! (Eq. 6-12, ang humerical Integration
; of G-14)
0.5 rg —0___ 9
5Tk
q  q Q-—0 0 ——0
0 4 2.0
0 21; 1 10 /(:J
4113*CV4)’//£3’/’ Ta’ %o
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F : 8(F—/ : ixr2p% 3p%°
’ Fy/9) |, 4cesa | BTN a8 ’3%
ox ; | RER, R F,
3 N8 2 2 iN[M (x-¢) - R_] (G-14)
3 + R 2a e a
. )
r »a
a o)

Following the steady analysis the expressions for r sa, may be obtained.

f strz/a) ACp A (A R i 5
—z = ACp oA g2 2 lf(M(X-é)-Ra)‘ 1 in )

r < a
a (o]

5 a(Fg/c) By G(F;/q)
3 Y r < 3
Ix He ox a - o]

where
R,? = (x-8 + B%?
i —
R, = (x-4)7 + B’

As in the steady case the integrated values agree with the exact values.

However, the distributions are again only en anproximation.

The coordinate system used to derive the formulas (—;;, ;) for the forces
is one that has been rotated an angle 91. This rotation was performed so
that the pressure doublet will lie on the y-axis of the rotated system. A
transformaztion back to the y, z system is necessary to complete the deriva-

¢ion.

Al

———————
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8(F_/q) ; F=/q) a(F/q) )
___..i_—. = 2 ___Z__ N ) .__L_. -17
% lle lcos 61 o sir 01 F™ i (G-17a)
8(F=/q) 8(F=/q)
+u ‘cosel sinf (-—-—L— - —= |
r { : 1 Ox éx )
oF, M) oF, Y /q)
= }.Le ——'5;—— + }lr T (G-17b)
3(F_/q) ‘ a(F_/q) a(F~/q) )
__l-— = in2 ———.L— 2 .__X_._._ !
o By lsm 01 P + cos 91 57 ‘
(G-18a)
+ gxe ——-———ax
(y) (y)
a(F /q) oF '/q)
= }Lr &a_x___ + P_e __—‘.‘5-;;—-——- (G'lgb)
The new variables, d(Fz(z)/q)/ax, a(FY(Y)/q)/ax and 8(Fz(y)/q)/ax are
defined implicitly by comnaring Equation (G-17a) with (G-17b) and by

comparing Equation (G-18a) with (G-13k).




APPENDIX H. INTEGRATION OT a(?/q)/@c
OVER A BODY ELEMENT

The circumferential 1ntegration of the pressure for a circular cross
section was performed in Appendix G. In the present method the force
distribution is given, not at every value of x, but at a set of points which
correspond to the midpoints of a set of body elements. The value of the
circumferential integration, a(i*/q)/ax. nmust be aver ged over these “lements
If it is not then errors could be introduced due to local variations over the
element. As an example, Ske‘ch (H-1) shows what might happen if averag-

ing is not performed.

Value at Midpoint

Average

a(Fia)ax

AN

AL
n

Typical
Body Element

x

SKETCH H-1
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The expressiors to be integra*~d may be written in the following form.

o(F—/q)
—E— =y (H-1)
3(F—/q)
ox - lL1' f.; (H-2)
where
= = cm|dy + i H-3)
= 3T R? (-
a a
g = iyt C7L (H-4)
and ".ere
Bzraz ‘ i
3 i3\ |
. - 2 LA AN -
Los ® MRz TR (H-5)
a a a !
IAIM (x-£) - R_]
nc = 4GplA g2 (H-0)

The average value of G(F-Z—/q,i/ax and a(bI;,/q)/ax over an element stretch-

ingfromxA--A—?-:-(- to XA+—2§ is
X
_ , [ 2aF /)
a(P-z-/q)/dX = Z-xj o dt (H-7)
-4x
2
Ax
. i [T‘a(%/q)
G(FV/A dx = Z;']‘ o dt (H-8)
. Lz_
where
X = xA+t
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The terms X and Ax are the element midpoint and length, respectively.

If XA 4+ t is substituted for x in the expression for Ra and the rasult

expanded for small t/Ra the result is

-

( Ly (a8 B 2
R, = R, jiafzm-) oAy B FD = I (H-9)
a aAl iR R, R 2 R f
\ u,A / r}.A aA aA
where
2 - g2 2.2
Raﬁ - (X.A. 5) + ﬂ ra

Placing Equation (H-9) into (H-6) and expanding for small At gives:

ACp dA B"aoz IA[M(x-£)-R ] ALBOAB 2a02 IA[M(x , - {-‘)-RaA]
e = e €
) )

F 2
. t ¢ 21 BT,
AIME -~ ——— - o — — ee————

~a24x T B2)1 +iA¢A - t2B)! (H-10)

where

ACE(SA i}‘[M(XA"s)‘RaA]
4Ax e

Ql
1

B2 2
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= = p2 2 AZK 1 . £2
a(FTz./q)/ax = CgB aof B3 + 1)\ATR——3- iA _R?
“4x
2
iA A%A t V2,2
T - R + 0 ( t)]dt (H-11)
2 a
6@7/(1)/6’{ = o(F- /q)ox
+ T @l z?z/'A—Zx_).i LIAPAL 3 3IAAL
Bt R3 "R 3 RS RS
J a a a a
-4x
2
3iABt? i3 3A%At 2,2
2IADE 124 208 A ( -
& RS R'*+ R h +)(t)\)|dt (H-12)
a a
Define a new reduced frequency variabie, K.
- = .2 )
] k = Zkr M aO/C = Af a (F1-13)
If k is introduced into Equations (H-11) and (H-12) then:
: (Fe/q)/ox = Ca ‘(2al- —E—Z—-AI)
1 otFz/4 - o {ﬁ o1 ﬂzao 5
(H~14)
+ik(AIZ+I4-13B)
8('F?/q)/8x = a(‘ﬁzlq)/o;‘ A (H-15)
'3
!
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where

AR AR R T o M 2 SR R S S MO i A A AR At g LA Al

(
Cr 2}2 4, 2 T2
Cr, i[ 3B% 1, +k (11+3A110)l

. - - )
+ 132a0 3k (- AL +BIg-Ip) + 1k3A12/ﬁ2a0j

T S R L S
R3 ° B2r2 ) R B X,
a a aZ 1
Ax Ax 2
tdt | —1 (xp-§)5 4 Raf\z. (xp-8% - Ray
R 3 - Bire R ¥ R
a a a a
2 ]
t2dt _ 2
R 3 - L "2 001, -R, L)
a A
dt x,-§+ Ray
— = ln
Ra 3 &+ Ra1

2
tdt - l.]n Ra2 eV &V T
R2Z 2R Z) BaSi
a a
1
dt 1 (xy &) ()-8 2
RS 3pZ | R, 3 R 3 (Vg
a a | a a
2 1
t dt 1 1 1
RSTTI)R3TRI(C Hadle
a a a
2 1
t2dt
FE= I m2,-8 L -R 2
a A
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M\ ROl

I _ —A—;— dt 1 (xz'é) ) (xl-é) + 1
Q R 2[321‘ Z R 2 R 2 W
Ax a a, a, a
2
Ax . Ax
L. -42§ bdt 1 E(XA'€)7+R3X . (x)-8)5 - Ra
10~ RY © " 2p2r 2 R_ 2 R_*¢
s a a | a, a,
-5
(XA_é)
T Tpirz M4
where
Xy = X5 - Ax/2
X, = X, + Ax/2
Ra;- = (x1~§)2+ f-”zra?-
Ra2 = (xz-f)2 + ﬁraz

Approximate formulas, yielding less than 2% error, are used when
Ax/l{a < 1/2. Let 6= AX/Ra and T = (xA-e)/Ral

A A A
1 = 1 511 -1 (-1 + 57'2)621
1 R_2 8 (
A
_ 1 3
12 6 (' 7/4)
a
A
_ 3
13 = 6°/12
I = 1 ¢5‘1+—1-(-1+3-'-2)<52
4 R I 12 ’
aa
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— _T. 53
I = 2 é
- 1 S 2 2)
19 = Rk6§]+24('1+77)b{
ap
- 1 3 (. 5
o7 RgF ('127)
A
= 1 3 _1_
s = Rz 0T
A
R 1 1, 2 21
I = Ra26§1+3(1+67)6$
A
- 1 3(. T
o * R, 2 0 (3)
A

When 6 < 1/7 further approximations may be made:

_ )
L - R 2
A
L, = I, = 0
_ 0
L, = R
A
I, = 0
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3
E
‘ } 6
I, = K=
aa
I7 = 18 = 0
B )
Iy = w3
aa
Lo = 0

The formulas given 1n Equations (H-14) and (H-15) are valid for r, > ag.

For r_ < a_simply replace R_ with R_ and set A = 0.
(¢] aA aA

oS
[3%]
{

ool
N
1]

(x, -2+ p2a? )

— e
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