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ABSTRACT 

Within the field of linear methods for aeroelastic flutter prediction, the Doublet Lattice Method 

(DLM) and the Strip-Theory are considered standard methodologies. These methods are formulated in 

the convenient frequency domain, thus allowing computationally efficient solution techniques to extract 

the aeroelastic system’s eigenvalues and infer about its dynamic stability. 

Panel methods are based on potential aerodynamic theory and offer greater capability to model 

complex 3D surfaces, thickness effects, and allow unconstrained surface discretization schemes. 

However, Panel Methods are seldom applied to flutter analysis since, in general, they are formulated in 

the time-domain. L. Morino presented a frequency-domain integral solution for the linearized 

compressible aerodynamic potential equation which constituted the foundations of a unique frequency-

domain panel method. 

In this thesis, this frequency-domain panel method has been implemented in a MATLAB® 

environment as part of an in-house aeroelastic design tool specialized in the flutter prediction of 3D 

cantilever wing structures. A large portion of the work is focused on the implementation aspects and 

numerical studies concerning convergence and computational efficiency. The modified p-k method is 

based on the original p-k method and has been developed in order to enforce physical consistency and 

to increase the accuracy in the process of extracting the system’s eigenvalues. The linear flutter analysis 

of a high-aspect-ratio wing has been performed for validation purposes. While the work completed 

constitutes a full implementation of the panel method in the frequency domain, the results have shown 

large discrepancies that require further validation and evaluation of the proposed numerical tool. 

Keywords: aeroelastic flutter, potential aerodynamics, panel method, frequency-domain, p-k 

method 
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RESUMO 

Dentro do campo das teorias lineares para o cálculo de flutter aeroelástico, a Doublet Lattice 

Method (DLM) e a Strip-Theory são consideradas metodologias convencionais. O facto de serem 

formuladas no domínio da frequência permite que métodos eficientes a nível computacional sejam 

aplicados para extrair os valores próprios do sistema aeroelástico e de seguida concluir acerca da 

estabilidade dinâmica do mesmo. 

Os métodos de painel são alicerçados na teoria aerodinâmica potencial e superam as 

metodologias convencionais na modelação de superfícies 3D, inclusão de efeitos de espessura e maior 

liberdade na discretização das superfícies. Sendo geralmente formulados no domínio do tempo, os 

métodos de painel praticamente não são aplicados em análises de flutter. L. Morino apresentou uma 

solução integral para a equação potencial compressível linearizada, que constitui o ponto de partida 

para um método de painel único, formulado no domínio da frequência. 

Nesta dissertação, este método de painel foi implementado em ambiente MATLAB® como parte 

integrante de um programa especializado na previsão de flutter de uma asa 3D. Uma grande parte do 

trabalho foca-se na implementação do programa e em estudos paramétricos relacionados com 

convergência numérica e eficiência computacional. O método p-k modificado baseia-se no método p-k 

original e foi desenvolvido com o propósito de melhorar o processo de extração de valores próprios, 

nomeadamente a nível da consistência física e da precisão dos resultados. A fim de validar o programa, 

realizou-se um estudo de flutter linear de uma asa de elevada razão de aspeto. Apesar do trabalho 

representar uma implementação completa de um método de painel no domínio da frequência, os 

resultados revelaram elevada discrepância numérica, sugerindo uma reavaliação e subsequente nova 

validação da ferramenta numérica. 

Palavras-chave: flutter aeroelástico, aerodinâmica potencial, método de painel, domínio da 

frequência, método p-k 
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1 INTRODUCTION 

Aeroelastic flutter is a physical phenomenon characterized by the non-sustained vibration of a structure 

due to its interactions with the surrounding fluid flow. In lifting surfaces, such as airplane wings, the 

mechanism of flutter involves a positive feedback between the wing’s deflections and the forces exerted 

by the fluid flow. Since these deflections result from the aerodynamic forces, the oscillatory behavior is 

self-excited and, unless some sort of non-linearity bounds the motion, the vibration amplitudes will 

continuously increase until the eventual structural failure. For this reason, aeroelastic flutter is classified 

as a type of dynamic instability. Flutter is more prone to develop in very flexible structures and usually 

requires some kind of initiation mechanism such as local perturbations induced by flying maneuvers or 

turbulence. Its destructive effects on structures, in particular aircrafts, had led to several tests and 

studies focusing on determining the flutter speed, the minimum flying speed above which flutter is 

predicted to occur. Due to the hazards of flutter testing, most of today’s research involves developing 

and implementing efficient numerical methods known as the Computational Aeroelasticity (CAE) codes. 

These numerical techniques couple Computational Fluid Dynamics (CFD) and Computational Solid 

Dynamics (CSD) codes in order to track or detect the onset of flutter instability. Despite the 

multidisciplinary nature of flutter, the main effort has been toward the improvement of the unsteady 

aerodynamic models. These are responsible for the complex self-feeding mechanisms involved and, 

because of its intrinsic nonlinear character, the aerodynamic models are still an active field of research. 
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2 BIBLIOGRAPHICAL REVIEW 

2.1 HISTORICAL REVIEW 

Flutter has been affecting aircrafts since the early aviation years at the beginning of the past century [1]. 

The first known flutter occurrence was documented in 1916 by F. W. Lanchester [2] after observing 

violent antisymmetric oscillations in the fuselage and tail of the Handley-Page 0/400 biplane bomber. 

Before knowing the true origin of the problem, Lanchester claimed that the oscillations were not the 

result of resonance induced vibratory sources but were self-excited instead. Later, Bairstow and Fage 

provided analytical backup for the investigation in a paper [3] that was considered the first flutter 

analytical analysis, and confirmed Lanchester’s conclusions. The analysis consisted in a stability 

analysis of a binary model using the twisting of the fuselage and deflection of the elevators as degrees-

of-freedom (DoFs), while quasi-steady, frequency independent, aerodynamic derivatives were used for 

modelling the lifting forces. In the 1920s, similar unstable oscillations began to be recognized as a matter 

of concern within the aircraft community, which led to several investigations. For instance, von 

Baumhauer and Koning in 1923 [4] proceeded with an experimental and theoretical investigation of a 

long distance reconnaissance monoplane following severe aileron flutter. Using similar binary models, 

they concluded that modifying the inertial proprieties (mass balancing) in the aileron region could 

eliminate the problem. The study was successfully verified by wind tunnel and flight tests and the 

concept of mass balancing became the standard aircraft modification for preventing flutter. 

2.1.1 Aerodynamic Theories 

In the following year (1924), Birnbaum [5] makes the first contribution towards the modeling of the 

unsteady aerodynamic effects on airfoils in 2D flows. In his model, the wing was essentially an infinite 

flat plate immersed in a steady, incompressible potential flow. The unsteady effects were modeled by 

placing vortex singularity lines of harmonically oscillating strengths in the airfoil and wake regions. The 

solution featured an integral relation between the pressure difference and the normal velocity but it could 

not be evaluated analytically. Although Birnbaum was able to express the numerical solution using a 

series expression in terms of the reduced frequency “k”, his results had serious convergence problems 

for k > 0,1. After Birnbaum, some important contributions followed, namely the ones by Wagner [6] and 

Glauert [7]. However, the first major contribution in 2D unsteady aerodynamics for flutter calculations 

was achieved by Theodorsen [8] in 1934. He presented a succinct theory of the 2D oscillating flat plate 

undergoing translation, torsion and aileron-type motions and derived the sectional lift and moment 

formulas in terms of the plate’s DoFs and the reduced frequency. These formulas were essentially the 

same as in quasi-steady aerodynamics, but with additional terms accounting for the inertial effects (non-

circulatory part) and the unsteady wake (circulatory part). The circulatory part involves the special 

function C(k), known as the Theodorsen’s Function, which basically accounts for the lags between the 

airfoil motion and the aerodynamic forces, caused by the influence of the wake. Since Theodorsen’s 

Function can be evaluated exactly by means of tabulated Bessel functions, this theory was remarkably 

the simplest exact theory available for the idealized flat plate airfoil performing harmonic oscillations and 
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for long years it was the standard aerodynamic model for flutter calculations. Theodorsen’s theory is 

often referred as the “Strip Theory” [9] because of its systematic application to a full 3D wing discretized 

by several spanwise “strips”. In the Strip Theory, the sectional lift and moment for each strip are 

calculated using Theodorsen’s formulas, and the structure (usually a beam), is modeled by the classic 

elasticity formulas in terms of the bending and torsion DoFs. Then, for instance, the Rayleigh-Ritz 

method can be applied to the wing in order to obtain the equations of motion. 

With the increase of aircraft speed in the mid-30s, the compressibility effects in flight were becoming 

relevant and incompressible theories could no longer accurately predict the pressure field over the lifting 

surfaces. In the branch of the linear, small-perturbations unsteady potential aerodynamics, Prandtl [10] 

introduced the concept of acceleration potential, in contrast to the usual velocity potential. The 

acceleration potential is proportional to the local aerodynamic pressure difference at the surface. The 

use of this concept allows a simplification in the definition of the unsteady wake because, as the wake 

does not sustain forces, the acceleration potential vanishes there. Based on Prandtl’s work, Possio [11] 

developed a new theory, possibly the first compressible aerodynamic theory aimed at flutter 

calculations. He applied Prandtl’s acceleration potential to the 2D unsteady problem and arrived at an 

integral equation (Possio’s equation), the solution of which gives the loading over a flat plate airfoil in 

an airstream, for a known motion of the plate (i.e., for a given downwash). 

Kussner [12] in 1941, developed an aerodynamic theory that would set the basis for most of the modern 

flutter calculations. He formulated the first general lifting surface theory, valid within the linear subsonic 

potential flow. Using the concept of moving singularities (doublets), Küssner was able to express the 

normal velocity at the wing for every instant in time, in terms of an integral over the wing that was 

considered a flat surface. The integrand involved the product of the local pressure difference and a 

function known as the “Subsonic Kernel Function”. However, the Kernel was written as a singular 

integral and could only be evaluated approximately using inefficient numerical techniques. An explicit 

formula for the Kernel was obtained several years later in 1954 by Wollston et al [13], after restricting 

Kussner’s formulation to harmonic oscillations. 

The systematic application of lifting surface theories to actual wings became feasible with the 

improvement of digital computers in the 50s. An early approach was known as the Kernel Function 

Method [14] and consisted in approximating the pressure in the integral formula by a series expansion 

of unknown coefficients. These coefficients were related to the known downwash at a number of points 

equal to the number of terms retained in the series, producing a set of linear algebraic equations. This 

required choosing a function such that the wing edge conditions (Kutta condition) were satisfied. The 

Kernel Function Method would eventually lose its popularity with the advent of the Doublet Lattice 

Method (DLM) in 1968 by Rodden et al [15]. The DLM is essentially the conversion of the subsonic 

theory developed by Küssner to an aerodynamic finite element method. Each element is a portion of 

the wing surface (quadrilateral box) in which two of its sides are aligned with the incoming flow. Each 

box contains a control point at ¾ chord, and a distribution of doublets along the ¼ chord line, whose 

unknown strengths are proportional to the surface pressure. The pressure difference and downwash 

are assumed constant at each box and their value is assigned to the respective control point. The 
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relation between downwash and pressure is given by the integral of the subsonic kernel along the 

doublet line. Computationally, such relation is written in terms of a square matrix called the influence 

coefficient matrix, with as many rows as the number of boxes in the wing: 

wi = Dij∆pj (1) 

In the derivation of matrix D, Rodden used the harmonic subsonic Kernel derived by Vivian and Andrew 

[16] – which was an extension of the work by Woolston et al. [13] for non-planar surfaces – so that the 

actual DLM could be applied to complex aircraft surfaces. Within the frame of linear aerodynamics, the 

DLM is the most sophisticated aerodynamic theory for aircraft flutter prediction and has been used 

extensively in the literature and industry until today. For instance, it is the default aerodynamic theory 

used by the commercial software MSC NASTRAN [17] for predicting the flutter speed. 

An alternative methodology for calculating the aerodynamic loads in slender bodies performing an 

arbitrary motion are the Panel Methods [18] [19]. These methods are also based on linear potential 

theory and share some aspects with the lifting surface methods, like the distribution of singularities, 

however they differ in the formulation and implementation aspects. The main differences reside in the 

arbitrary discretization process (paneling), collocation method and the possibility of modeling 3D closed 

surfaces. Although they are seldom used for flutter calculations, there has been some successful flutter 

studies using this method. A possible cause for their lack of popularity towards flutter calculations is 

their restriction to steady and time-domain unsteady formulations. For instance, Jones et al. [20] used 

an unsteady panel method for measuring the time dependent oscillations of both single and two-airfoil 

systems under incompressible, inviscid flow. The structural model consisted in an elastic spring 

supporting both translational and rotational stiffness.  After the unstable, growing oscillatory behavior 

have been detected (flutter), the results were compared with equivalent frequency domain studies 

showing good agreement. In addition, it has was shown that flutter of a trailing airfoil can be controlled 

by proper oscillation and phasing of a leading edge airfoil.  

2.1.2 Aeroelastic Solutions 

In theory, the general aeroelastic problem can be written as a system of partial differential equations in 

space and time, featuring the relations between inertial, structural and aerodynamic forces. The explicit 

form of the aeroelastic equations depends on the theories involved for modeling both structural and 

aerodynamic forces. Since, by practical and historical reasons, these contributions have been 

formulated independently, there isn’t a single unified aeroelastic theory. The usual approach is to resort 

to energy methods and the concept of generalized displacements for space discretization in order to 

realize the aeroelastic system of equations: 

[M]{q̈} + [C]{q̇} + [K]{q} = {fA(t)} (2) 

The matrices M, C and K are the structural mass, damping and stiffness matrices respectively and can 

be computed using Finite Element Method (FEM) or the Rayleigh-Ritz method [21]. The vector 𝑓𝐴 

contains the contribution of the aerodynamic forces at each structural node at each instant of time, and 

the vector 𝑞 contains the several DoFs. Both structural and aerodynamic quantities above depend on 
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the respective theories which can be either linear or nonlinear. In general, equation (2) is solved for 

several instants in time using time marching techniques such as the Runge-Kutta [22] scheme or the 

Newmark [23] algorithm. Doing so requires setting an initial displacement field and determining the 

structural matrices and aerodynamic force vector at each time step. This is the time-domain formulation 

of the equilibrium equations and its general form is compatible with any aeroelastic problem. 

Historically, the flutter analyses have been formulated in the frequency domain by assuming simple 

harmonic motion of the wing {𝑞} = {�̅�}𝑒𝑖𝜔𝑡. In conjunction with linear theories, this approach leads to a 

system of homogeneous equations that can be solved by obtaining the eigenvalues of the system and 

then the stability of the system is inferred from them. Such procedure is possible because of the linear 

theories involved in the analysis. It is also a more convenient approach in comparison to general time 

domain formulations due to its lower computational costs. In these conditions, the aeroelastic equilibrium 

equations take the following generic form [24]: 

[(
U∞
c
)
2

[M]p2 + (
U∞
c
) [[C] − [AICI(p,M)]]p + [K] − [AICR(p,M)]] {�̅�} = 0 (3) 

This equation consists in an eigenvalue problem in 𝑝 and defines the system’s stability equation or 

simply the “flutter equation”. Here, 𝑝 = 𝑘(𝛾 + 𝑖) is the dimensionless complex frequency with 𝑘 ≡ 𝜔𝑐/𝑈∞ 

being the reduced frequency and 𝛾 ≡ 𝑅𝑒{𝑝}/𝑘 the damping coefficient of the oscillatory movement. The 

aerodynamic force is written in terms of the DoFs via the Aerodynamic Influence Coefficient’s matrix 

(AIC): 𝑓𝐴(𝑡) = [𝐴𝐼𝐶]{𝑞} . In general, this is a complex matrix with [𝐴𝐼𝐶𝑅] = 𝑅𝑒{[𝐴𝐼𝐶]}  and [𝐴𝐼𝐶𝐼] =

𝐼𝑚{[𝐴𝐼𝐶]} that depends on the complex frequency and Mach number. The AIC matrix is computed by 

the chosen aerodynamic theory after a proper force transfer and DoF conversion from the aerodynamic 

nodes to the structural ones. This can be accomplished by simple methods such as the Rigid Body 

Attachment [25] or more sophisticated ones such as the spline mapping methods. The latter method 

includes the Infinite Beam Spline [25] and the Thin Plate Spline [25] [26], depending on whether the 

DoFs are being transferred to a structural beam or plate. 

The flutter equation (3) can seldom be solved as a standard eigenvalue problem because the 

aerodynamic force is usually a non-linear function of the complex frequency “p”. If the AIC matrix is a 

simple function of “p”, as in the case of quasi-steady aerodynamics [9], the solution can be obtained by 

finding the roots of the determinant. This is known as the p-method [27] and it is exact from the 

mathematical point of view. In most cases, however, the aerodynamic model is only available for simple 

harmonic motion (𝛾 = 0)  which means that the AIC matrix is restricted to values of the reduced 

frequency “k”. Initially, in order to avoid improper formulations, simple harmonic oscillations (𝑝 = 𝑖𝑘) 

used to be imposed on the structural part and the problem had been reduced to a non-linear eigenvalue 

problem in the reduced frequency alone. Since this approach does not directly generates damping in 

the system, an artificial damping “g” was introduced in the system as an external structural damping 

force. Based on experimental tests, the damping force has been assumed proportional to the amplitude 

but in phase with the velocity 𝐷 ∝ 𝑔 ∗ 𝑖ℎ̅𝑒𝑖𝜔𝑡. The solution is obtained in the iterative process of solving 
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for “g” given ”k”, for several speeds, until the flutter boundary is reached, i.e., “g” = 0. This procedure is 

called the k-method and was originated in the 40s, following the Strip Theory. An early description of 

the method is found on a report by Scanlan & Rosenbaum [28] and a good and recent explanation is 

given in the book by Hodges & Pierce §5.4.1 [27]. 

While the k-method is still popular today for its speed, it is known to exhibit an improper coupling among 

the modes, especially in the vicinities of the flutter boundary. Such behavior is often attributed to the 

artificial damping introduced in its formulation. In 1971, Hassig [29] was able to show this erroneous 

behavior by applying the k-method in a simple flutter study of a wing and then by applying the exact p-

method for comparison. In the attempt of eliminating the artificial damping and at the same time include 

more accurate aerodynamics, Hassig conducted a p-method type of analysis with the restriction that the 

AIC matrix was for harmonic motion. Although mathematically inconsistent, the results obtained were 

approximately the same as with the p-method which provided great credibility towards the new 

methodology. The method was called “p-k-method” after the mixture of p and k parameters featuring in 

the flutter equation. The solution can be found by guessing a reduced frequency “k” and solving 

iteratively the quadratic eigenvalue problem in “p” until 𝐼𝑚{𝑝} = 𝑘. The process is repeated for all the 

relevant eigenvalues and for several speeds until the flutter boundary is reached 𝑅𝑒{𝑝} = 0. The p-k-

method is considered the standard solution methodology for solving the flutter equation formulated in 

the frequency domain and it is currently used nowadays in CAE software such as MSC NASTRAN® [17] 

and ZAERO® [25]. 

2.2 STATE OF THE ART 

The modern aeroelastic field of research is focused on studying the effects of both structural and 

aerodynamic nonlinearities on the structure’s dynamic response. Structural nonlinearities are present 

whenever large displacements are allowed which is often the case of high aspect ratio wings. On the 

other hand, aerodynamic nonlinearities are present outside the scope of small perturbations 

assumption, such as transonic and hypersonic flight regimes, or in the most general flow regime where 

vorticity and viscosity are included. Nonlinear aircraft flutter is currently an active topic of research. The 

computational resources available today allow full nonlinear, time domain aeroelastic theories to be 

successfully applied for virtually any configuration, instead of the classical and linear frequency domain 

approaches. As a result, the understanding of flutter grew considerably in the past 20 years. Its concept 

became less restricted to the mathematical point of view of unstable eigenvalues and more attached to 

the instability mechanisms of newfound nonlinear phenomena such as the Limit Cycle Oscillations 

(LCO). 

Patil and Hodges [30] modeled the structural nonlinearities in an aeroelastic analysis of a HALE aircraft. 

They conducted a linear stability analysis about a deformed trim state using nonlinear beam theory for 

the structure and a linear aerodynamic theory for the external forces. After comparing with the usual 

linear flutter analysis, it was clear that, when large deformations are present, the aeroelastic modes and 

frequencies were significantly altered leading to lower flutter speeds. It was shown in a similar study [31] 

that in terms of steady state calculations, there is negligible difference between the airloads calculated 
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using the correct non-planar wing geometry as compared to loads assuming an undeformed, planar 

wing. However, the differences are critical concerning the dynamic behavior of the wing. The 

aerodynamic induced wing curvature significantly alters the dynamic proprieties of the structure such as 

the stiffness and mass distribution, leading to a change of the flutter speed by more than 50%. 

Xie and Yang [32] further studied HALE aircrafts in a slightly more sophisticated study where the 

structural model was a 2D flat plate and the aerodynamics were modeled by the DLM. Both linear and 

nonlinear flutter analysis were conducted. In the pre-flutter static nonlinear analysis, they used the true 

normal pressure forces (follower forces) on the deformed body instead of the usual normal forces to the 

undeformed wing plane used in linear analysis. In comparison with the linear analysis, it was shown that 

the geometrical nonlinearity induced by the large structural deformation leads to the motion coupling of 

the wing chordwise bending and the torsion, which resulting in different mode frequencies and shapes. 

As a consequence, the aeroelastic coupling of the flexible modes is altered leading to the decrease of 

the flutter speed. In this sense, the author justifies the use of nonlinear models for flutter prediction when 

very flexible structures are concerned. 

In the last decade, there is a growing interest in developing aeroelastic analysis in the transonic flight 

speeds that typically occur around Mach 0.8-1.2. Bendiksen [33] investigated the effects of nonlinearities 

on a generic swept wing at high altitudes and at transonic Mach numbers. In his analysis, the 

aerodynamics were modeled by the Euler equations discretized by the Galerkin method and the 

structure was modeled by the Reissner-Mindlin nonlinear finite element plate theory. Proceeding with a 

Runge-Kutta time marching scheme, Bendiksen obtained the onset of flutter at Mach 0.84 and 

subsequent grow of oscillations until Mach 0.95 where they would start to decrease with time. In his 

study, these oscillations are mentioned as LCO and are considered a type of nonlinear flutter. Since the 

growing oscillations do not occur below the critical Mach number, the author concludes that the nature 

of observed unstable LCO must be due to the transonic flight regime. 

Some researchers go even beyond the inviscid fluid models and perform full viscous analysis for flutter 

boundary determination. Gao [34] successfully validated the experimental AGARD 445 wing flutter tests 

at transonic speeds using a fully coupled, aeroelastic theory in a time marching procedure. The structure 

was a thin plate discretized by linear finite plate elements, and the fluid was modeled by the RANS 

equations discretized by several 3D control volumes. Since the structural and aerodynamic meshes 

were non-point matching, spline techniques were used to interpolate displacement data from one grid 

to another. The solution procedure required calculating the steady deformed shape at a certain speed 

and then the unsteady calculations were initiated by introducing a perturbation displacement field based 

on a certain natural mode. Each time step contained several iterative sub-steps in order to deform the 

structural mesh according to the aerodynamic forces. Gao neglected the structural damping and 

resorted to the Newmark algorithm for advancing in time, using time steps as small as 0,0004 seconds. 

For each Mach, the flutter boundary was found whenever the flutter speed index 𝑉𝑓 =
𝑈∞

𝐶𝑟𝜔𝑓√𝜇
 provided 

approximately neutrally stable oscillations, i.e., the onset on instability. In a plot depicting the flutter 
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speed index versus the Mach number ranging from 0.499 to 1.141, the calculated results were compared 

with the experimental ones and were in good agreement. 

There is currently a trend toward developing high-fidelity methods at a substantially lower computational 

cost. One approach is to linearize the structural and aerodynamics equations about a steady state, and 

then to convert the equations to the frequency domain. The flutter boundary is calculated by eigenvalue 

extraction, similarly to the classical flutter prediction techniques. 

Bhatia et al [35] determined the flutter speed of a 2D flat plate in transonic speeds, using an eigenvalue 

approach. The fluid was modeled by the Euler equations in conservative form followed by linearization 

about a steady state, where small, oscillatory unsteady perturbations of all the unknowns were assumed. 

A uniform beam was used to model the structure and the equilibrium equations were obtained using the 

principle of virtual work. The resulting system of equations related the structural and aerodynamic forces 

in which the latter was written in terms of a generalized force matrix. The Euler equations were also 

discretized according to energy methods in particular the Streamline-Upwind-Petrov-Galerkin (SUPG) 

technique. Since the resulting aerodynamic system of equations was related to the structural unknowns 

by the boundary condition, the two systems could be organized in a coupled fluid-structure system of 

equations. The coupled linearized system was represented in a state-space form and, through a series 

of simplifications, it became suitable for the application of the usual linear stability analysis. The author 

presents a methodology for computing all the necessary matrices, but despite that, it is only a matter of 

solving a nonlinear eigenvalue problem, and methods such as the k-method or p-k method can be used. 

The k method was chosen for solving the flutter equation for the case of a simply supported panel. Both 

dynamic pressure and frequency of the critical mode were plotted for Mach numbers ranging from 0.4 

to 2. Since the results have shown good agreement with the available literature it became clear that 

high-fidelity alternatives to the expensive time domain techniques are possible at a much lower 

computational cost. 

Finally, when addressing computational efficiency in modern flutter calculations, it is important to 

mention the Reduced Order Methods (ROMs). These represent a variety of existing and emerging 

methodologies that either simplify the governing equations or use data from expensive CAE simulations 

in order to construct a reduced, but compact, version of the aeroelastic system. Carlson et al [36] have 

built an aeroelastic ROM using the Proper Orthogonal Decomposition (POD) method to determine the 

flutter boundary of the AGARD 445.6 wing. The POD method transforms the high dimensional CAE data 

system into a low dimension system in modal space. The resulting reduced system reflects the important 

dynamical behavior of the original high-order system. In this case, the CAE data was obtained by eight 

high-fidelity inviscid CFD simulations, one per combination of dynamic pressure and Mach number, 

covering the subsonic, transonic and supersonic regions. The ROM was solved using 8 POD modes 

and the flutter dynamic pressure was obtained and plotted versus the Mach number. The results were 

validated with the same high quality CFD simulations performed at a larger set of points, and in general, 

the error was small. The authors conclude about the feasibility of this ROM technique for most flutter 

calculations but recommend more CAE data in the transonic region where the error was the highest. 
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Recently, Lai et al [37] studied the effects of a trailing edge flap on the flutter boundary using a different 

ROM method. The method used is a type of System Identification (SI) process that essentially builds 

the aeroelastic ROM equations by performing several measurements or high fidelity calculations on the 

wing. The many measurements, called aeroelastic states, are performed at two different flight 

conditions, namely at the ground and at a reference speed. These consist in time histories of diverse 

structural and aerodynamic variables such as displacements and fluid velocities. The aeroelastic data 

was obtained from coupled fluid-structure simulations where the structure was discretized by FEM and 

the fluid by the Euler equations using the finite volume approach. The main task was to identify 

separately the structural and aerodynamic systems and then to couple them to form the aeroelastic 

ROM. While the structural system is easily identified by performing FEM analysis for instance, the 

aerodynamic one is physically coupled with the structural system and therefore hard to identify. The 

system identification process used involves subtracting the structural sub-states from the aeroelastic 

states in order to obtain the pure aerodynamic states. Afterwards, the aerodynamic states are coupled 

with the structural states and the aeroelastic ROM is defined. The flutter boundary is calculated by 

determining the eigenvalues of the ROM system. The clean wing results were validated with data from 

the literature and in general they have shown good agreement. It was found that, in comparison with 

the clean configuration, the flap deflection angle has a profound impact on flutter stability, especially at 

transonic speeds, leading to a substantial drop in the flutter speed. The cause was attributed to the 

combined effects of increased effective angle of attack and flow nonlinearities. 
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3 MOTIVATION AND PRESENT WORK 

The idea behind the present work was to develop and implement a numerical method capable of 

predicting the flutter speed of a 3D airplane wing. The task of choosing such method was not straight 

forward and essentially involved five decisions: 

1. Object of study 

2. Flight regime 

3. Theoretical model 

4. Methodology 

5. Implementation 

3.1 PRELIMINARY ASPECTS 

Identifying the object of study is the easiest step in the decision process because it is the physical body 

being studied that is prescribed in the objective of the work – an airplane wing. However, the type and 

shape of the wing are determining factors towards the choice of the theoretical model. The interactions 

between fluid and body are highly dependent on the complexity of its geometry. The numerical 

predictions of these interactions are only as accurate as the validity of the aerodynamic theory used. 

The flight regime defines the set of parameters that characterize the flight. Among these are the Mach 

number and the angle of attack. The flight regime also determines the theoretical model to be chosen. 

Depending on the Mach number and angle of attack, different aerodynamic phenomena may occur, 

which require adequate theories in order to be correctly predicted. 

The theoretical model encompasses both structural and aerodynamic theories. They are behind every 

calculation and define the domain of applicability of the current method. 

The methodology is the set of procedures in order to obtain the solution – the wing’s flutter speed – and 

it is highly dependent on the theories selected. Along with the theoretical model, the methodology is a 

core aspect in the decision process and usually determines the numerical method used. 

Finally, the implementation aspects are related to the numerical tools used for the realization of the 

method. Being a computer program, a programming language needs to be selected along with the 

planning of the internal structure of the code. These aspects are based on the adaptability of the 

language to the number and type of numerical tasks required by the method and on the code’s overall 

computational efficiency. 

3.2 MODEL LIMITATIONS 

The wing is modeled as a 3D body, with all the characteristics of a conventional airplane wing like the 

sweep angle, dihedral and taper. The airfoil, however, is assumed to be very thin with low to moderate 

camber in order to avoid complex aerodynamic phenomena, such as flow separation, that are difficult 

to predict. Accordingly, the admissible angle of attack is considered small, typically within ±5°. 
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Compressibility effects are also included, but the flight speed is restricted to the subsonic region. The 

transonic and supersonic regions give rise to shockwaves in the flow field around the wing that may 

difficult the analysis. This is especially true for the transonic Mach numbers where the shock-body 

interactions are strong and complex, therefore requiring overly elaborate aerodynamic theories to model 

them. The theoretical model is adapted to the defined constraints. Subsonic flow over slender bodies 

has been extensively studied in the past, most of them relying on simplified aerodynamic theories such 

as the linearized potential aerodynamics. Due to time limitations, it is noted that the main purpose of 

this dissertation is not to develop a complex state-of-the-art method, but to develop a tool that is capable 

of predicting the flutter speed of a conventional 3D airplane wing. For this reason, it was decided that 

the linearized potential aerodynamic theory was an appropriate aerodynamic model for the development 

of the tool. On the other hand, the wing structure is modeled using a 1D elastic beam-rod, representing 

the wing’s elastic axis. While this simplification greatly facilitates the program development, it narrows 

the validity of the aeroelastic analysis to higher aspect ratio wings. As seen in the previous section, there 

are some well-known methodologies for solving the pressure field using linearized potential 

aerodynamics. The three most recognized ones are the Strip Theory, the DLM and the Panel Methods. 

The Strip Theory is inherently 2D and does not account for compressibility effects. It is considered too 

simplistic for the present work and therefore it is discarded from the options. The DLM and Panel 

Methods are appropriate candidates concerning their moderate complexity and generality of application. 

Table 1 compares the various lifting surface methods to the conventional panel methods. 

Table 1: comparison of the capabilities between lifting surface methods and conventional Panel Methods 

 
Lifting Surface Methods (DLM and 

others1) 
Conventional Panel 

Methods 

Tridimensional Yes Yes 

Unsteady compressible 
flow 

Yes No 

Time-domain No Yes 

Frequency-domain Yes No 

Wake discretization No Yes 

Surface type Open Closed 

Surface discretization Oriented Free 

In general, lifting surface methods are more suitable for the problem under consideration. Unlike the 

panel methods, they allow unsteady compressible calculations while being formulated in the convenient 

frequency domain. The DLM is well-known and has been used in linear flutter prediction since its 

development in the late sixties. However, lifting surface methods are more restricted concerning the 

arbitrariness of the geometries involved and require a particular discretization scheme. On the other 

hand, panel methods allow free discretization of the several surfaces that represent the true boundaries 

of the body. Thus, they are more useful when dealing with complex configurations. But the lack of 

frequency domain approaches for panel methods makes them a less efficient tool for flutter prediction, 

especially when better alternatives such as the DLM exist. 

                                                      
1 Kernel Function method for instance [14] 
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Here, instead of choosing the DLM and implementing its methodology from known formulas, an 

alternative method is sought. The conventional panel methods are mostly based on the work of Hess 

and Smith [18] and more recently of Katz and Plotkin [19]. These are restricted to low-speed 

aerodynamics and compressible formulations are only available for steady flows. Within this restricted 

flight regime, their applicability has been proven several times for their speed and feasibility on predicting 

pressure fields on single or multiple wing-like components. The success of these conventional panel 

methods is mainly because the exact formulas for the influence coefficients are known. A prominent 

contribution towards generalized potential formulations is presented in a NASA report [38] by L. Morino 

in 1974. Starting with the full nonlinear compressible potential equation, Morino used the Green’s 

function [39] approach to obtain a general time-domain integral solution for the potential, anywhere 

within the flow region. Being a general formulation, the conventional panel method integral equations 

can be obtained by assuming incompressible flow. A more interesting equation is obtained if one 

assumes small-perturbations in conjunction with harmonic oscillation potential. In this case, the integral 

equation becomes linear and the steady part can be completely decoupled from the unsteady part which 

allows both problems to be solved independently. Since the latter part is formulated in the convenient 

frequency-domain, it is appropriate for flutter calculations. The downside of this formulation resides 

mostly on the lack of exact formulas for evaluating the integrals, thus requiring numerical procedures.  

The method has been successfully implemented by NASA in the eighties, being first validated in a 

technical report by Yates et al. [40]. In this report, the flutter boundaries of four cantilever rectangular 

wings with different thickness ratios were obtained and have shown good results with the available 

experimental data. In a later report by Cunningham [41], the method was re-applied to an F-5 wing 

model with and without a tip-mounted missile. In this case, the unsteady lift and moment coefficients 

were calculated for several Mach numbers and two oscillation frequencies. Despite the absence of flutter 

calculations, the results agreed quite well with the experiments which increased the method’s credibility 

for more complex and realistic configurations. The advantages of this method and its apparent lack of 

widespread usage in the aeroelastic industry instigated the idea of implementing a similar method. In 

this sense, this dissertation have been mainly focused in attempting to implement Morino’s frequency-

domain panel method to model the flutter response of a 3D wing model. The implementation process 

closely follows reference [38], however, for improved clarity, additional details have been introduced in 

this thesis. The panel method has been fully developed and implemented in a personal computer using 

MATLAB® as programming language. Although alternative, faster languages such as C/C++ could have 

been used, MATLAB® excels in matrix operations while providing plenty of built-in functions that greatly 

facilitate the realization of the majority of tasks involved. The structural beam-rod was discretized using 

the finite element method, using the commercial software ANSYS® for generating the structural 

matrices. The final aeroelastic system of equations is written in terms of the structural DoFs and contains 

the mass, stiffness and AIC matrices. The AIC matrix expresses the generalized aerodynamic force and 

is obtained indirectly from the panel method. 
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4 THEORETICAL BACKGROUND 

In this chapter, for completeness, the theoretical foundations of the developed aeroelastic flutter solver 

are presented and described in detail. The first part of the text (§4.1) serves as an introductory note 

where some alternative aerodynamic theories of relevance are briefly described. The second part (§4.2, 

§4.3) addresses the theoretical and implementation aspects concerning the aerodynamic and structural 

models incorporated in the program. Finally, in the third part (§4.4), the aeroelastic model is defined and 

the solution process is explained. This includes the theoretical background and computer 

implementation of the modified p-k method, which has been fully developed in the current work. 

4.1 ALTERNATIVE THEORIES 

The current section provides a brief explanation of other aerodynamic theories that have been used for 

aeroelastic applications, in particular for determining the flutter speed. The first part of this section 

outlines the classical theories based on frequency domain formulations, such as the Strip Theory and 

the DLM. A more detailed description is provided for the Strip Theory since it was also implemented in 

the main work for validation purposes. The second part of this section includes two time-domain 

formulations, a high-fidelity Fluid Structure Interaction (FSI) method and a conventional unsteady panel 

method. In addition to the aerodynamic models, compatible structural models are also mentioned in 

order to clarify the architecture of the resulting aeroelastic model. 

4.1.1 Strip Theory 

The strip theory [8] [9] is considered the classical aerodynamic theory for solving aeroelastic flutter 

problems. The wing is modeled by an infinite flat plate submerged in a steady, incompressible potential 

flow. Each airfoil section is rigid in the chordwise direction allowing only small rigid rotations (angle of 

attack) about the wing’s elastic axis which is free to perform small translations in the vertical direction 

(heave), as illustrated in Figure 1. The coordinate system is centered at the elastic axis (XEA) and the 

aerodynamic center is placed at XAC: 

 

Figure 1: coordinate system for the 2D flat plate airfoil with 2 DoFs 

The flow field equation is simply: 
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∇2Φ = 0 (4) 

Where Φ is the velocity potential. With boundary conditions for a lifting airfoil: 

[
∂Φ

∂z
]
z=±0

= wa ≡
∂za
∂t

+ U∞
∂za
∂x

 (5) 

The subscript “a” indicates that the quantity is measured on the airfoil that is on the z=0 plane. It is 

assumed that the derivative is continuous across the airfoil (𝑧 = ±0). The pressure difference is given 

by: 

∆p = −ρ∞ [
∂∆ϕ

∂t
+ U∞

∂∆ϕ

∂x
] (6) 

∆Φ ≡ Φlower −Φupper (7) 

p,Φ → 0 as z → ∞ (8) 

The airfoil is modeled by a vortex singularity line γ(x, t) that extends to infinity defining the wake beyond 

the trailing edge. The induced vertical velocity (upwash) is given by the following integral: 

wa(x, t) = [
∂Φ

∂z
]
z=0

=
1

2π
 ∫

γ(ξ, t)

x − ξ
dξ

∞

−b

 (9) 

γ(x, y) ≡ [
∂Φ

∂x
]
upper

− [
∂Φ

∂x
]
lower

 (10) 

Introducing the circulation integral: 

Γ(x, t) ≡ ∫ γ(ξ, t)dξ = ∫ [
∂Φupper

∂ξ
−
∂Φlower

∂ξ
] dξ = −∆Φ(x, t)

x

−b

x

−b

 (11) 

Thus once γ  (and hence Γ ) is known, ∆p(x, t)  is readily computed. The full solution procedure is 

mathematically cumbersome and have not been reproduced here [9]. The methodology involves 

obtaining the vortex strength γ from equation (9) by inverting the relation between γ and wa . In the 

process, a special function (solving kernel) is chosen such that the Kutta condition is satisfied, i.e., γ ≠

∞ or ∆p ≠ ∞ at the trailing edge. In flutter calculations, the most common approach is to convert the 

equations to the frequency domain by assuming simple harmonic motion. In other words, all variables 

oscillate in time according to: 

wa(x, t) = w̅a(x)e
𝑖ωt 

γa(x, t) = γ̅a(x)e
𝑖ωt 

… 

(12) 

In the coordinate system shown in Figure 1, the airfoil unsteady lift and moment amplitudes are given 

by: 

∆L̅ =
1

2
 ρ∞U∞

2 c (𝑖
π

2
kα̅ +

π

2
k2
h̅

c
) +

1

2
 ρ∞U∞

2 cC (
k

2
) (2πα̅ − 𝑖2πk

h̅

c
+ 𝑖2πkα̅) (13) 
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∆M̅ =
1

2
 ρ∞U∞

2 c2 (−𝑖
π

8
kα̅ +

π

64
k2α̅) +

1

2
 ρ∞U∞

2 c2C (
k

2
) (
π

2
α̅ − 𝑖

π

2
k
h̅

c
+ 𝑖

π

8
kα̅) (14) 

 The lift and moment have units of force per unit span and moment per unit span respectively 

 ρ∞, U∞  are the far field air density and flight speed 

 c is the airfoil section chord 

 𝑖 represents the imaginary unit 

 h̅, α̅ are the heave and pitch (angle of attack) unsteady amplitudes respectively 

 k is the non-dimensional vibration frequency called “reduced frequency” given by k ≡
ωc

U∞
 

 For the moment calculation, the lift was considered at the aerodynamic center at ¼ chord 

Finally, the function C (
k

2
) is the complex, transcendental Theodorsen’s function which is given by: 

C (
k

2
) ≡ [

H1
(2)

H1
(2) + 𝑖H0

(2)
]
k
2

 (15) 

Where H0
(2)

 and H1
(2)

 are standard Henkel functions that can be readily computed using MATLAB or 

other math software. In the lift and moment equations above, the terms containing C (
k

2
) carry the 

circulatory effects and the remaining terms the inertial ones. This function models the aerodynamic lag 

caused by the unsteady vortex singularity distribution that constitutes the wake. Since it is a complex 

quantity with magnitude less than unity, the overall effect is to decrease the amplitude of the lift and 

moment and also change its phase with h̅ and α̅. Setting C (
k

2
) = 1 and discarding the inertial terms, the 

lift and moment formulas become the often called “quasi-steady aerodynamics” forces. This concludes 

the aerodynamic modelling of the strip theory. 

It is important to notice that this theory is two dimensional therefore tridimensional effects such as wing 

tip vortices are not taken into account. Although it can be applied to full 3D wings, in the Strip Theory, 

each “wing strip” generates its own pressure field as if the wing itself is infinite in the spanwise direction. 

Structural Model 

A simple and compatible structural model is to treat the elastic axis as a one dimensional beam-rod, a 

structural element that supports bending and torsion. The equilibrium equations can be obtained 

applying Lagrange’s equation to the aeroelastic system: 

d

dt
(
∂(T − V)

∂qi̇
) −

∂(T − V)

∂qi
= Qi (16) 

Where 

T =
1

2
∫ mża

2dy =
1

2
∫ λḣ2dy − ∫ Sα

L

0

ḣα̇dy + ∫ Iαα̇
2dy

L

0

L

0

L

0

 (17) 

V =
1

2
∫ EIxx (

∂2h

∂y2
)

2

dy +
1

2
∫ GJ (

∂α

∂y
)
2

dy
L

0

L

0

 (18) 
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Qh ≡
δWNC

δqh
= L     Qα ≡

δWNC

δqα
= M (19) 

 qi are the generalized coordinates, either h or α 

 m is the wing mass per unit area 

 λ is the wing mass per unit span 

 Sα is the inertial coupling given by ∫ mxdx
c

0
 

 Iα is the cross section moment of inertia given by ∫ mx2dx
c

0
 

 EIxx is the spanwise bending rigidity 

 GJ is the torsional rigidity 

 L is the wing semi-span 

 Qh  and Qα  are the generalized forces corresponding to the total lift and pitching moment 

respectively. Their explicit formula can be obtained from the non-conservative work formula WNC 

(31) and depends on the actual method of solution 

The elastic energies (18) refer to the classical Euler-Bernoulli beam theory for bending and St. Venant 

uniform torsion theory for torsion. Equation (16) can be solved by several methods, depending on the 

complexity of the structure and the theories used to write the energies and generalized forces. Such 

methodologies include the Galerkin method, the Rayleigh-Ritz method and the FEM. For instance, in 

the Rayleigh-Ritz method, the solution is approximated by a linear combination of shape functions and 

the generalized coordinates. For the current problem, the solution h and α would take the form: 

h(y, t) =∑φr
h(y)qr

h(t)

Nh

r=1

 (20) 

α(y, t) = ∑ φm
α (y)qm

α (t)

Nα

m=1

 (21) 

φr
h  and φm

α  are the shape functions for h  and α  respectively, and should satisfy the geometrical 

boundary conditions. Generally they are dimensionless polynomials or trigonometric functions in which 

some geometrical parameter is involved in the expression. The quantities qr
h(t)  and qm

α (t)  are the 

dimensional Nh + Nα new generalized coordinates of the problem. Introducing these expressions in the 

energy formulas (17) and (18) one obtains: 

T =
1

2
∑∑Mrs

hhq̇r
hq̇s

h

Nh

s

Nh

r

+∑∑Mrm
hα q̇r

hq̇m
α

Nα

m

Nh

r

+
1

2
∑∑Mmn

αα q̇m
α q̇n

α

Nα

n

Nα

m

 (22) 

V =
1

2
∑∑Krs

hhqr
hqs

h

Nh

s

Nh

r

+
1

2
∑∑Kmn

αα qm
α qn

α

Nα

n

Nα

m

 (23) 

Definitions: 
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Mrs
hh ≡ ∫ λ

L

0

φr
h(y)φs

h(y)dy    Mrm
hα ≡ −∫ Sα

L

0

φr
h(y)φm

α (y)dy (24) 

Mmn
αα ≡ ∫ Iα

L

0

φm
α (y)φn

α(y)dy (25) 

Krs
hh ≡ ∫ EIxx

L

0

φr
h(y)φs

h(y)dy    Kmn
αα ≡ ∫ GJ

L

0

φm
α (y)φn

α(y)dy (26) 

M and K are the mass and stiffness matrices of the wing, respectively. The Lagrange equation can now 

be re-written Nh + Nα  times, in terms of the Nh + Nα  generalized coordinates qi  defining a closed 

system of equations: 

∑ Mij

Nh+Nα

j=1

q̈j + Kijqj = Qi(qj)   i = 1, …Nh + Nα (27) 

Defining the complex frequency 𝑠 and its dimensionless form 𝑝: 

𝑠 ≡ 𝛿 + 𝑖𝜔, p ≡ k(γ + i) ≡ (
c

U∞
) s (28) 

And allowing damped oscillations in time: 

qj(t) = q̅je
st (29) 

The Lagrange equations can now be written in the convenient frequency domain: 

(
U∞
c
)
2

∑ p2M̅ij

Nh+Nα

j=1

q̅j + K̅ijq̅j = Q̅i(q̅j) (30) 

The explicit formula for the generalized force Q̅i(q̅j)  can be obtained by first calculating the non-

conservative work performed by the pressure forces on the wing: 

δWNC = ∫ ∫∆pδzadxdy
L

0

= ∫ ∫pdxδhdy − ∫ ∫pxdxδαdy =
L

0

L

0

 

= ∫ ∆L̅̅̅̅ (h̅, α̅)∑φr
h(y)dyδqr

heiωt +

Nh

r

L

0

∫ ∆M̅̅ ̅̅ (h̅, α̅)∑φm
α (y)dyδqm

α eiωt

Nα

m

L

0

 

(31) 

And then using the definitions in (19): 

Qh = Q̅he
st =

δWNC

δqh
= [∫ ∆L̅̅̅̅ (h̅, α̅)φr

h(y)dy
L

0

] est (32) 

Qα = Q̅αe
st =

δWNC

δqα
= [∫ ∆M̅̅ ̅̅ (h̅, α̅)φm

α (y)dy
L

0

] est (33) 

The last step is to expand h̅ and α̅ in the sectional lift and moment formulas defined in equations (13) 

and (14) using the shape functions (20) and (21). In order to avoid complex quantities in the final system 
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of equations, the complex unit is absorbed into the complex frequency “s” and then converted to its 

dimensionless form “p”: 

iω =⏟
γ≅0

s = (
U∞
c
) p (34) 

This is only exact for γ = 0 (flutter boundary) being an approximation elsewhere. In general, for linear 

flutter problems, the modes are lightly damped therefore such inconsistence should be of minor concern. 

The resulting generalized forces are the following: 

Q̅ij = [
Q̅hh Q̅hα
Q̅αh Q̅αα

] (35) 

Q̅hh =
1

2
 ρ∞U∞

2 c ∗
2π

c
[(G (

k

2
) +

k2

4
) − F (

k

2
) p]∑∫ φr

h(y)φs
h(y)dyq̅s

h
L

0

Nh

s=1

 (36) 

Q̅hα =
1

2
 ρ∞U∞

2 c ∗ 2π [F (
k

2
) −

k

4
G(
k

2
) − (

1

k
G (
k

2
) −

1

4
+
1

4
F (
k

2
)) p]∑∫ φm

h (y)φn
h(y)dyq̅n

α
L

0

Nα

n=1

 (37) 

Q̅αh =
1

2
 ρ∞U∞

2 c2 ∗
π

2c
[kG (

k

2
) − F (

k

2
) p]∑∫ φm

α (y)φs
h(y)dyq̅s

h
L

0

Nh

s=1

 (38) 

Q̅αα =
1

2
 ρ∞U∞

2 c2 ∗
π

2
[F (

k

2
) −

k

4
G(
k

2
) +

k2

32
+ (

1

k
G (
k

2
) −

1

4
+
1

4
F (
k

2
))p]∑∫ φm

α (y)φn
α(y)dyq̅n

α
L

0

Nα

n=1

 (39) 

C (
k

2
) ≡ F (

k

2
) + iG (

k

2
) (40) 

Finally, expanding Q̅ij  in the equilibrium equations (30) and rearranging the terms, the aeroelastic 

system equations in the frequency domain is fully defined: 

[ ∑ (
U∞
c
)
2

M̅ij

Nh+Nα

j=1

p2 + C̅ij
A(k)p+[K̅ij

S − K̅ij
A(k)]] q̅j = 0 (41) 

The matrix C̅ij
A is equivalent to an aerodynamic damping and can be obtained by grouping all terms 

proportional to “p” in the generalized force expressions. The remaining zero order terms can be 

interpreted as an aerodynamic stiffness and are grouped in matrix K̅ij
A . This equation defines a 

generalized nonlinear eigenvalue problem in “k” and must be solved iteratively. In order to extract the 

eigenvalues (and eigenvectors), several methods can be used. Amongst the most popular are the k 

method [27] and the p-k method [29], the latter to be presented in detail in the final section of this chapter. 

Flutter occurs if the solution qj(t) = q̅je
st becomes unstable, i.e., if |qj(t)| grows indefinitely with time. 

Since s = ω(γ + i), the sign of real part of each eigenvalue determines such behavior: 

 γ < 0: a particular mode is stable, and a perturbation in the system will be attenuated after a 

while 
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 γ ≥ 0 : a particular mode is unstable or on the onset of instability (flutter boundary). Any 

perturbation in the system can be amplified with time, potentially leading to the failure of 

structural components or aircraft stall 

Even though there are at least as many eigenvalues as generalized coordinates, usually only the lowest 

magnitude eigenvalues are of interest. The remainder high frequency modes are less likely to occur in 

practice and may be often ignored. The flutter speed is defined as the lowest flight speed at which 

appears an instable eigenvalue Re(p) > 0. 

4.1.2 The Doublet Lattice Method 

The DLM is an unsteady tridimensional lifting surface theory, initially presented by Albano and Rodden 

[15] and further developed by several authors in the following years. The theoretical basis of the DLM 

is the linearized compressible aerodynamic potential theory for subsonic flow. The undisturbed flow is 

uniform and is either steady or varying (gusting) harmonically. All lifting surfaces are assumed flat and 

lie parallel to the incoming flow. Each surface is divided into small trapezoidal lifting elements (called 

boxes) such that the boxes are arranged in strips whose sides are aligned with the undisturbed flow:  

 

Figure 2: doublet lattice grid example (adapted from [42], page 142) 

The aerodynamics is solved by collocation, in which an unknown constant strength doublet singularity 

line (red line) is placed at ¼ chord of each box and a control point, where the pressure and boundary 

condition are evaluated, is placed at the ¾ chord (blue dot). Although there is no mathematical proof, 

from numerical experimentation with this collocation scheme, it has become apparent that the Kutta 

condition at the wing’s trailing edge will be satisfied approximately [15]. The downwash wi induced on 

the control point of the ith box by the doublet lines of the boxes j = 1,2,…,n shown in Figure 2, can be 

expressed as follows: 

w̅i =∑Dij∆p̅̅̅̅ j

n

j=1

 (42) 

The matrix 𝐷𝑖𝑗 contains the pressure influence coefficients of each box j on the downwash at the control 

point i. This matrix condenses the aerodynamics and is generally written as the following integral: 
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Dij =
1

4πρ∞U∞
 xj cos λj∫K(xi, si, xj(μ), sj(μ), k)dμj (43) 

Here, (xi, si) refer to the orthogonal surface coordinates of the influenced point (receiver) such that the 

undisturbed stream is directed parallel to the x axis and ((xj(μ), sj(μ)) to the surface coordinates of the 

influencing doublet line parameterized by μ. The parameter λj stands for the doublet line sweep angle. 

The function K is the “Kernel function” whose complicated analytical expression will not be reproduced 

here. Once the matrix Dij is calculated (equation (42)), it can be inverted in order to obtain the pressure 

in terms of the downwash: 

∆p̅̅̅̅ i =∑Aijw̅j

n

j=1

, Aij ≡ Dij
−1 (44) 

The last step in the DLM is to impose the boundary condition at the surface of the wing: 

w̅(x, y) = (iω + U∞
∂

∂x
) z̅a(x, y) (45) 

Here, z̅a is the function defining the surface of the wing. In accordance with the DLM, this surface should 

be a single, zero thickness surface with some curvature allowed. However, for flutter calculations, this 

surface should be written in terms of generalized coordinates in order to proceed to the stability analysis. 

Such procedure depends on the structural theory chosen to model the wing. As in the strip theory, a 

common model is the one dimensional beam-rod. For instance, consider a flat, swept wing and the 

coordinate system shown in Figure 3: 

 

Figure 3: aerodynamic and structural coordinate systems for flat wing with sweep angle Λ 

The elastic axis defines the beam-rod and is allowed to bend in the Z direction and rotate about the y′ 

axis. In the elastic coordinate system, the deflection at any point on the wing is given by: 

z̅a(x′, y′) = h̅(y′) − x′α̅(y′) (46) 

Using the coordinate system depicted in Figure 3, the elastic coordinates are related to the aerodynamic 

ones by the following formulas: 
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x′ = x cos Λ − y sin Λ (47) 

y′ = x sin Λ + y cos Λ (48) 

Rewriting 𝑧𝑎: 

z̅a(x, y) = h̅(y
′(x, y)) − (x cos Λ − y sin Λ)α̅(y′(x, y)) (49) 

Now it is possible to relate the downwash �̅�  with the beam’s deflection h̅ and rotation angle α̅ by 

applying the boundary condition: 

w̅(x, y) = (iω + U∞(sin Λ + cosΛ)
∂

∂y′
) h̅ 

              + (iω [y sin Λ − cosΛ (x +
U∞
iω
)] + U∞[(x + y) sin

2 Λ + (y − x) sin Λ cosΛ − x]
∂

∂y′
) α̅ 

(50) 

In order to transform equation (50) to its vector form, it is necessary to transfer the aerodynamic nodes 

and forces into the structural ones. The most simple way is to assume that each box strip (along X 

direction) is uniquely connected to a single structural node located at the elastic axis on the same wing 

strip. Thus, the downwashes w̅j from equation (44) are obtained by applying equation (50) for each 

aerodynamic node located in (x,y) with the unknowns h̅ and α̅ constant for each wing strip. Consider the 

wing strip depicted in Figure 4 for instance. If the wing strip contains boxes j, j+1 and j+2 and the 

respective structural node is “m”, then the downwashes w̅j, w̅j+1 and w̅j+2 are written in terms of the 

same structural DoFs h̅m and α̅m using equation (50). Numerically, since h̅m and α̅m are constant for all 

the boxes in a strip, this is equivalent to summing up the downwashes along the same strip. 

 

Figure 4: wing strip containing 3 DLM boxes with control points j, j+1 and j+2 

The aerodynamic forces and torsional moments can be calculated at “m” by integrating the pressure ∆pj 

along the strip: 

L̅m = ∑ ∆p̅j∆Sj

Nj

j ∈ Strip

 (51) 
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M̅m = ∑ ∆p̅j∆Sj(xj − xj
m) cos Λ

Nj

j ∈ Strip

 (52) 

 ∆Sj is the area of each aerodynamic box 

 xj
m is the position of the elastic axis (structural node “m”) on each strip 

Upon performing these two steps, the lift and torsional moment are written in terms of the heave ℎ̅ and 

pitch angle �̅� at each structural node. Finally, these quantities can be conveniently organized into a 

matrix and, in conjunction with the structure’s stiffness and mass matrices, the aeroelastic problem can 

be solved. This procedure is essentially the planar version of the Rigid Body Attachment method 

described in chapter 6.4 of reference [25]. 

It is important to notice that in order to use this method, the derivatives 
∂h

∂y′
 and 

∂α

∂y′
 must be evaluated 

numerically using for instance finite difference schemes, which constitute a source of error in the 

solution. Another way of solving the problem is to resort to the Rayleigh-Ritz method, introduced in the 

previous section (4.1.1). In the Rayleigh-Ritz method, instead of summing the downwashes of each 

strip, all the downwashes of all aerodynamic control points are summed and the result is a function of 

h(y′), α(y′),
∂h(y′)

∂y′
 and 

∂α(y′)

∂y′
. The lift and pitching moment are calculated in the same way, except that 

the chordwise length of each box ∆xj is used instead of its area ∆Sj. Finally, the deflection and pitch 

angle are approximated by shape functions using equations (20) and (21), and the lift and moment 

generalized forces are obtained by integrating L̅ and M̅ over the length of the span. Since the sectional 

lift and moment are now continuous functions of the elastic axis coordinate y’, 
∂h

∂y′
 and 

∂α

∂y′
 can be 

evaluated exactly. The process of determining the mass and stiffness matrices and the methodology of 

obtaining the final solution from the resulting stability equation is described in section 4.1.1. 

The DLM is still widely used today by the CFD/CSD industry, such as MSC.NASTRAN® and ZAERO® 

for its low computational cost and relatively high accuracy on wing-like components. The coupling 

between the aerodynamic boxes and structural nodes described above are rather simplistic and reflect 

the academic purpose of this thesis. More sophisticated methods used in industry include the so-called 

spline methods, which resort to the general analytical solutions of uniform plates and beams. Detailed 

information about these methods can be found in [26] and chapter 6 of [25].  

4.1.3 Time-Domain Formulations 

All the methods presented so far for wing flutter prediction were formulated in the frequency domain. 

These methods were based on the assumption of small amplitude, unsteady oscillatory behavior, about 

a static, equilibrium configuration. In addition, both structural and aerodynamic theories were linear, in 

conformity with the hypothesis of small structural displacements and small aerodynamic perturbations. 

Mathematically, this leads to a decoupling between the steady and unsteady terms in the final 

aeroelastic equation which allows the unsteady problem to be solved independently from the steady 

one. The flutter boundary was estimated by solving the unsteady part of the system of equations that 
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was essentially an eigenvalue problem (equation (3)). If any kind of non-linearity is to be included in the 

model, the aeroelastic problem becomes fully coupled, and the usual frequency domain approach 

cannot be implemented. In such cases, the flutter boundary can only theoretically be obtained via the 

more general time domain formulation: 

[M]{ẅ} + [C]{ẇ} + [K]{w} = {F(t)} (53) 

Until the development of modern computers, time formulations for aeroelastic applications were avoided 

because of its unconditional high CPU cost and its cheap and sufficiently accurate frequency domain 

alternatives. The main reasons for this high computational cost resides in the definition of proper initial 

conditions and the unknown duration and number of time steps required. Also, since time formulations 

are mostly used on non-linear problems, the several iterative procedures involved at each time step 

make this this approach very expensive, even in today’s standards of available computational resources.  

4.1.3.1 FSI Methodologies 

One example of a non-linear aerodynamic problem is attempting to solve the pressure field resorting to 

the full Navier-Stokes equations or even the inviscid Euler equations. When such non-linear models are 

applied to aeroelastic problems, the respective aeroelastic analysis is commonly addressed in the 

scientific community as an FSI problem. A typical FSI analysis usually involves the following steps: 

1. Set the initial conditions: wing orientation, speed, acceleration, free-stream flow speed and 

direction, structural and aerodynamic mesh, etc.; 

2. Determine aerodynamic forces: according to the specified initial conditions, the non-linear 

aerodynamic equations are solved iteratively and the aerodynamic force at each aerodynamic 

node is obtained. Several methods can be used in solving the aerodynamics. For instance, the 

Navier-Stokes equations are often solved using the RANS approach along with turbulence 

models; 

3. Grid transfer: in general, the aerodynamic grid nodes position differs from the structural ones. 

The forces and grid displacements can be transferred between grids via transformation 

matrices. Such matrices can be derived from grid coupling theories such as the 3D Infinite Plate 

Spline [25] 

4. Determine structural displacements: once the aerodynamic force at each structural node is 

known, the displacements at the new time step can be obtained by solving equation (53). 

Generally, this step includes normalizing the stiffness and mass matrices with the modal matrix 

(equations (54) and (55)) and then using a time-marching scheme such as the Newmark 

algorithm [23] 

5. Track results: the continuous generation of a plot describing the displacement or other relevant 

quantity over time is essential for it can provide immediate information about convergence and 

the overall behavior of the solution 

6. Deform mesh: both aerodynamic and structural grids are deformed according to the calculated 

structural displacements. The aerodynamic grid is generated from the new structural mesh 

using similar spline matrices mentioned in step 3 
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7. Repeat steps 2-6: the process of constantly changing the mesh and calculating the 

aerodynamic forces and structural displacements is repeated for several time steps until the 

desired aeroelastic phenomena (flutter for instance) is observed 

The following diagram depicts the several steps taken in a typical FSI problem: 

 

Figure 5: FSI diagram with usual computational steps taken [34] 

Modal normalization (step 4 above): 

{q} = [Φ]{w} (54) 

[I] = [Φ]T[M][Φ],      [ω2] = [Φ]T[K][Φ],      [C̅] ≡ [Φ]{w},      {Q} ≡ [Φ]{F} (55) 

{q̈} + [ω2]{q} = {Q} (56) 

Time-marching scheme (Newmark algorithm): 

q̇n+1 = q̇n + (1 − γ)Δtq̈n + γΔtq̈n+1 
(57) 

qn+1 = qn + Δtq̇n + Δt
2 (
1

2
− β) q̈n + Δt

2βq̈n+1 (58) 

γ ≥
1

2
∧ β ≥

1

4
(γ +

1

2
)
2

 (59) 

The solution is obtained in three steps:  

1. Using equations (57) and (58), the aeroelastic equations are written at time step (n+1) 
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[[I] + Δtγ[C̅]]{q̈n+1} = 

= {Qn+1} − [ω
2]{qn} − [Δtω

2 + [C̅]]{q̇n} − [Δt
2 (
1

2
− β) [ω2] + Δt(1 − γ)[C̅]] {q̈n} 

 

(60) 

2. Equations (60) are solved for the acceleration q̈n+1 

3. Using equations (57) and (58), the velocities q̇n+1 and displacements qn+1 can be obtained for 

the time step (n+1) 

4.1.3.2 Unsteady Panel Methods 

For low subsonic speeds, accurate and relatively fast time-domain aeroelastic solutions can be obtained 

using incompressible, unsteady panel methods. Similarly to the DLM, panel methods are collocation 

methods based on linearized potential theory but, unlike the DLM, they are not restricted to a single 

lifting surface. These methods allow the free discretization (paneling) of tridimensional geometries which 

makes them more versatile when comparing to lifting surface methods. However, the wake modeling is 

mandatory in order to satisfy the Kutta condition and to preserve the total circulation at each time step 

(Helmholtz theorem). The unsteady panel method given by Katz & Plotkin [19] has been used 

extensively in the literature for its fast, accurate and general applicability within the domain of flow 

around slender bodies. The pressure field at each time step is computed by introducing constant source 

σj and doublet μj singularities distributions at each panel and then satisfying the boundary condition of 

zero normal fluid flux at every control point of the body: 

∂Φ

∂n
− (𝐕𝟎 + 𝐯𝐫𝐞𝐥 + 𝛀 × 𝐫) ∙ 𝐧 = 0 

⇔ σ = −𝐧 ∙ (𝐕𝟎 + 𝐯𝐫𝐞𝐥 + 𝛀 × 𝐫) 

(61) 

 All quantities (velocities) are measured in the body frame of reference 

 Φ is the velocity potential and 
∂Φ

∂n
 is the fluid normal velocity 

 𝐕𝟎 is the translational kinetic body velocity 

 𝛀 × 𝐫 is the rotational kinetic body velocity 

 𝐯𝐫𝐞𝐥 is the relative body velocity (deformation rate) 

 𝐧 is the normal surface unit vector 

Additionally, the Kutta condition is a physical condition that must be numerically imposed at the trailing 

edge panels: 

γTE ≡ −
∂μTE
∂x

= 0 ⇔ (μu − μl)TE = μWTE
 

ux ≡
∂μ

∂x
 

(62) 

 γTE is the trailing edge vorticity 

 μu and μl are the doublet strengths of the upper and lower trailing edge panels respectively 

 μWTE
 is the doublet strength of the 1st wake panel 
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 ux is the X component of the induced perturbation flow velocity 

The Kutta condition expressed above basically forces the trailing edge to be a flow stagnation point and 

is valid for 2D flows. In 3D unsteady flows, the validity of this assumption depends on the component of 

the kinematic velocity, normal to the trailing edge UTE
n (t) , which must be much smaller than the 

characteristic velocity U∞. 

The wake is divided in several panels with different orientations and lengths that are determined during 

the time dependent wake roll-up process. The procedure for modelling the unsteady wake can be 

described according to the following generic steps: 

1. At the first time step t = ∆t, the first row of wake panels are added to the panels of the trailing 

edge. These panels are usually aligned with the bisector trailing edge plane and their lengths is 

given by ∆lwake = UTE(t)∆t. They carry a doublet singularity whose strength is related to the 

trailing edge panels through the Kutta condition (equation (62)) 

2. Once all the singularities strengths are calculated, the velocity field can be obtained everywhere 

in the field, including in the wake region. Since the wake cannot sustain pressure forces, it is 

assumed that the wake panels are convected with the downstream flow. To achieve the wake 

rollup, the induced velocity (𝑢, 𝑣, 𝑤)𝑙 at each wake panel corner point 𝑙 is calculated and then 

the wake panels are moved by (see Figure 6): 

(∆x, ∆y, ∆z)l = (u, v, w)l∆t (63) 

3. At the next time step, a new row of wake panels are inserted behind the trailing edge and step 

2 is repeated for the two rows of wake panels. The doublet strength of the “old” row of wake 

panels is the same, in accordance with Helmholtz’ theorem [19] §2.9 

 

Figure 6: schematic description of a wing’s trailing edge and the latest wake row of the unsteady wake (Katz & 
Plotkin §13.13 page 435 [19]) 
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This aerodynamic model can be incorporated with any of the structural models described so far. In 

comparison with the DLM, this formulation benefits from the more elaborate wake modelling and the 

capability of including thickness effects. However, there is an increased computational cost, the 

additional requirement of proper initial conditions and it is restricted to low subsonic speed. 

4.2 AERODYNAMIC MODEL (PANEL METHOD) 

The objective of this section is to present the theoretical foundations that support the aerodynamic model 

of the final wing flutter program, which is fundamentally an unsteady panel method in the frequency-

domain. In addition, all the necessary technical details for the computer implementation of the panel 

method are carefully exposed. The theoretical aspects reproduced here follow the work by L. Morino 

[38] introduced in section 3.2. 

4.2.1 Theoretical Aspects 

In this sub-section, a theoretical overview of the potential flow case is presented, starting with the 

general potential flow field equation. Next, the panel method integral equation is formulated. 

Physical preliminaries of a potential flow 

 Inviscid fluid (zero viscosity) 

 Curl-free velocity field (fluid particles cannot rotate ∇ × 𝐕 = 0) 

Field equation 

a2∇2Φ =
Dc
2Φ

Dt2
 (64) 

With 

Dc
Dt
≡
∂

∂t
+ ∇Φ ∙ ∇ (65) 

Equation (64) models a compressible tridimensional unsteady potential flow field in terms of the local 

sound speed “a” and the total velocity potential Φ defined by: 

𝐕 = ∇Φ (66) 

The non-linear nature of the field equation (64), also called the full compressible potential flow equation, 

makes it very difficult to solve directly. A common simplification used extensively in potential 

aerodynamics is to write the total potential as the sum of the far-field constant potential and a small 

deviation (perturbation potential φ), then neglecting all the non-linear terms: 

Φ = U∞(x + φ) (67) 

∇2φ −
1

a∞
2

d2φ

dt2
= F(φx, φy, φz, φxx, φyy, φzz, φtt, φxy, φyz, φxz, φxt, φyt, φzt) (68) 
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d

dt
≡
∂

∂t
+ U∞

∂

∂x
 (69) 

 U∞ represents the far-field constant velocity field which is assumed in the Ox direction 

 a∞ represents the far-field speed of sound and it is assumed constant everywhere 

 F is a functional containing all the non-linear terms in φ 

Considering small perturbations, φ ≪ Φ, all the non-linear terms are of second order or higher and 

therefore will be neglected. Setting F = 0 in equation (68) and expanding all the terms, the final linear 

equation for the compressible unsteady 3-D potential aerodynamics is the following: 

(1 − M∞
2 )
∂2φ

∂x2
+ 
∂2φ

∂y2
+
∂2φ

∂z2
−
1

a∞
2
(
∂2φ

∂x2
+ 2U∞

2
∂2φ

∂x ∂t
) = 0 (70) 

Pressure field formula 

The pressure at each point can be obtained from the potential field according to Bernoulli’s theorem [38] 

[42]: 

p = p∞ [1 −
γ − 1

a∞
2

(
∂Φ

∂t
+
1

2
 ∇Φ ∙ ∇Φ −

1

2
 U∞

2 )]

γ
γ−1

 (71) 

Here, γ is the ratio of specific heats and p∞ is the pressure of the far-field. For practical reasons and for 

consistency with the previous simplifications, this formula can be linearized to the following useful 

expression: 

p − p∞ = −ρ∞U∞ (
∂φ

∂t
+ U∞

∂φ

∂x
) (72) 

The symbol ρ∞ represents the density of any point in the far-field. 

Method of solution 

The solution of equation (70) can be obtained by using appropriate finite difference schemes and the 

usual boundary and initial conditions for inviscid fluids. However, this would require the discretization of 

the entire flow field and therefore it is not feasible computationally. The panel method is a Boundary 

Element Method (BEM) that is suitable for linear equations and requires only the discretization of the 

boundaries (surfaces). The solution procedure is based on the Green’s function, which in this case, is 

the solution of the following equation: 

∇2G −
1

a∞
2

d2G

dt2
= δ(x − x1, y − y1, z − z1, t − t1) (73) 

G = 0, (x, y, z, t) → ∞ (74) 

The delta function δ is 4-dimensional Dirac function. For the subsonic case (M<1), the Green’s function 

is given by [42]: 
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G(x, y, z, t) = −
1

4πrβ
 δ(t1 − t + T) (75) 

rβ ≡ √(x − x1)
2 + β2[(y − y1)

2 + (z − z1)
2] (76) 

T ≡
1

a∞β
2
 [rβ −M∞(x − x1)] (77) 

β2 ≡ 1 − M∞
2  (78) 

The next steps involve mixing equations (70) and (75) in the Green’s Theorem and solve for the potential 

𝜑 at any point in space by means of an integral equation along the surfaces. The full mathematical 

procedure is extensive and is available in reference [38]. The final integral equation is the following: 

4πEφ(x, y, z, t) = −∯[
∂φ

∂n1

1

rβ
]

T
|∇1S|

T

|∇1S
T|
dST +∯[

∂

∂n1
(
1

rβ
)φ]

T
|∇1S|

T

|∇1S
T|
dST −

∂

∂t
∯[

∂T

∂n1

φ

rβ
]

T
|∇1S|

T

|∇1S
T|
dST (79) 

The superscript T indicates evaluation at time t1 = t − T and E is defined as follows: 

E = {

0    point inside the body
1 point outside the body
1

2
     point on the surface

 (80) 

Equation (79) is the starting point for any subsonic panel method, either steady or unsteady, time or 

frequency-domain. 

Aerodynamic Modeling of Flutter Instability 

In this section, equation (79) is simplified and reformulated in the frequency-domain in a form that is 

suitable for flutter calculations. 

Panel method integral equation in the frequency domain 

In the flutter analysis the main concern is the onset of the instability and not the exact time-dependent 

deformed shape of the body. It is assumed that the surface is free to oscillate around a steady state 

configuration and that the amplitudes are small. This allows evaluating the integrals on the steady 

configuration. With these assumptions the following simplifications take place: 

|∇𝑆|𝑇 = |∇𝑆𝑇| = |∇𝑆| (81) 

∂S

∂t
≠ 0 (82) 

ST ≡ S(x, y, z, t) = SS(x, y, z) + εSU(x, y, z)e
st (83) 

The parameter 𝜀 represents an amplitude that should be small and “s” is a complex number representing 

both harmonic (imaginary part) and exponential grow or decay (real part) of the amplitudes.  

The next step is to re-write the normal perturbation velocity 
∂φ

∂n
 in terms of the boundary condition (84) 

and equation (83). Impermeability requires that: 
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∂φ

∂n
= −

1

U∞

1

|∇SS|

dS

dt
 (84) 

Since: 

dS

dt
=
∂S

∂t
+ U∞

∂S

∂x
 (85) 

Using equation (83), equation (84) can be re-written in the following way: 

∂φ

∂n
= −

1

U∞

1

|∇SS|
 [
∂SS
∂x

+ ε (
s

U∞
SU +

∂SU
∂x
) est] = Qn,S + Qn,U (86) 

Qn,S = −
1

|∇SS|

∂SS
∂x

 (87) 

Qn,U = −
ε

|∇SS|
(
s

U∞
SU +

∂SU
∂x
) est = Q̃ne

st (88) 

The potential 𝜑 can also be split in two contributions: 

φ = φS + εφ̃e
st (89) 

Finally, equation (79) can be re-written using (83), (86) and (89). Noting that the resulting equation is 

linear in both 𝜑𝑆 and 𝜀�̃�, the steady and unsteady contributions can be treated independently, therefore 

defining two separate equations. For flutter calculations, only the unsteady equation needs to be solved 

because it is the only source of unsteady fluctuations in the potential. The unsteady integral equation in 

the frequency domain suitable for a panel method is the following: 

2πφ̃(x, y, z) = −∯Q̃n
e−sT

rβ
dSS +∯φ̃

∂

∂n1
(
e−sT

rβ
)dSS  (90) 

The integrands 
e−sT

rβ
 and 

∂

∂n1
(
e−sT

rβ
) are called the unsteady subsonic source and doublet singularities 

respectively. Since the calculations are performed on the surface, the parameter E  was set to ½. 

Computationally, it’s convenient to perform the so-called Generalized Prandtl-Glauert transformation the 

previous equation: 

x = βx0, y = y0, 𝑧 = 𝑧0, t =
t0
βa∞

, s = βa∞s0 (91) 

Resulting in the following final panel method equation: 

2πφ̂(x0, y0, z0) = −∯Q̂n
e−s0r0

r0
dSS0 +∯φ̂

∂

∂n01
(
e−s0r0

r0
) dSS0  (92) 

φ̂ = φ̃e−s0Mx0 ,    Q̂n = Q̃ne
−s0Mx0 (93) 

r0 = √(x0 − x01)
2 + (y0 − y01)

2 + (z0 − z01)
2 (94) 

In equation (92), the integral relation between the modified potential φ̂  and Q̂n  is completely 

independent of the Mach number. In addition, the integrands became greatly simplified. All the 
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integrations are evaluated in the transformed surface S0(x0, y0, z0), which is equivalent to the original 

surface S stretched in the x direction by a factor of 1/β. 

Definition of the Generalized Displacements 

In the frequency domain, there is a need to write the surface function S in terms of several harmonics 

which are basically the translational DoFs in the (x, y, z) directions. In order to do so, the surface 

equation S is written in the following alternative way: 

S = SS + ∆S (95) 

The term ∆S is an unsteady deviation from the equilibrium position SS. Expanding S in Taylor series 

around SS, we get: 

S = SS(xS + εdxe
st, yS + εdye

st, zS + εdze
st) = SS + ε𝐝 ∙ ∇SSe

st + O(ε2) (96) 

The vector 𝐝  represents the above mentioned translational DoFs at each point of the surface. 

Comparing equations (96) and (83), one can infer the following expression for the unsteady surface 𝑆𝑈: 

SU(x, y, z) = 𝐝 ∙ ∇SS 
 

(97) 

Finally, the DoFs are introduced in the integral equation (92) through the modified normal perturbation 

speed Q̂n, which depends explicitly on SU: 

Q̂n = −
ε

|∇SS|
(
s

U∞
SU +

∂SU
∂x
) e−s0Mx0 = −

β

M∞

s0𝐧 ∙ �̂� − 𝐧 ∙ �̂�
′ (98) 

�̂� = e−s0M∞x0 {

dx
dy
dz

},    �̂�′ = e−s0M∞x0

{
 
 

 
 
∂dx
∂x
∂dy

∂x
∂dz
∂x }
 
 

 
 

 (99) 

The derivatives in x direction �̂�′  represent three rotational DoFs, which in conjunction with the 

translational ones define a set of 6 DoFs per point. The integral equation (92) becomes: 

2πφ̂(x0, y0, z0) = ∯(
β

M
s0𝐧 ∙ �̂� + 𝐧 ∙ �̂�

′)
e−s0r0

r0
dSS0 +∯φ̂

∂

∂n01
(
e−s0r0

r0
) dSS0  (100) 

This equation is the starting point for the computational implementation of the frequency-domain panel 

method. 

Wake Modeling 

The surface S0 is the sum of two closed surfaces, the body and the wake: 

S0 = SB0 + SW0 (101) 
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The wake is defined as a flat surface starting from the trailing edge of the wing and aligned with the free 

stream velocity 𝐕∞. The wake is considered a free surface therefore it cannot sustain pressure forces. 

In other words: 

∆pwake = 0 (102) 

Expressing the pressure as the sum of a steady and unsteady contribution: 

p(x, y, z, t) = pS(x, y, z) + εp̃(x, y, z)e
st (103) 

And recovering the linearized pressure equation (72), the pressure difference can be written in the 

frequency-domain: 

∆p̃wake = −ρ∞U∞ (s∆φ̃wake + U∞
∂∆φ̃𝑤𝑎𝑘𝑒
∂x

) (104) 

Using the Prandtl-Glauert transformation and introducing (102), the following final relation is obtained: 

e

s0x0wake
M∞ ∆φ̂wake = e

s0x0TE
M∞ ∆φ̂TE (105) 

The subscript “TE” refers to the trailing edge. This equation must be satisfied at every point of the wake. 

4.2.2 Computational Implementation 

In order to find the modified potential distribution �̂�, and later the unsteady pressure p̃, equation (100) 

must be satisfied in the entire surface (physical) domain. Although the formulation until now is written in 

terms of the complex frequency “s”, the remaining mathematical developments will be restricted to the 

simple harmonic motion s = iω. In addition, the frequency “ω” will be converted to its non-dimensional 

form “k”, also known as the reduced frequency: 

k =
ωc

V∞
 (106) 

The methodology is the following: 

1. Surface modeling: both physical surfaces and wake are divided in several flat panels 

(quadrilaterals and/or triangles) and stored in arrays according to a proper numbering scheme 

2. Collocation: for each panel, the coordinates of its centroid are stored in arrays. These define 

the collocation points where the unknown potential, aerodynamic DoFs and pressure will be 

calculated. Since they are assumed constant for each panel, these quantities can be taken out 

of the integrals 

3. Influence coefficients: all integrals are now calculated for each panel individually and the 

integral equation (20) is transformed into a sum of integrals (107). Each integral can be 

interpreted as an influence coefficient of each panel singularity distribution in the potential at a 

certain control point 

4. Linear system of equations: writing the integral equation for each collocation point on the 

body surface we obtain a linear system of equations with unknowns φ̂i and q̂k (113) 
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5. Pressure scheme: the pressure distribution can be obtained from the potential using the 

linearized pressure equation (72). By choosing an adequate finite difference scheme, a relation 

between the unsteady pressure p̃i and the modified aerodynamic DoFs q̂k can be found (118) 

6. Coordinate transformation: the modified aerodynamic DoFs q̂k are converted to the physical 

ones q̃k using equation (99), resulting in equation (120) for the unsteady pressure 

7. Aerodynamic force array: finally, the normal force array {F̃n} can be obtained by multiplying 

the vector p̃i by each panel area (121) and through a rotation matrix, a new vector {F̃}  is created 

containing the Cartesian components the pressure force for each panel (122) 

4.2.2.1 Discretized Integral Equations 

Computational form of the integral equation (100): 

2πφ̂i =∑∬
e−𝑖ω0(𝑀,𝑘)r0

ij

r0
ij

dSS0
j
(𝑖
k

c
𝐧 ∙ �̂� + 𝐧 ∙ �̂�′)

j
+

NB

j=1

∑ ∬
∂

∂n01
j
(
e−𝑖ω0(𝑀,𝑘)r0

ij

r0
ij

)dSS0
j
φ̂j

NB+NW

j=1

 (107) 

Definitions: 

Bij ≡∬
e−𝑖ω0(𝑀,𝑘)r0

ij

r0
ij

dSS0
j
    Cij ≡∬

∂

∂n01
j
(
e−𝑖ω0(𝑀,𝑘)r0

ij

r0
ij

)dSS0
j

 (108) 

Q̂n
j
= −(𝑖

k

c
𝐧 ∙ �̂� + 𝐧 ∙ �̂�′)

j
≡ −Djkq̂k (109) 

ω0(M, k) ≡
Mk

cβ
 (110) 

Djkq̂k ≡

[
 
 
 
[n]1 0

0 [n]2

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
0 [n]NB]

 
 
 

{
 
 

 
 
{d̂}

1

{d̂}
2

⋮
{d̂}

NB}
 
 

 
 

 (111) 

[n]1 ≡ [𝑖
k

c
nx 𝑖

k

c
ny 𝑖

k

c
nz

nx ny nz]
1

  ,   {d̂}
1
=

{
 
 
 

 
 
 
d̂x
d̂y

d̂z
d̂x′

d̂y′

d̂z′}
 
 
 

 
 
 

1

=

{
 
 

 
 
q̂1
q̂2
q̂3
q̂4
q̂5
q̂6}
 
 

 
 

 (112) 

𝑁𝐵 , 𝑁𝑊 are the total number of panels in the body and the wake respectively. Re-writing eq. (107): 

2πφ̂i =∑BijDikq̂k +

NB

j=1

∑ Cijφ̂j

NB+NW

j=1

 (113) 

Solving for the modified potential and writing in vector form we have: 

[4π[I] − [C]]{φ̂} = [B][D]{q̂𝐴} (114) 

 [I] is the identity matrix NB X NB 
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 [C] is the doublet matrix NB X (NB + NW) 

 [B] is the source matrix NB X NB 

 [D] is the DoF matrix NB X 6NB2 

 {φ̂} is the vector of the modified potential (NB + NW) X 1 

 {q̂A} is the vector of the aerodynamic DoFs 6NB X 1 

Note: this equation is written before the wake treatment. The wake points (NW) do not bear additional 

unknowns as they are related to the trailing edge through equation (105). Afterwards the doublet’s matrix 

C becomes square (NB x NB) and the potential is calculated on the wing surface only (NB points). 

4.2.2.2 Aerodynamic Force Vector 

The aerodynamic force vector contains the components of the pressure force on each control point and 

is written in terms of the aerodynamic DoFs by a coefficient’s matrix. This is the final step concerning 

the implementation of the aerodynamic model. 

Re-writing the pressure equation (72) in the frequency domain and performing the Prandtl-Glauert 

transformation (91), the unsteady pressure becomes: 

p̃ = −ρ∞U∞
2 (𝑖

k

c
(φ̂e𝑖ω0(M∞,k)M∞x0) +

1

β

∂(φ̂e𝑖ω0(M∞,k)M∞x0)

∂x0
) (115) 

⟺ p̃ = −
1

2
ρ∞U∞

2 ∗ (
2𝑖k

c
(1 + (

M∞

β
)
2

) φ̂e𝑖ω0(M∞,k)M∞x0 +
2

β

∂φ̂

∂x0
e𝑖ω0(M∞,k)M∞x0) (116) 

The x0 derivative can be approximated by a finite difference rule. For subsonic flow, an adequate formula 

is a central difference: 

∂φ̂

∂x0
=
φ̂i+1 − φ̂i−1
x0i+1 − x0i−1

+ O(ε2) (117) 

This formula is second order accurate on a uniform mesh and has been implemented on every control 

point of the wing. An exception occurs at the leading and trailing edge control points where forward and 

backwards first order differences have been implemented, respectively. Independently of the rule used, 

it is always possible to write a relation between the pressure and the potential by means of a coefficient 

matrix: 

{p̃} = −
1

2
ρ∞U∞

2 ∗ [P]{φ̂} (118) 

Inserting equation (114) into (118) the following numeric expression is obtained: 

{p̃} = −
1

2
ρ∞U∞

2 ∗ [P]{φ̂} = −
1

2
ρ∞U∞

2 ∗ [P][2π[I] − [C]]
−1
[B][D]{q̂A} (119) 

                                                      
2 Matrix [D] is called [D_aux] in the code 
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The modified aerodynamic DoFs {q̂𝐴} can be transformed into the physical ones {q̃A} according to 

equation (99). The resulting coefficient matrix is called [A] and expresses final relation between the 

unsteady pressure at each panel and the several aerodynamic DoFs: 

{p̃} = −
1

2
ρ∞U∞

2 ∗ [A]{q̃A} (120) 

The unsteady normal force is directly obtained by multiplying the unsteady pressure by each panel 

surface area: 

{F̃n} = [S]{p̃} = −
1

2
ρ∞U∞

2 ∗ [S][A]{q̃A} 

[S] ≡ [

A1 0
0 A2

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
0 ANB

] 

(121) 

The normal force is then projected in the (x,y,z) directions by means of a rotation matrix [R]: 

The extra -1 factor establishes the pressure force convention of being positive when pointing into the 

body, in the direction opposite to the exterior surface normal. The matrix [R] is 3NB X 6NB, [A] is NB X 

6NB (after the wake treatment) and {F̃} is 3NB X 1. This concludes the definition of the aerodynamic 

force and the aerodynamic modeling phase. 

4.3 STRUCTURAL MODEL 

The structural model used in this work consists in a single one dimensional straight beam that coincides 

with the wing elastic axis (Figure 7 – red line). It is assumed that the whole rigidity of the wing is 

concentrated along this beam and that the structural nodes are exactly at the midpoints of the spanwise 

panels (Figure 7 – red squares). The structure is modeled using the finite element software ANSYS® 

and both stiffness and mass matrices are extracted and stored in a file. 

 

Figure 7: illustration of both aerodynamic and structural meshes. Top left – perspective view with 3 structural nodes; 
Top right – side view; Bottom – top view with 20 structural nodes. The structural nodes (red squares) are always 
located at the center of each panel along the spanwise direction and on the mean surface (camber) 

{F̃} = −
1

2
ρ∞U∞

2 ∗ (−1) ∗ [R]{F̃n} =
1

2
ρ∞U∞

2 ∗ [R][S][A]{q̃A} (122) 
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4.3.1 Computational Setup in ANSYS 

Table 2: geometrical and structural proprieties of the structural model using ANSYS®. The words written in bold 
refer to variables used in the ANSYS® input file “structural_analysis_wing.txt” 

Geometry 

 

Length span 

Sweep Angle beta 

Cross Section  
“sectype,1,beam,rect,,0” 

“secdata,b,h” 

Section Inertias 
Ixx =

1

12
bh3 

Izz =
1

12
b3h 

Torsion Constant J ≈ bh3(
1

3
− 0.21

h

b
(1 −

1

12
(
h

b
)

4

)) 

Nº of active 
nodes 

NDIV 

Number of 
nodes 

NDIV + 1 

Element Type 
BEAM 188 

“ET,1,beam188” 

Theory 1st order shear theory 

Shape functions Linear (default) 

Boundary 
Conditions 

All DoFs zero at y=0 
“d,1,all,0” 

Material 
Proprieties 

(linear isotropic) 

Density rho “MP,dens,1,rho” 

Young’s Modulus E “MP,EX,1,E” 

Shear Modulus G “MP,GXY,1,G” 

Poisson’s Ratio poisson “MP,PRXY,1,poisson” 

Flapwise Rigidity EIx E ∗ Ixx 
Lagwise Rigidity EIz E ∗ Izz 
Torsional Rigidity GJ G ∗ J 

Analysis Type 
[43] 

Substructuring/CMS 
“antype,substr” 

Structural 
matrices 

Stiffness [K], Mass [M] 
“seopt,file,3,1,0,0” 

Master DoFs 
All DoFs 
“m,all,all” 

Modal 
“antype,modal” 

Nº of modes 20 

Method 
Block Lanczos 

“modopt,lanb,20,0,0,,off” 

The BEAM188 is a one-dimensional beam element formulated with a first order shear deformation 

theory (Timoshenko – FSDT) with 6 DoFs per node [44]. This consists in a simplification of the real wing 

and some 3D effects such as chordwise deflections cannot be predicted. One dimensional beam 

theories are suitable for bodies whose natural frequencies are close to those of beams with equivalent 

bending rigidity. Examples of these bodies include high aspect ratio wings with uniform material 

proprieties. 
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Figure 8: numbering scheme of the structural mesh used in ANSYS and its relative position to the aerodynamic 
mesh (blue) 

There is an additional node, not present in the aerodynamic model. This extra node defines the zero 

displacement + rotation boundary condition and physically represents the intersection of the wing with 

the fuselage (see Figure 8). It is assumed that the wing is perfectly clamped in the fuselage. 

The goal of the structural analysis is to extract information about the first natural modes and the 

structural stiffness and mass matrices, K and M respectively. The extracted data is then written on a 

text file to be read by the MATLAB® script. For this, ANSYS® must run read an *.txt file called 

“structural_analysis_wing.txt” containing the detailed information for each specific analysis. The 

structural analysis can be organized in the following steps: 

1. ANSYS® reads input *.inp file containing the structural analysis 

1.1. Create (nseg_Y+1) BEAM188 nodes evenly spaced along the specified wing span length 

1.2. Define the material proprieties: Young’s modulus, density, Poisson coefficient 

1.3. Define the geometrical proprieties: cross-section dimensions and area inertias 

1.4. Apply zero displacements and rotations boundary condition at the first node 

1.5. Run the modal analysis 

1.6. Extract the stiffness and mass matrices (substructuring analysis option) 

1.7. Write the structural matrices into a *.txt file 

2. MATLAB® reads the *.txt files and stores the structural matrices into variables 

It is recommended to read the program’s manual3 before attempting to run the structural or aerodynamic 

analysis. It contains a detailed description of the code in both ANSYS® and MATLAB® files. 

4.4 AEROELASTIC ANALYSIS 

The aeroelastic analysis couples both aerodynamic and structural analysis. In this work, the ultimate 

goal of the aeroelastic calculations is the determination of the wing’s flutter speed. For this, the 

aeroelastic stability equation (3) needs to be obtained and solved for several free stream velocities. 

Since this equation is formulated in the structural mesh involving the structural DoFs, the aerodynamic 

loads and DoFs must be transferred to the structural nodes. The stability equation corresponds to a 

                                                      
3 Document available on request: eduardo.pizarro@tecnico.ulisboa.pt 

mailto:eduardo.pizarro@tecnico.ulisboa.pt


40 
 

non-linear eigenvalue problem and is solved iteratively according to a frequency matching method 

based on the p-k method. 

4.4.1 Equivalent Force System 

The aerodynamic pressure forces are transferred into the structural nodes and its respective moments 

are calculated to constitute the equivalent force system as D’Alembert’s principle requires (see Figure 

9). 

 

Figure 9: schematics of the pressure force acting on a panel and its equivalent force system on the nearby structural 
node 

In the force transfer procedure, only the forces acting on the ring of panels surrounding the structural 

node are transferred. An exception occurs at the last structural node where there is an additional 

contribution of the tip panels. Likewise, the 3 orthogonal unsteady moments generated by the pressure 

forces on each panel are calculated and stored at each structural node. 

4.4.2 Rigid DoFs Transformation 

The aerodynamic DoFs are converted into the structural ones using a suitable coordinate 

transformation. Since the beam is the only true deformable body, the aerodynamic nodes on the wing 

are only allowed to follow the structural ones in a rigid manner. Therefore it is assumed that every control 

point on the wing surface is rigidly connected to the structural nodes by an infinite stiff invisible beam. 

These virtual beams are depicted as green lines in Figure 10. Similar to the force transfer system, each 

ring of panels transforms its aerodynamic DoFs into the structural DoFs of the nearest structural node 

only. 

 

Figure 10: Rigid connections (green lines) between each structural node (red squares) and the aerodynamic ones 
(red circles).  

The aerodynamic DoFs are related to the structural DoFs by the following matrix that represents a rigid 

rotation considering small amplitudes: 
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{
u
v
w
}

A

= [
1 0 0
0 1 0
0 0 1

0 zS −yS
−zS 0 xS
yS −xS 0

]

{
 
 

 
 
u
v
w
ϕx
ϕy
ϕz}
 
 

 
 

S

 (123) 

 The subscript “A” refers to the aerodynamic DoFs and “S” to the structural ones 

 zS refers to the “z” coordinate of an aerodynamic control point measured in a frame originating 

in a certain structural node. This local coordinate system is the same for all panels of the same 

ring of panels 

 Only half of the matrix is shown here. The other 3 aerodynamic DoFs (uA
′ , vA

′ , wA
′ ) are related to 

the structural DoFs by finite differences formulas involving (uA, vA, wA) of different panels 

 Each panel requires a 6x6 matrix for DoFs compatibility and the full compatibility matrix has 

dimensions equal to the total number of aerodynamic DoFs times the total number of structural 

DoFs 

4.4.3 The Aerodynamic Influence Coefficient’s matrix (AIC) 

In this section, the computational procedure that leads to the definition of the AIC matrix is briefly 

explained. At the end of the aerodynamic calculations (4.2.2.2), the vector containing the unsteady 

forces in the 3 orthogonal directions at each panel is obtained. These forces are expressed in terms of 

the aerodynamic DoFs via the product of the rotation matrix [R], the area matrix [S] and the unsteady 

pressure matrix [A]. Since the aeroelastic calculations are performed in the structural nodes, both 

aerodynamic DoFs and forces must be transported to these nodes. The DoFs transformation can be 

achieved by multiplying the rotation matrix [T] introduced in section 4.4.2: 

{q̃A} = [T]{q̃S} (124) 

{F̃A} = [R][S][A]{q̃A} = [R][S][A][T]{q̃S} (125) 

Note that these forces are still on the aerodynamic mesh (panels’ centers). The next step is to transfer 

the forces from the panels to the structural nodes. Doing so requires calculating the resultant force and 

moment in each structural node according to D’Alembert’s Principle (see section 4.4.1). Once the forces 

and moments are calculated in the structural nodes and are expressed in terms of the structural DoFs, 

the AIC matrix is completely defined: 

{F̃} = [AIC]{q̃} (126) 

This is the matrix that figures in the aeroelastic stability equation (3). Each row of this matrix measures 

a component of the unsteady aerodynamic force or moment on a structural node, and each column the 

influence of a particular structural DoF on the forces and moments. The AIC matrix is a complex matrix 

with size (6x“nseg_Y” x 6x“nseg_Y”). 
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4.4.4 Modified p-k Method 

The p-k method is an iterative process for solving the non-linear eigenvalue problem that arises from 

aeroelastic flutter problems. In its simplest form, the flutter equation is the following [29]: 

[(
U∞
c2
) [M]p2 + [K] +

1

2
ρ∞U∞

2 [AIC(𝑖k,M∞)]] {q̃} = 0 (127) 

p = k(γ + 𝑖) (128) 

s = ω(γ + 𝑖) =
U∞
c
p (129) 

 [M] and [K] are the wing’s mass and stiffness matrix respectively 

 [AIC] is the complex aerodynamic influence coefficients’ matrix 

 “p” is the non-dimensional complex eigenvalue and also the solution of the equation 

 “s” is the dimensional complex eigenvalue solution of the equation (rad/s) 

 “ω” is the circular frequency (rad/s) 

 “k” is the reduced frequency and the imaginary part of “p” 

 "γ" represents the damping of the system and is often referred as the rate of decay 

The procedure involves reducing to a standard quadratic eigenvalue problem in “p” by injecting a 

frequency “k” in the pure non-linear part of the equation (aerodynamics), and solving iteratively until the 

imaginary part of “p” matches “k”. This is referred as the so-called frequency matching process [27]. 

A more practical way of solving the flutter equation is to write it in the form of a structural damped modal 

equation by the inclusion of an aerodynamic damping matrix [24] (page 396). Such can be achieved by 

first isolating the term containing the imaginary part of matrix [AIC]: 

1

2
ρ∞V∞ ∗ U∞i[AICI] =

1

2
ρ∞U∞ ∗

cω

k
i[AICI] =

s=iω 1

2
ρ∞U∞ ∗

cs

k
[AICI] =

1

2
ρ∞U∞

2 ∗
p

k
[AICI] (130) 

The “p” eigenvalue was originated from the aerodynamics by assuming a non-damped (simple 

harmonic) solution. Introducing this term in the flutter equation yields: 

[(
U∞
2

c2
) [M]p2 +

1

2
ρ∞U∞

2
1

k
[AICI(ik)]p + [K] +

1

2
ρ∞U∞

2 [AICR(ik)]] {q̃} = 0 (131) 

Since the aerodynamic matrix [AIC] is calculated assuming p = 𝑖k while the solution “p” is allowed to be 

damped, this flutter equation is only exactly satisfied when Re{p} = 0. For all other cases this method is 

mathematically inconsistent. However, according to most researchers in the field, it provides a good 

estimate of the behavior of the damping around the flutter boundary Re{p} = 0 and it is considered 

superior and more cost-efficient in relation to other methods. 

For a given flight condition (U∞, ρ∞), and for a given reduced frequency kj, the quadratic eigenvalue 

problem in pj+1 is solved. Usually, the first guess for kj corresponds to one of the system’s natural 

frequencies. The solution is always in the form of conjugate complex pairs of eigenvalues and 

eigenvectors: 
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pj+1 = kj+1(γj+1 ± 𝑖) 

{V̅} = {V, V∗} 
(132) 

In the standard p-k method, the process converges when kj+1 matches kj with less than a small error. 

Then the real part of “p” is stored and another iterative process starts for a different reduced frequency. 

When all frequencies of interest are converged, the flight condition is altered and the full process is 

repeated until the flutter boundary is reached. 

The actual method used in this work is slightly different from the traditional p-k method concerning the 

frequency matching procedure. The “Modified p-k Method” does not rely exclusively on the relative error 

between the new and the previous reduced frequencies for eigenvalue convergence. Instead, the 

amplitudes of the several eigenvectors are inspected and only those whose shape and DoFs match 

those of the guessed frequency are eligible for comparison. This avoids tracking the wrong mode in 

consecutive iterations or between two different flight speeds, especially when two or more of the wing 

natural frequencies are closely spaced. 

The measurement of the modes’ amplitudes is explained next. Each non-trivial solution of the flutter 

equation is a linear combination of pair of conjugate eigenvectors (V, V∗) and eigenvalues (p, p∗): 

{q} = {V}ept + {V∗}ep
∗t = {A + B𝑖}eate𝑖bt + {A − B𝑖}eate−𝑖bt = 2eat ∗ ({A} cos bt − {B} sin bt) (133) 

For a given frequency and for all time, the solution is a combination of a sine and a cosine affected by 

a decaying (stable) or growing (unstable) exponential. The mode shape is independent of time and it’s 

given by vectors {A} and {B} which correspond to the real and imaginary parts, respectively, of the 

eigenvector {V}. Each mode is characterized by its “code”, which consists in the dominant DoF and the 

number of peaks or mode order number. The candidate frequencies are selected upon detecting these 

characteristics on the modal amplitudes in vectors {A} or {B}, of each extracted eigenvector. In summary, 

the modified p-k method involves three steps: 

1. Mode amplitude inspection: the amplitudes of the extracted modes corresponding to the DoF 

of the injected frequency “k” (active DoF) are stored. These modes are referred to either vector 

{A} or {B}, whichever the amplitude is the greatest 

2. Mode shape detection: the order numbers of the modes from step 1 are stored. These 

numbers are obtained by calculating the number of times each mode curve crosses the 

horizontal axis and are representative of its shape 

3. Mode candidate selection: the modes whose orders’ numbers match those of the active mode 

are stored, and the one whose amplitude is the greatest is selected as best candidate 

After finding the best candidate, the relative error between the old “k” and the new one is calculated and 

the whole process is repeated until convergence. The full modified p-k method is illustrated in the 

flowchart of Figure 11: 
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Figure 11: flowchart depicting the several stages and processes involved in the modified p-k method for flutter 
speed determination 
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5 CONVERGENCE STUDY 

A convergence study is necessary in order to gain some insight about the quality of the mesh used. 

There are two main parameters that determine the accuracy of the solution: the number of integration 

points and the number of panels. The former is required because the integrals are performed by pure 

numerical means and should be analyzed in the first place. The latter is highly dependent on the surface 

geometry and must only be studied once the integrals are considered accurate enough. 

5.1 THE EFFECT OF THE NUMBER OF INTEGRATION POINTS 

There are two rules of numerical integration used in this work: 

1. Trapezium Rule: this direct method of integration is only used in the triangular panels and in 

the case of self-influence, i.e., when the integration is over the influencing panel itself. This is 

also a singular integral and is performed in polar coordinates (see Appendix A) 

2. Gauss Quadrature: the integration is performed in the reference geometry (a square) and it is 

usually much faster than the previous rule 

The model used is the high aspect ratio wing from reference [30] and a rather coarse mesh was chosen. 

The number of points for each element is independent of its size therefore bigger elements in a coarse 

mesh may suffice for the purpose of this study. A frequency corresponding to the fourth structural mode 

in magnitude (1st torsion) was selected for being representative of a highly oscillating mode. The wing 

and all the relevant parameters are specified in the following table: 

Table 3: computational setup for the convergence study 

Computational Setup 

Airfoil NACA 0012 

𝐔∞ 20 m/s Aspect Ratio 24 

Sweep angle 0° 
Chord 1 m 

𝛒∞ 0.088 kg/m3 Semi-span 16 m 

“nseg_X” 5 

“nseg_Y” 5 Number of 
integration points 

Matrix B Matrix C 

“nseg_wake” 0 [5, 150] [5, 300] 

Frequency 31.54 rad/s 

The influence of the number of integration points is measured by calculating the variations in the entries 

of the source and doublets matrices B and C, respectively, while increasing the number of points from 

5 to 300. These matrices are the key elements for this analysis because they store every integral 

performed by the program. The procedure is the following: 

1. For each number of integration points, both matrices (B and C) are stored into two arrays of 

matrices 

2. The real and imaginary parts are stored into new arrays of matrices  

3. The relative variation of both real and imaginary parts of both matrices with respect to the 

previous number of integration points is stored in 4 final arrays of matrices 
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4. The relative variations of a selection of entries are inspected and studied in detail 

5.1.1 The Source Integrals Matrix – B 

 

Figure 12: relative variations of the real (upper) and imaginary (lower) parts of the entries of matrix B calculated 
with n_div=10 integration points with respect to the case with n_div=5 

The numbers in Figure 12 represent the variation in percentage of the real and imaginary parts of matrix 

B with n_div=10 with respect to the same matrix computed with only 5 integration points. Although most 

of the variations are quite large, one can observe that even with a few integration points, several of the 

entries have a negligible variation. The variations are larger in the diagonal (self-induction) and between 

adjacent panels. A rough estimate of the behavior of the increments with the distance indicates that a 

gap of two or more panels provides variations inferior to 1% when using just 5 integration points. Also, 

the variations are approximately zero between panels of different rings (spaced in the Y direction), as 

the numbers covered by the green lines suggest. This is not relevant because in this particular case, 

the spanwise array of panels are very narrow and its centers highly spaced, giving rise to slow varying 

integrands near the influenced panels. The imaginary part of B (Figure 12 - bottom) requires special 

attention: the entries only seem to change along the diagonal being the remainder very close to zero. 

The same matrices for 60 integration points are repeated in Figure 13 below: 
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Figure 13: relative variations of the real (upper) and imaginary (lower) parts of the entries of matrix B calculated 
with n_div=60 integration points with respect to the case with n_div=50 

From 50 to 60 integration points the maximum variations are around 2% in the real part and 1% in the 

imaginary part. Despite some isolated cases, the majority of the entries changes by less than the 

percentage. In order to understand the effect of the number of integration points on the accuracy of the 

integrals, 3 pairs of panels of each matrix with the highest errors in magnitude (rectangles in Figure 13) 

are selected and both increments and value of the entries are tracked in the following plots (Figure 14):  

 

 

Figure 14: relative variations and absolute values of the real (upper) and imaginary (lower) parts of three hard 
converging entries of matrix B versus the number of integration points 
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Figure 15: geometrical view of the three pairs of panels from Figure 14, referring to the real part of matrix B 

As expected, the increments decay to zero as the number of integration points increases. The pairs of 

panels with the highest variations of the real part are illustrated in Figure 15 with matching colors. The 

wing was re-scaled for a better view of the geometry. The variations are bigger when the panels’ centers 

are closer. However, this is not necessarily the case of adjacent panels. Panels 4 and 7 (green) do not 

share a common boundary but still have the 3rd highest relative variation. Taking the entries with 150 

points as fully converged integrals, the true error can be estimated for both real and imaginary parts: 

Table 4: relative increments and estimated error in percentage of the three critical entries of both real and imaginary 
parts of matrix B 

Entries of B 
Nº of integration points 

5 60 90 110 150 

Re{B(5,6)} 4.0435 0.8758 0.9044 0.9133 0.9218 

Estimated true error % 342.7351 -4.9887 -1.8843 -0.9152 0 

Re{B(1,10)} 1.9531 0.7402 0.7467 0.7476 0.7480 

Estimated true error % 161.1096 -1.0496 -0.1832 -0.0559 0 

Re{B(4,7)} 3.4935 1.5093 1.8391 1.8393 1.8393 

Estimated true error % 89.9364 -0.1574 -0.0142 -0.0029 0 

Im{B(1,1)} -0.0743 -0.0313 -0.0308 -0.0307 -0.0306 

Estimated true error % 142.8105 2.4583 0.8595 0.4195 0 

Im{B(5,5)} -0.0760 -0.0339 -0.0334 -0.0333 -0.0332 

Estimated true error % 128.9157 2.0982 0.7307 0.3561 0 

Im{B(2,2)} -0.1118 -0.0822 -0.0820 -0.0820 -0.0819 

Estimated true error % 36.5079 0.3427 0.1167 0.0565 0 

 

Comments: 

 With only 5 integration points per panel, the error is very high reaching the hundreds of 

percentage. Although 5 points are unacceptable for these pairs of panels, it is shown next that 

5 points can be adequate for sufficiently separated panels 

 60 points provide a maximum of 5% error for the trailing edge panels 5-6 and an acceptable 

minimum of 0.16% for panels 4-7 

 With 90 points all the errors are below 1% except for the panels 5-6 with almost 2% 
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 Finally, when using 110 points the error in panels 5-6 drops to 0.91% and despite panels 5-5 

with 0.33%, the remaining errors are below 0.1% 

The results with 110 points provide a maximum error for both real and imaginary parts of B lower than 

1%. This considered an acceptable approximation, at least for the academic purpose of this study. 

However, not all panels require that amount of integration points since it is known that the integrands 

decay significantly as the distance between panels increases (with 1/R). In order not to waste additional 

computational resources while obtaining satisfactory approximations of the integrals, the following rule 

was implemented: 

 𝑛𝑑𝑖𝑣 = 5,  if the panels’ centers are separated by more than twice the maximum distance 

between any two consecutive chordwise panels (X direction) 

 𝑛𝑑𝑖𝑣 = 110, if the panels’ center are separated by less than half of the maximum distance 

between two directly opposing panels located in the upper and lower side of each ring of panels 

(Z direction) 

 𝑛𝑑𝑖𝑣 = 60 otherwise 

 

 

Figure 16: estimated error in percentage of the real (upper) and imaginary (lower) parts of the entries of the source 
matrix B calculated with the criterion defined 

The matrices in Figure 16 were obtained after the implementation of the defined criterion and represent 

the estimated true error of each entry. The estimated error is below 1% in the whole matrix, even though 

some of the integrals were calculated with only 5 integration points. The CPU time concerning the 

calculation of the full matrix B with different number of integration points is presented below: 
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Table 5: computation time and maximum absolute estimated error for the calculation of matrix B using different 
number of integrations points 

Nº of integration points CPU time (s) Maximum estimated error |%| 

5 4.30 342.74 

60 43.73 4.99 

90 94.37 1.88 

110 139.83 0.92 

5 or 60 or 110 8.29 0.92 

 

The advantages of using the selective integration points’ criterion are evident in the table above. This 

technique allows a dramatic decrease of the computational cost while keeping the maximum estimated 

error below 1%. For these reasons, the defined criterion is accepted and considered suitable for further 

calculations. 

5.1.2 The Doublet Integrals Matrix – C 

The relative variations from 5 to 10 integration points are the following: 

 

 

Figure 17: variations in percentage of the real (upper) and imaginary (lower) parts of the entries of the doublet 
matrix C calculated with n_div=10 integration points with respect to the case with n_div=5 

Starting with the real part (Figure 17 - upper), and in comparison with the source matrix B, it is seen that 

the variations are much higher, ranging from 2% to 99% among the first ring on panels. The zeros in 

the diagonals refers to exact integrals equal to the real constant −2𝜋 (see Appendix B), and the “NaN” 

symbol refers to integrals that are constant and equal to zero resulting in a 0/0 division. On the other 

side, the imaginary part experiences residual variations in all the entries. For this reason, the remainder 

of this study will focus only the real part Re{C}. Figure 18 depicts the relative variations from 50 to 60 

integration points (only real part). The three highest variations in magnitude are marked with a rectangle: 
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Figure 18: variations in percentage of the entries of the real part of the doublet matrix C calculated with n_div=60 
integration points with respect to the case with n_div=50 

Although most of the entries have negligible variations (under 0.1%), some entries still vary in the order 

of the percentage and even in the dozens of percentage. The entries of the 3 highest variations were 

selected and its actual values are plotted versus the number of integration points in Figure 19: 

 

Figure 19: relative variations and absolute values of three entries of matrix C versus the number of integration points 

The affected panels are the same as in the B matrix but the convergence rate is much slower in this 

case. By looking at Figure 19 – right plot, only the trailing edge panels 6 and 5 (blue) have not yet 

stabilized by 300 integration points. Despite the extremely slow convergence rate, its value at 300 points 

will be taken as a reference for error estimation. The estimated errors for some selected number of 

integration points are shown in Table 6: 

Table 6: relative increments and estimated error (%) of the three critical entries of the real and part of matrix C 

𝑹𝒆{𝑪(𝒊, 𝒋)} 
Nº of integration points 

10 50 90 150 200 280 300 

(𝟔, 𝟓) -0.08966 -1.434 -2.878 -4.223 -4.763 -5.101 -5.137 

Estimated error % -98.25 -72.09 -43.97 -17.80 -7.30 -0.71 0 

(𝟏𝟎, 𝟏) -0.2296 -2.323 -3.072 -3.226 -3.235 -3.236 -3.236 

Estimated error % -92.91 -28.22 -5.07 -0.33 -0.032 0.00 0 

(𝟒, 𝟕) -0.8225 -4.255 -4.642 -4.671 -4.671 -4.671 -4.671 

Estimated error % -82.39 -8.90 -0.61 0.00 0.00 0.00 0 

 

Comments: 
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 Up to 50 points, the error is considered very high, reaching 72% in the trailing edge panels 

 The first integral to converge is the pair (4,7) with 90 points 

 With 150 points the leading edge panels (10,1) converge with estimated error lower than 1% 

 The trailing edge panels require at least 280 integration points for an estimated error lower 1% 

(error greater than 1% with 270 panels but it is not shown in the table 

The same threshold of a maximum estimated error of 1% will be used to formulate a criterion for 

integration. Similar to the source integrals, the criterion is based on the relative distances between 

panels on each ring of panels: 

 𝑛𝑑𝑖𝑣 = 10,  if the panels’ centers are separated by more than twice the maximum distance 

between any two consecutive chordwise panels (X direction) 

 𝑛𝑑𝑖𝑣 = 280, if the panels’ center are separated by less than half of the maximum distance 

between two directly opposing panels located in the upper and lower side of each ring of panels 

(Z direction) 

 𝑛𝑑𝑖𝑣 = 90 otherwise 

 

Figure 20: estimated error in percentage of the entries of the real part of the doublet matrix B calculated with the 
criterion defined 

Figure 20 depicts the estimated error for the first ring of panels after the implementation of the defined 

criterion. The 3 hard converging panels are marked with a rectangle. All the entries are below 1%. It is 

important to notice that the three hard converging entries are no longer the highest errors in the matrix. 

The criterion’s selective integration imposes a different number of points depending on distances 

allowing the error to grow unevenly in the matrix. The CPU time concerning the full C matrix with different 

number of integration points is presented in Table 7: 

Table 7: computation time and maximum absolute estimated error for the calculation of matrix C using different 
number of integrations points 

Nº of integration points CPU time (s) Maximum estimated error |%| 

10 6.10 98.25 

50 89.01 72.09 

90 283.92 43.97 

150 760.48 17.80 

200 N.A. 7.30 

280 N.A. 0.71 

300 2907.20 0 

10 or 90 or 280 47.79 0.76 
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The chosen criterion greatly reduces the computational cost and provides a maximum estimated error 

below 1%. Therefore, the criterion is accepted and considered suitable for further calculations. 

5.2 THE EFFECT OF THE NUMBER OF PANELS 

It is known from the integral formulas of section 4.2.1 that an exact solution requires an infinite amount 

of panels covering the whole physical domain constituted by the wing surface and the infinite (plain) 

wake. Since such requirement is impossible to fulfill, a finite number of panels must be used instead. 

The aim of this section is to determine the number of panels such that the estimated error of the solution 

is considered small enough in the academic point of view of this thesis. 

For a given wing geometry, there are four parameters that independently control the number and size 

of each panel: “nseg_X”, “nseg_Y”, “nseg_wake” and “length_wake”. 

Table 8: aerodynamic mesh parameters for the paneling of the wing and wake 

Surface Wing Wake 

Parameters 
“nseg_X” “nseg_wake” 

“nseg_Y” “length_wake” 

5.2.1 Wake Panels 

The influence of the wake is transmitted into the wing panels by means of the Kutta condition (see 

section 4.2.2). After the wake integrals are calculated for each wing panel, its contribution is summed 

and added to the influence of both upper and lower trailing edge panels. Concerning the wake 

calculations, only the doublet matrix C is affected, therefore no further computations are required for 

this study. The wing and flight conditions are the same as the previous study with both chordwise and 

spanwise number of panels equal to 5. 

 

Figure 21: geometrical view of the trailing edge panels for the first ring of panels 

Computational procedure: 

1. Panel selection: the critical panels for this study are those closer to the wake where its 

influence is the greatest – the trailing edge panels. Since the wing is symmetric, any of these 

are suitable. The upper panel was chosen (see Figure 21) 

2. Parametric study: by sweeping both number of wake elements and wake length, the wake 

influence coefficient is stored in a matrix 
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3. Post-computations: the data in the previous matrix is inspected by making plots of both real 

and imaginary parts 

4. Convergence criterion: by analyzing the results, a search for a convergence trend with both 

wake parameters is performed 

5. Conclusion: finally, a decision is made concerning the two wake parameters 

 

Figure 22: real part of the wake influence on the upper trailing edge panel (number 5) versus the wake length and 
number of wake panels 

The real part of 𝐶𝑤𝑎𝑘𝑒(5,5)4 is depicted above vs the two wake parameters. For a fixed wake length, the 

wake influence seems to have a local maximum for a given number of panels. The same behavior 

occurs the other way around, by fixing the number of wake panels and sweeping the wake length. These 

two parameters control the density of doublets along the finite plain wake. While the local maximum 

may be ill-interpreted as a sign of lack of convergence, they only appear as one of the parameters is 

held constant and are a consequence of the oscillating nature of the integrands. Depending on the 

doublet density, the integral amplitude varies locally therefore allowing coalescence in a certain region 

of the parametric domain. Mathematically, the solution should not converge by fixing a parameter but 

rather by increasing both simultaneously towards the limit of an infinite wake with a continuous 

distribution of doublets. Consider the following plots in Figure 23: 

  

                                                      
4 This entry refers to the influence of the whole wake on panel 5, after the Kutta condition has been enforced 
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Figure 23: to the left, the maximum of the real part of the wake influence on panel 5 is plotted versus the wake 
length. The right plot depicts a linear regression between the wake length and the number of wake panels for the 
entries depicted in the left plot 

The left plot was obtained by calculating the maximum of the real part of 𝐶𝑤𝑎𝑘𝑒(5,5) for each wake 

length. After 2 chords, the maximum rapidly converges to 0,2403. The right plot features a linear least 

squares fit of the pairs of wake parameters that lead to the local maximum expressed in the left plot. As 

expected, convergence occurs by increasing both parameters at the same time. The excellent linear 

fitting suggests an optimal ratio between the wake length and number of panels that foretells wake 

convergence for this wing. This ratio corresponds to the slope of the curve and has units of wake length 

per panel. The inverse relation gives more physical insight and can be stated as the required number of 

panels per unit of wake length: 

slope−1 =
1

0.191
= 5.2356 [

panels

wake length
] (134) 

This optimum ratio predicts that if the wake measures 1 chord (1 m), then it should be covered by 5.2356 

panels that are approximately the number of panels in the chordwise direction on each side of the wing. 

In other words, the wake panels should have approximately the same streamwise length (X direction) 

as those along each side of the wing for wake convergence. This ratio guarantees the correct 

convergence direction. However, according to Figure 23 – left, convergence only occurs after a certain 

wake length, typically 3 units of chord. The imaginary part of 𝐶𝑤𝑎𝑘𝑒(5,5) is depicted below: 

 

Figure 24: imaginary part of the wake influence on the upper trailing edge panel (number 5) versus the wake length 
and number of wake panels 

The imaginary part is depicted in Figure 24 and it is harder to analyze because there is no local maximum 

or minimum for a fixed wake parameter. However, there is clearly a region around the curve length =

0.2 ∗ N where the wake influence is nearly constant. Plotting the wake coefficient vs the wake length 

such that 
length

N
= 0.2 (Figure 25):  
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Figure 25: imaginary part of the wake influence on panel 5 versus the wake length.  

The values in Figure 25 were extracted from the plot in Figure 24 along the line length = 0.2 * N. This 

line is roughly the maximum region considered in the plots of Figure 22. After 3 chords of wake length, 

the wake influence does not varies significantly. Since the real part provided the same minimum wake 

length for convergence, it is accepted as a length threshold for the wake. In conclusion, the estimated 

optimal wake should be defined with the following parameters (Table 9): 

Table 9: advisable wake discretization parameters for convergence 

Wake parameters Value 

“length_wake” ≥ 3 chords 

“nseg_wake” ≅ (nseg_X/chord)*length_wake 

 

The optimal number of streamwise wake panels “nseg_wake” are mainly based on the results from 

Figure 23 and equation (134). In practice, this criterion for convergence suggests a wake panel length 

equal to average chordwise length of the wing panels, if a uniform mesh were to be used. 

5.2.2 Wing Panels 

The number of panels along chord and span directions define the quality of the wing’s surface mesh 

and represent the most critical parameters concerning the final solution of the problem. Since the aim 

of the code is to determine the flutter speed by performing an eigenvalue analysis, this study will focus 

mainly on a specific eigenvalue and its variation with the number of panels. In order to avoid an 

unnecessary amount of computation time while covering a wide range of panel’s aspect ratio, the wing 

used in the previous study was shortened to 5 meters of span length. This will naturally increase the 

wing’s stiffness and thus the 1st torsion mode used before corresponds now to an increased natural 

frequency. The computational parameters are shown in Table 10: 

Table 10: computational setup for the convergence study concerning the number of wing panels 

Wing Geometry 

Airfoil NACA 0012 

𝑽∞ 20 m/s Aspect Ratio (span) 10 

Sweep angle 0° 
Chord 1 m 

𝝆∞ 0.088 kg/m3 

Semi-span 5 m 
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Length wake 3 m 

nseg_X [4,20] 

nseg_Y [4,40] 
M 0.0678 

“nseg_wake” (nseg_X/chord)*length_wake 

Frequency (1st torsion) 100.89 rad/s 

 

 

Figure 26: five meter semi-span wing used in the wing mesh convergence study with complete paneling scheme 
display 

5.2.2.1 Computational Procedure 

This study has been performed by taking the following steps: 

1. For each number of spanwise panels “nseg_Y” both stiffness and mass matrices are calculated 

using ANSYS, and stored in several txt files. Recall that the parameter “nseg_Y” also represents 

the number of nodes in the equivalent beam structural mesh 

2. Selecting a number of chordwise panels “nseg_X” and spanwise panels “nseg_Y”, the 

aerodynamic matrices are calculated and the structural matrices K and M are read from the files 

to fulfill the eigenvalue problem equation: 

s2[M] +
1

2
ρ∞U∞

2
s

ω
[AICI] + [K] +

1

2
ρ∞U∞

2 [AICR] = 0 (135) 

3. The eigenvalue equation is solved iteratively for the dimensional eigenvalue “s” (p-k method) 

4. The converged eigenvalue corresponding to the selected mode (1st torsion) is stored 

5. Steps 2 to 4 are repeated for the entire range of chordwise and spanwise parameters “nseg_X” 

and “nseg_Y” respectively 

6. Both real and imaginary parts of “s” are plotted vs the number of panels 

7. The results are further analyzed performing several cuts to the previous plots and a decision is 

made concerning the best number of panels for convergence 

5.2.2.2 Parametric Study 

The plots in Figure 27 are a result of a parametric study of Re{s} and Im{s} versus the number of panels: 
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Figure 27: tridimensional plot of the imaginary (left) and real (right) parts of the eigenvalue “s” versus the mesh 
parameters “nseg_X” and “nseg_Y” 

While both plot show signs of convergence, the imaginary part distribution (frequency) seems smoother 

and faster to converge. This can be seen in the top right corner of the left plot where a large portion of 

the surface plot is dark red, indicating a nearly constant value for the frequency. In the right plot 

(damping), such behavior is less obvious. Consider the two pairs of plots in Figure 28 depicting several 

cuts of the surface plots in Figure 27 by making one of the two mesh parameters constant:  

 

 

Figure 28: different sectional views of the plots in Figure 27. Top left – imaginary part of “s” (frequency) versus 
“nseg_X” for several constant “nseg_Y”. Top right – imaginary part of “s” versus “nseg_Y” for several constant 
“nseg_X”. Bottom left – real part of “s” (damping) versus “nseg_X” for several constant “nseg_Y”. Bottom right – 
real part of “s” versus “nseg_Y” for several constant “nseg_X” 
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Comments (Figure 28): 

 The top left plot represents the imaginary part of “s” (frequency) versus the number of panels 

for different number of spanwise panels “nseg_Y”. According to this plot there is little effect on 

the frequency as the number of chordwise panels “nseg_X” increases 

 The top right plot depicts the frequency versus the number of spanwise panels for different 

number of chordwise panels “nseg_X”. As the top left plot suggested, all lines are stacked 

together indicating a high level of independence with respect to the number of chordwise panels. 

The convergence is smooth and slow as the number of spanwise panels “nseg_Y” increases 

 The two bottom plots concern the real part of “s” (damping). For a constant “nseg_X”, the effect 

of increasing the number of spanwise panels is to decrease the damping (magnitude). The 

opposite is also true, for a given “nseg_Y”, increasing the chordwise number of panels leads to 

a decrease of the damping in magnitude. In this case, such behavior is less evident and it is 

only present for “nseg_X” above 10 

 Above 8 chordwise panels, adding more panels in this direction has little effect on the damping. 

This can be seen in the bottom right plot where the several curves are packed together for a 

large range of spanwise panels. Such behavior is more evident for high “nseg_Y”, typically 

above 20 

 In general, both real and imaginary parts seem to be more sensitive to the number of spanwise 

panels “nseg_Y” than the number of chordwise panels “nseg_X” 

In order to evaluate the convergence rate, the relative variations of the real and imaginary parts for 20 

chordwise panels along the full range of spanwise panels were calculated and are shown in the plots 

below (Figure 29): 

 

Figure 29: relative variations in percentage of the imaginary (left) and real (right) parts of eigenvalue “s” versus the 
spanwise number of panels “nseg_Y” for the maximum number of chordwise panels “nseg_X” 

Comparing the two plots in Figure 29, it is clear that the real part converges much slower than the 

imaginary part. From 38 to 40 spanwise panels the damping varies by almost 5% while for the frequency 

this variation is well below 1%. As seen in the damping plot, the convergence rate is very low and tends 

to decrease with increasing number of spanwise panels. In the absence of any numerical instability 
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phenomena, the plot suggests that a variation lower than 1% would require a huge amount of panels 

along the span (probably more than 100). Considering the computational resources at hand and the 

academic purpose of this thesis, the convergence study will be limited to the presented range of mesh 

parameters and its conclusions will be referred to these only. 

5.2.2.3 Conclusions and Criteria for Convergence 

In this subsection, the complex eigenvalue “s” has been calculated for several combinations of 

chordwise (“nseg_X”) and spanwise (“nseg_Y”) panels. The imaginary part represents a frequency and 

the real part a measure of the aerodynamic damping. After plotting both these quantities versus the 

number of panels, it became clear that the number of spanwise panels are more important than the 

number of chordwise panels in terms of convergence. The frequency is nearly independent of the 

number of panels along the chord for a constant number of spanwise panels but varies significantly the 

other way around, i.e., by fixing the number of chordwise panels. The damping is substantially more 

sensible to both mesh parameters than the frequency. The variations are small along the number of 

chordwise panels for a fixed number of spanwise panels, especially for “nseg_X” > 8 and “nseg_Y” > 

20. On the other hand, by fixing the number of panels along the chord, the damping slowly decreases 

in magnitude as the number of spanwise panels increases. Finally, by inspecting the plots of the relative 

increments of both real and imaginary parts of “s” it follows that the damping is considerably harder to 

converge and therefore its results are of greater relevance toward the definition of a criteria for 

convergence. 

Clearly, convergence is not yet achieved with 40 spanwise panels. However, since no further 

calculations have been performed, “nseg_Y”=40 has been accepted as the best candidate for this wing. 

The number of chordwise panels however, is less important on the accuracy of the solution and a 

number below 20 may be enough. The following plots in Figure 30 display the damping and its relative 

increments for 40 spanwise panels versus the number of chordwise panels:  

 

Figure 30: relative variations in percentage (left) and absolute value (right) of the real part of the eigenvalue “s” 
(damping) versus the chordwise number of panels “nseg_X” for the maximum number of spanwise panels “nseg_Y” 

In the left plot of Figure 30, the arrow points to the relative increment of -2.2% from 18 to 20 chordwise 

panels which is considered high for convergence matters. In addition, the damping plot (Figure 30 – 
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right) does not shows signs of convergence with a nearly constant slope as the number of panels 

increases. However, since the magnitudes of these variations are substantially smaller in comparison 

to those with the number of spanwise panels (see Figure 28), such conclusions may be disregarded. In 

this view, any of the above numbers of chordwise panels lead to a fair estimation of the damping for the 

current wing and flight conditions. The decision concerning the number of chordwise panels has been 

based on the panels’ average aspect ratio. These are obtained dividing the mean chordwise panel 

length by the spanwise panel length. Consider Table 11: 

Table 11: panels’ mean aspect ratio for several numbers of chordwise panels “nseg_X” for the maximum number 
of spanwise segments “nseg_Y” 

“nseg_X” Re(s) Mean Panel aspect ratio Chord 

4 -0.0114 0.50 

1 m 
6 -0.0164 0.75 

8 -0.0192 1.00 

10 -0.0198 1.25 

12 -0.0196 1.50 Half-span “nseg_Y” 

14 -0.0192 1.75 

5 m 40 
16 -0.0188 2.00 

18 -0.0183 2.25 

20 -0.0179 2.50 

 

 

Figure 31: airfoil discretization with different number of chordwise panels “nseg_X”. Top left – 4 panels, top right 
– 8 panels and bottom – 12 panels 

Mathematically speaking, since the integrals are performed using the same number of points in both 

directions, the best case would correspond to a square panel with aspect ratio equal to one. However, 

unless the number of spanwise panels is increased, the airfoil would be discretized with only 8 segments 

per side which may not be enough for stressing the differences between results of similar airfoils (see 

Figure 31 – top right. On the other hand, a high number of chordwise segments would lead to very thin 

panels plus unnecessary increases in the computation time. Choosing 12 chordwise segments leads to 

an average aspect ratio of 1,50 which is considered a good compromise for the purpose of this work. 

Finally, a rule that best suits convergence can be defined concerning both mesh parameters (Table 12): 

Table 12: advisable wing discretization parameters for convergence 

Convergence rule 

Panel Aspect Ratio (PAR) 1.50 

“nseg_X” 12 

“nseg_Y” Span/(chord/nseg_X*PAR) 

This rule has been applied henceforward for the remaining geometries of interest throughout this thesis. 
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5.3 REMARK 

As a final remark, it should be noted that the convergence criteria established in this chapter do not 

guarantee convergence, and are optimistic at best. Complete convergence studies would require an 

extension of the current study for other flight conditions, wing geometries and possibly other frequencies. 

In addition, extra CPU time would be needed to extend the calculations for finer meshes. Considering 

the preliminary character of the developed aeroelastic code and its inherent academic purpose, the 

current convergence study may prove appropriate. 
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6 EFFICIENT AIC MATRIX CALCULATION 

The AIC matrix is the ultimate goal of the aerodynamic calculations and must be calculated several 

times in the iterative process of determining the wing flutter speed. However, the process of obtaining 

this matrix is lengthy and its computation time can range from minutes to hours depending on the quality 

of the mesh used. One basic technique for estimating this matrix without recalculating the full 

aerodynamics is by interpolation. Such method has been implemented successfully in the aeroelastic 

commercial codes of NASTRAN® and ZAERO®. The aim of this chapter is to perform a parametric study 

of the AIC matrix and then to develop a methodology for estimating the entries of this matrix using proper 

interpolation rules. 

6.1 PARAMETRIC STUDY OF THE AIC MATRIX 

For a given geometry and mesh, there are two parameters that define the AIC matrix: the reduced 

frequency “k” and the Mach number “M”. If the entries of the matrix (coefficients) vary smoothly over 

these two parameters, it is possible to approximate them locally by simple interpolation functions such 

as low order polynomials. It is shown here that this is indeed the case. The setup for this study is the 

following: 

1. Geometry selection: in order to evaluate the effect of the geometry on AIC matrix, two wings of 

different aspect ratios have been used 

2. Mesh selection: since this study is rather qualitative than quantitative, there is no need of using a 

high quality mesh. The purpose of this study is to evaluate the smoothness (curve shape) of the 

aerodynamic coefficients with both frequency and Mach number and not its numerical values 

3. AIC calculation: for each geometry, the AIC matrix is calculated for a wide range of k and M 

parameters and is stored in matrix arrays 

4. Plot drawing: for each wing and for each Mach number, several coefficients are selected and its 

values are plotted versus the reduced frequency “k”. After inspecting these plots, the ones who 

depict the different curve behaviors are selected for analysis 

5. Parametric analysis (reduced frequency): the selected plots are analyzed and compared 

6. Parametric study (Mach number): Steps 4 and 5 are repeated for constant “k” 

7. Conclusion and main remarks of the parametric analysis 

The computational parameters for parametric study are shown in Table 13: 

Table 13: geometrical, computational and aerodynamic parameters used in the parametric study of the AIC matrix 

 Chord (m) Span (m) Aspect Ratio Airfoil 

Wing 1 1 16 16 NACA 0012 

Wing 2 1 5 5 NACA 0012 

Aerodynamic Mesh 

“nseg_X” 5 

“nseg_Y” 5 

“nseg_wake” 15 

“wake_length” (m) 3 
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Parametric Study 

Reduced Frequency “k” 

Constant Mach Constant frequency 

[0.1; 10.1] (1, 3, 5, 7) 

Natural frequencies (rad/s) 

1st spanwise bending 2.243 

2nd spanwise bending 14.064 

1st chordwise bending 31.341 

1st torsion 31.523 

Mach number “M” 
Constant frequency Constant Mach 

[0.034; 0.54] (0.07, 0.14, 0.27, 0.54) 

Altitude (m) 20000 

Air density (kg/m3) 0.0880 

Speed of sound (m/s) 295.1 

6.1.1 Influence of the Reduced Frequency 

The plots in Figure 32, Figure 33 and Figure 34 depict the behavior of some aerodynamic coefficients 

versus the reduced frequency for several Mach numbers and for the two wings. The plots are stacked 

in groups of four, each group associated with one particular coefficient. The plots on the left side refer 

to the high aspect ratio wing (AR=16) and the plots on the right side refer to the low aspect ratio wing 

(AR=5). The real and imaginary parts are located on the top and bottom plots respectively. Each 

coefficient has been normalized with respect to the absolute maximum of its distribution over the 

reduced frequency “k”, therefore the values shown are non-dimensional. The horizontal bars in each 

plot are the reduced frequency bands for each Mach number ranging from the first to the fourth wing’s 

natural frequency. Even though only a few entries of the AIC matrix are considered, their progress along 

“k” and “M” is representative of the global trend of the full matrix with these parameters. 

 

Figure 32: vertical displacement coefficient (UZ) for the vertical force (FZ) of the first structural node AIC(3,3) versus 
the reduced frequency for several Mach numbers 

The first group of plots (Figure 32) corresponds vertical displacement (UZ) coefficient for the vertical 

force (FZ) of the first structural node AIC(3,3). Starting with the longest wing (left side), it is evident that 

there is a slow and monotone variation of the coefficient with the reduced frequency for both real and 

imaginary parts and for every speed. Only the real part at the highest speed (black line M=0.54) seems 

to behave differently by changing the sign of the slope around k=7. The high aspect ratio wing has its 

natural frequencies bands closely spaced located on the far left part of the plot, in a zone where the 

distributions are well behaved. The shortest wing (right side) provides very similar plots in comparison 
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to the longest wing for both k and M parameters. The major difference resides in the natural frequency 

bands which are dramatically wider in this case. The curves are still well behaved at each respective 

natural frequency band location, at least for the last three speeds. For the first speed (M=0.07) the 

natural frequency band extends beyond the limits of the plot and the behavior of the respective 

distribution (blue) becomes unclear. 

  

Figure 33: lateral displacement coefficient (UY) for the streamwise force (FX) of the second structural node AIC(7,2) 
versus the reduced frequency for several Mach numbers 

The second set of plots (Figure 33) corresponds to the lateral displacement coefficient (UY) for the 

chordwise force (FX) of the second structural node AIC(7,2). In the high aspect ratio wing, both real and 

imaginary parts behave smililarly, with slow and monotone curves up to k=7 for the first three speeds. 

The black curve (M=0.54) also behaves as such but only up to k=3; for k>3 oscillations are observed 

for this speed. Nevertheless, all the curves are monotone and vary slowly in their respective bands of 

natural frequencies. The shorter wing provides slower varying curves for both real and imaginary parts, 

but not all the curves are monotone over their respective frequency bands. The imaginary part of the 

lower speed plot has a maximum around k=8, well inside the horizontal blue bar representative of this 

speed’s natural frequency band. 

  

Figure 34: yaw rotation coefficient (ROTZ) for the pitching moment (MY) of the first structural node AIC(5,6) versus 
the reduced frequency for several Mach numbers 
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Finally, the yaw rotation coefficient (ROTZ) for the pitching moment (MY) of the first structural node is 

shown in Figure 34. Observing the real part (top plots), the variations are greater in the high aspect ratio 

wing but, excluding the highest speed (M=0.54), both wings provide a slow and monotone curves. The 

imaginary part (bottom plots) shows in general slow and monotone behavior for the first three speeds 

and for a wide range of reduced frequencies except on the critical set of lower frequencies that goes up 

to k=2. In this region and for both wings, the imaginary part decays quickly from higher values at k=0.1 

to steady values at k=2. Such behavior seems to be independent of the Mach number, at least up to 

M=0,27. Surprisingly, the curve for M=0.54 is slow varying and monotone here. Unlike the previous 

analyzed coefficients, the high aspect ratio wing shows stronger sensibility at lower speeds within its 

natural frequencies band. This is most critical for the lower speed (M=0.07) where the natural frequency 

band covers the entire sensible region from k=0.1 to k=2 (blue bar). 

6.1.2 Influence of the Mach Number 

In order to clarify the influence of the Mach number, the aerodynamic coefficients were calculated for 

several speeds and plotted in separate curves of constant reduced frequency. The chosen coefficients 

are the same as in the previous section and are plotted in Figure 35, Figure 36 and Figure 37: 

 

Figure 35: vertical displacement coefficient (UZ) for the vertical force (FZ) of the first structural node AIC(3,3) versus 
the Mach number for several reduced frequencies. 

 

Figure 36: yaw rotation coefficient (ROTZ) for the pitching moment (MY) of the first structural node AIC(5,6) versus 
the Mach number for several reduced frequencies 
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Figure 37: lateral displacement coefficient (UY) for the streamwise force (FX) of the second structural node AIC(7,2) 
versus the Mach number for several reduced frequencies 

Comments: 

 The variations are continuous and slow in virtually in all plots except AIC(7,2) for the high aspect 

ratio wing. In this case, oscillations begin at M=0.3 and k=5 

 The curves are similar in shape for both wings in the real and imaginary parts. Again, this is not 

the case for the AIC(7,2) for all frequencies 

 Most of the curves are not monotone and contain relative maxima/minima in the high speed 

region. This is not necessarily an issue since in general the slopes are of low magnitude 

 The AIC(5,6) plots exhibit an abrupt decay for all frequencies and for both wings in the low 

speed region. This can also be seen in the AIC(7,2) plots although at a smaller scale 

6.1.3 Final Remarks Concerning the Parametric Study 

The parametric study of the AIC matrix led to some favorable conclusions about the feasibility of using 

interpolation techniques. First of all, the shape of the obtained curves did not change significantly 

between wings of very different aspect ratio. This is especially true for the combination of low 

frequencies and low Mach numbers. Outside these boundaries, it appears that the longer wing 

coefficients become more sensible with the frequency and Mach than in the shorter wing case. Second, 

every obtained curve along “k” or “M” is in general well behaved by having relatively low slopes, with 

few or none local extremes and without any source of singularity/discontinuity. Mathematically, such 

curves can be treated as continuously differentiable functions and therefore are suitable for being 

interpolated, at least in a local sense. Third, for each Mach number, the natural frequency band for the 

high aspect ratio wing is much narrower than in the low aspect ratio wing case. This proximity allows 

the construction of high quality low-order interpolation functions over the entire reduced frequency band 

of interest. On the other hand, the shorter wing provides very wide natural frequency bands and in order 

to obtain close approximations to the curves along these frequencies, higher order interpolation 

functions are required. This suggests that interpolation schemes are more suitable for longer and thinner 

wings than with shorter and thicker ones. Finally, for constant reduced frequency, and irrespective of 

the wing, interpolation along the Mach number can also be very effective provided that both reduced 

frequency and Mach number are not too high. 
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There are exceptions to these well behaved curves, appearing in the plots in Figure 34 from the constant 

M study, and in the plots in Figure 36 and Figure 37 from the constant k study. In these plots, at the 

beginning of the curves (either low k, or low M), there is a steep variation of the coefficients and especial 

attention is required concerning the closeness of the interpolation points and the interpolation functions 

themselves. These issues are addressed in the next section. 

6.2 INTERPOLATION SCHEMES 

As the parametric study suggests, there are two different ways of interpolating the AIC matrix: 

1. Frequency interpolation: for a certain Mach number, the aerodynamic coefficients are 

estimated locally by a continuous function of the reduced frequency 

2. Velocity interpolation: for a certain reduced frequency, the aerodynamic coefficients are 

estimated locally by a continuous function of the Mach number 

The interpolations are performed by steps according to the p-k method for determining the flutter speed. 

The aeroelastic stability analysis starts by solving the flutter equation at a low speed for a given set of 

reduced frequencies. Since the speed is low, it is expected that the reduced frequencies found by solving 

the eigenvalue problem are close to the structure’s natural frequencies. Accordingly, the first 

interpolation would be a frequency interpolation over this set of natural frequencies (natural frequency 

band). Once the interpolation function for every entry of the AIC matrix is known, there is no further need 

of recalculating the AIC matrix inside the frequency band and in its immediate vicinities. Ideally, this 

covers the entire iterative frequency matching process for all the reduced frequencies of interest at a 

certain Mach number. The second interpolation is another frequency interpolation performed at a higher 

speed. Here, the new frequency band covers the set of converged reduced frequencies found at the 

previous, lower Mach number. The frequency interpolation is extremely advantageous when the system 

is being solved for several frequencies that are packed together in a narrow band – a characteristic of 

a high aspect ratio wing. 

After performing some frequency interpolations at different speeds, it becomes possible to resort to the 

second type of interpolation – the velocity interpolation. This interpolation attempts to find the 

aerodynamic coefficients for a certain reduced frequency as a function of the Mach number. Although 

attractive in terms of CPU time saving, the velocity interpolations are considerably dangerous because 

they rely on the accuracy of several frequency interpolations. 
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Figure 38: possible evolution for the reduced frequency band (blue and red lines) for different Mach numbers 

For a certain intermediate Mach number Mi, it is first required to calculate an estimate of the reduced 

frequency band (red line Figure 38) containing the frequencies of interest to be converged by the p-k 

method. Then the velocity interpolation is performed for the reduced frequencies (green dots Figure 38) 

inside the estimated frequency band using interpolated data (green crosses Figure 38) from other Mach 

numbers. However, since the reduced frequency band changes with the Mach number, the required 

data may refer to reduced frequencies not contained in these frequency bands, thus leading to low 

quality interpolations (extrapolated points Figure 38). 

6.2.1 Choice of Interpolation Functions 

The interpolation functions are based on the best fitting curve that minimizes the error. The technique 

adopted here is the least squares fitting using polynomials as approximation curves. Some of the results 

from the parametric study (section 6.1) have been reviewed for the best curve fitting and the interpolation 

functions have been chosen after these. 

6.2.1.1 Frequency Interpolation 

The ideal frequency interpolation requires a function that closely approximates the coefficients for the 

full reduced frequency band at each speed. At lower speeds these frequencies are similar to the wing’s 

natural frequencies therefore they can be used as a reference for this study. The plots in Figure 39, 

Figure 40 and Figure 41 correspond to M=0.07 and the blue region depicts the reduced natural 

frequency band covering the first four natural frequencies at this speed. In these figures, the bar plots 

refer to the numerical differences (residuals) between the set of AIC points and the points from the 

obtained curve fit. 
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Figure 39: different curve fittings with residuals for the frequency interpolation of the real (left) and imaginary (right) 
parts of AIC(3,3) for a representative Mach number 

 

Figure 40: curve fittings and residuals for the frequency interpolation of the real (left) and imaginary (right) parts of 
AIC(7,2) for a representative Mach number 

Observing the curve fittings in Figure 39 and Figure 40 and inspecting the residuals it can be concluded 

that quadratic interpolations provide excellent approximations to both real and imaginary parts of the 

coefficients over the entire range of the reduced natural frequencies. It should be noted that these curve 

shapes are representative of the behavior of most entries of the AIC matrix. The exceptions to these 

can be seen on AIC(5,6) as detected before on the parametric study (Figure 41): 

  

Figure 41: different curve fittings and residuals for the frequency interpolation of the real (left) and imaginary (right) 
parts of AIC(5,6) for a representative Mach number 
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While the real part can be accuratelly approximated by a 2nd degree polynomial, the imaginary part 

cannot, and requires at least an 8th degree polynomial to do so (Figure 41 – right plot). Since it is not 

feasible to resort to such high degree polynomials, an alternative technique is sought. One simple way 

of overcoming this issue is by using two interpolations inside the natural frequency band. However, such 

would be only justified for some coeficients and there is no way of doing it without recalculating the full 

aerodynamic matrix. Additional points can be avoided if the two interpolating functions are connected 

by a common point. For this particular curve shape two linear functions can be used, one for the near 

vertical part, and the other for the near horizontal segment, connected by the middle point at k≈1 (Figure 

42 – left): 

 

Figure 42: alternative curve fittings for the imaginary part of AIC(5,6). Left side – two-branch linear curve fit with 
intersection at k=1. Right side – rectangular hyperbola curve fit 

This approach tends to favor one half of the curve, depending on the k value where the slope changes 

significantly (k=0.5 here) and on the length of the frequency band. Another possibility, consists in 

interpolating this curve with a rectangular hyperbola. In the right plot, a rectangular hyperbola was 

successfully fit to the curve by solving a non-linear least squares problem using 3 equidistant points. 

Concerning the frequency interpolation, two types of functions will be used to estimate the aerodynamic 

coefficients. In most cases, the variations are slow and a 2nd degree polynomial is considered accurate 

enough for representing the behavior of the true function AIC(M=cte,k). This can be achieved by simply 

calculating the coefficients at 3 different reduced frequency values and then the 3 polynomial coefficients 

are obtained using the general quadratic formula. If otherwise the variations are very steep, a 

rectangular hyperbola is fit instead. In order to use the same 3 points (k,AIC(k)), a non-linear least 

squares problem must be solved first. 

Table 14: final reduced frequencies and CPU times for an analysis performed with and without the k-interpolation 
scheme for the high aspect ratio wing 

𝑈∞ = 10 𝑚/𝑠 No interpolation k-Interpolation Relative Error (%) 

𝑘1 0.2243 0.2243 0.00 

𝑘2 1.4982 1.4982 0.00 

𝑘3 3.1368 3.1368 0.00 

𝑘4 3.1649 3.1649 0.00 

𝑘5 4.7533 4.7533 0.00 

CPU Time (s) 1043.8531 260.3236 -75.06 
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“nseg_X” 12 

“nseg_Y” 5 

Half-span (m) 16 

 

The advantages of the frequency interpolation are evident in Table 14 referring to a single velocity 

analysis where five frequencies were converged resorting to both standard and k-interpolation methods. 

The k-interpolation allowed a decrease of 75% in the computational cost while obtaining virtually the 

same values for the five reduced frequencies. 

6.2.1.2 Velocity Interpolation 

Interpolation along the Mach number is riskier because it is highly dependent on the frequency 

interpolation. There are two major issues concerning this type of interpolation: 

1. Local curve behavior: similar to the frequency interpolation, special attention is required 

around certain Mach numbers where the variations are higher 

2. Traveling frequency band: increasing the speed directly influences each aeroelastic mode by 

changing the value of its frequency. This allows the reduced frequency band to shift sideways 

for increasing Mach. Also, since the reduced frequency depends on 1/𝑈∞, the frequency band 

becomes narrower as the Mach number increases (see Figure 38) 

The impact of both issues can be minimized by taking small Mach steps between each AIC calculation 

point. The following plots represent the typical behavior of the aerodynamic coefficients versus the Mach 

number, for several reduced frequencies: 

 

Figure 43: possible velocity interpolation schemes for the different regions of Mach number 

For each frequency, the coefficients behave differently depending on each Mach number region. The 

low and high Mach number regions can lead to slow or abrupt changes in the coeficients, requiring 

different interpolation functions. On the other hand, in the intermediate region the variations are generaly 

slow and smooth. It is important to notice that a large range of slow variations does not implies better 

approximation functions over larger Mach steps. The reduced frequencies can change signifficantly from 

one speed to another as mentioned in issue number 2 above. 
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Figure 44: quadratic (left) and hyperbolic (right) curve fittings applied to certain regions from the plots in Figure 43 
with the corresponding residuals 

The two plots above are extractions from the plots in Figure 43 covering approximately a range of 0,1 

Mach. The left plot depicts the low Mach number region for k=1. In this particular case the quadratic 

interpolation is actually better as can be seen by the shape of the curves and respective norm of 

residuals. The right plot depicts an higher Mach number region for k=2. The least squares fit with a 2nd 

degree polynomial are considered satisfactory therefore the curve may be well interpolated with this 

kind of function. 

There is a lot of uncertainty concerning the type of interpolation functions and the length of the Mach 

step taken. In addition, for most frequencies of interest at a given Mach number, the velocity interpolation 

depends on several frequency interpolations performed at other Mach numbers. As a first insight about 

the system aeroelastic behavior, the speed interpolation might be usefull because it can sweep a wide 

range of Mach numbers extremelly fast. However, if high accuracy is intended, such procedure should 

be avoided. 
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7 CODE VALIDATION 

The validation of the code was performed by modelling a prototype high aspect ratio wing that has been 

extensively studied and reported in the open literature. An aeroelastic analysis was conducted in the 

exact same conditions as in the selected case study and the available results such as the flutter speed 

and respective mode frequency were compared. 

7.1 CASE STUDY 

The case study is the wing present in the paper by Patil et al [30]. In this work, the authors study the 

effect of initial deformation and angle of attack on the flutter speed of a high aspect ratio wing. The 

calculations were based on two complementary theories: a mixed variational formulation for beams in 

moving frames and finite-state airloads for deformable airfoils on fixed and rotating wings. Even though 

these theories are intrinsically non-linear, a preliminary linear analysis was performed in which the flutter 

speed was calculated for the undeformed wing. Since the structural model is compatible with the one 

dimensional beam model used in this thesis, and all the required structural data was provided, this case 

study was considered suitable for comparison and validation of the results obtained by the program. 

The structural and aerodynamic data is presented in Table 15. 

7.1.1 Wing Model Data 

Table 15: wing model input data required for performing the linear flutter analysis present in [30] 

Geometry 

Half-span 16 m 

Chord 1 m 

Given Material Proprieties 

Mass per unit length, λ = ρwing ∗ b ∗ h 0.75 kg/m 

Moment of Inertia (50% chord), I =
λ

12
(b2 + h2) 0.1 kg m 

Spanwise elastic axis 50% chord 

Center of Gravity 50% chord 

Bending Rigidity, EIxx = E ∗ Ixx 2E4 N m2 

Torsional Rigidity, GJ = G ∗ J 1E4 N m2 

Bending Rigidity (chordwise), EIzz = E ∗ Izz 4E6 N m2 

Calculated Structural Proprieties 

Equivalent beam width, b = [12I (λ (1 +
EIx

EIz
))

−1

]

1

2

 1.262 m 

Equivalent beam height, h = b√
EIx

EIz
 8.922E-2 m 

Elastic Modulus, E =
12EIx

bh3
 267.823 MPa 

Torsional Constant, J ≅ bh3 (
1

3
− 0.21

h

b
(1 −

1

12
(
h

b
)
4

)) 2.854E-4 m4 

Shear Modulus, G =
GJ

J
 35.039 MPa 

Flight Condition 

Altitude 20 km 

Air Density 0.0889 kg/m3 

Speed of Sound 295.1 m/s 
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7.1.2 Preliminary Modal Analysis 

In order to validate the structural model, a modal analysis was performed using ANSYS® and the first 

five natural frequencies were extracted. The results are organized in Table 16: 

Table 16: wing’s first five natural frequencies calculated using ANSYS® and comparison with the same ones 
obtained in [30] 

 Present Analysis Patil et al [30] Relative Error (%) 

1st spanwise bending 2.243 2.247 -0.18 

2nd spanwise bending 14.064 14.606 -3.71 

1st chordwise bending 31.341 31.739 -1.25 

1st torsion 31.523 31.146 1.21 

3rd spanwise bending 39.445 44.012 -10.38 

 

Despite the 3rd Spanwise bending, the frequencies are very similar with relative errors below 5%. Also, 

each frequency correspond to the same mode on either analysis. An exception occurs in the 3rd and 4th 

frequencies that seem to be swapped in position. However, since they are numerically very close, such 

may not be an issue concerning the following aeroelastic analysis. 

7.1.3 Aeroelastic Results 

This case study was simulated in MATLAB® with the mesh parameters based on the conclusions of the 

convergence study (see section 5.2.2.3). The first five natural frequencies were tracked for a wide range 

of flight speeds in search of the flutter boundary defined by the zero damping condition. Since no 

information was given about the angle of attack or the airfoil used, the angle of attack was set to zero 

and a symmetrical airfoil was chosen. The complete list of MATLAB® input parameters is shown in Table 

17: 

Table 17: input computational parameters used in MATLAB® for the present flutter analysis 

Aeroelastic Analysis 

Angle of Attack 0 

Assumptions Airfoil NACA 0012 

Critical Mach5 (NACA 0012) 0.818 

“nseg_X” 12 

Mesh parameters 
“nseg_Y” 128 

“nseg_wake” 36 

“n_panels” 3132 

k-interpolation Yes Interpolation 
Scheme M-interpolation No 

“n_freqs” 5 

Search Parameters 
&  

Computational Cost 

Mach step 
(Speed step) 

0.0339 
10 m/s 

Mach range (Speed range) [0.0339; 0.9149] (10; 270) m/s 

Mach Loops 27 

CPU time (equivalent time) 311631 seconds (3d 14h 33min 51s) 

 

The final results are depicted in Figure 45 and Figure 46: 

                                                      
5 Critical Mach estimated using NACA 0012 in JavaFoil [45] 
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Figure 45: imaginary part of the dimensional part of “p” corresponding to the aeroelastic damped frequencies versus 
the flight speed 

 

Figure 46: real part of “p” corresponding to the aeroelastic damping versus the flight speed 

Table 18: aeroelastic results for both studies and comparison 

 Present Study Patil et al [30] Relative Error (%) 

Flutter speed UF (MF ) 250 m/s (0.8472) 32.21 m/s 676.16 

Flutter Frequency 2.243 rad/s (1st bending) 22.61 rad/s (?) -90.08 

7.1.4 Comments 

In Figure 46 the blue region marks the instability zone where the damping is positive. The intersection 

of the instability zone with the damping curves defines the flutter speed and it is marked with an arrow. 

For this wing, the 1st bending mode (Figure 46 – blue curve) is the first mode to become unstable, 

occurring at a flight speed of 250 m/s. By inspecting Figure 45, the damped frequency corresponding to 

the 1st bending at 250 m/s is approximately 2.248 rad/s. However, these values are an order of 

magnitude above the ones obtained for the exact same wing by Patil et al (Table 18). In addition, the 

calculated flutter speed is clearly in the transonic regime which is beyond the linear scope of the theory 

in use. The results obtained so far have not been useful to validate the developed flutter code. There 

are several possible causes that could justify the discrepancy in the results. Consider the following: 

1. Number of modes: in aeroelastic stability analysis, flutter occurs at the minimum speed at 

which one of the modes becomes unstable. It is possible (but very unlikely) that the first unstable 

mode is not one of the five modes tracked in this analysis. In his work, Patil et al only mention 

the value of the flutter frequency and not the type of its mode, but he does mention the same 

first five modes tracked by the current code. Therefore it was assumed that these modes were 

enough for correctly determining the flutter speed 
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2. Airfoil selection: being a tridimensional theory, the results also depend on the chosen airfoil. 

Provided that the airfoil is not too thick nor the camber too high, perturbations in the flow field 

remain small and the current linear theory should, in principle, still be adequate for predicting 

linear stability. Considering the magnitude of the error and the chosen thin and symmetrical 

NACA 0012 airfoil, this is believed to not be the source of the error 

3. Bad interpolation scheme: in this calculation, the k-interpolation described in chapter 6.2.1.1 

was used extensively for each Mach number. It may have happened that the interpolation 

functions were not accurate enough for predicting the AIC matrix over the reduced frequency 

range of interest for each speed. In the 3rd spanwise bending damping curve (light blue curve, 

Figure 46), there is an odd depression in the curve around 50 m/s which breaks the overall 

smooth behavior of the curve. This is most likely a consequence of a bad interpolation. However, 

this only happens for this mode which is most likely the least important concerning the flutter 

instability 

4. DoFs incompatibility: since the structural mesh is one dimensional, and the aerodynamic 

mesh is two dimensional, a DoF compatibility relation was necessary. This has been 

accomplished using simple linear cinematic relations assuming a rigid connection between each 

panel and the nearest structural node. In addition, there was a need to resort to finite differences 

in order to estimate the aerodynamic rotations (
∂u

∂x
,
∂v

∂x
,
∂w

∂w
)
A
  which are prone to numerical errors. 

If the connection between the two DoFs systems is not well established, the AIC matrix is 

directly affected resulting in erroneous results 

5. Theoretical formulation: the theoretical foundation of the program is an integral equation 

(section 4.2.1) relating the aerodynamic potential φ and its normal derivative 
∂φ

∂n
 on the physical 

boundaries of the system. While most of the theoretical is based on the text of reference [38], 

the complete methodology was unavailable thus leaving some technical details to be decided 

by the author of this thesis. Examples of these undefined aspects are the construction of the 

numerical matrices, the generation of the aerodynamic DoFs via the normal perturbation speed 

∂φ

∂n
, and the (numerical) calculation of the source and doublet integrals 

6. Implementation errors: the full MATLAB® and ANSYS® scripts containing the aeroelastic flutter 

code have been developed from scratch by the author of this thesis alone. Its development 

involved numerous stages from the definition of a quadrilateral panel to the assembly of the 

final AIC matrix. The code was reviewed, debugged and altered multiple times before its 

definitive form. However, there might be still some numerical irregularities resulting from the 

transition of the analytical expressions to the computational ones (implementation) that went 

undetected 

Despite the unnacceptable numerical error, there is a possibility of validating the program from a 

qualitative point of view. In another publication, Patil & Hodges [31] provided the unsteady pressure 

coefficient curve along the span for the same high aspect ratio wing. The same plot was obtained using 

the MATLAB® script and it is shown below for comparison (Figure 47):  



79 
 

 

Figure 47: spanwise unsteady lift corresponding to the 1st spanwise bending and k=0,4. The left plot was generated 
by the current analysis and the right one was extracted from reference [31] 

It is important to notice that despite the difference by several orders of magnitude, both real and 

imaginary parts behave similar in shape for the two analysis. The pressure increases slowly from zero 

at the wing root and drops quickly after the peak just before the wing tip. This similarity does support 

the qualitative value of the present work. 

7.2 VALIDATION WITH THE STRIP THEORY 

In order to gain access to other quantities and then attempt to further validate qualitatively the program, 

a new aeroelastic analysis of the same high aspect ratio wing has been performed resorting to a rather 

simpler approach – the strip theory (see chapter 4.1.1). This theory has been implemented in a new 

MATLAB® script with most of the algebraic formulas obtained using Wolfram Mathematica. The 

numerical aspects are summarized in Table 19: 

Table 19: shape functions and numerical parameters required for performing the aeroelastic analysis using the Strip 
Theory in conjunction with the Rayleigh-Ritz method 

Structural theory 

Model 1D elastic beam-rod 

Ritz method 

Virtual displacements 
Heave ℎ𝑖 and pitch 𝛼𝑖 about the 

elastic axis 

Shape functions 

hm(y, t) = ∑ (
y

L
)
m+1

Nh

m=1

h̅m(t) 

αn(y, t) =∑(
y

L
)
n

Nα

n=1

α̅n(t) 

Number of shape functions 
Nh = 10 
Nα = 10 

Input material proprieties (same as in 
the panel method) 

Bending rigidity EIxx 
Torsional rigidity GJ 

Wing density λ 

Input geometrical proprieties (same as 
in the panel method) 

Chord c 

Half span L 

Elastic axis 50% chord 

Mass axis 50% chord 

Aerodynamic axis 25% chord 
Aerodynamic theory 

Geometric model 2D infinite flat plate Strip theory 
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Flow model 2D incompressible potential flow 

Wake model Infinite plain vortex wake 

Aeroelastic analysis 

Objective Dynamic stability (flutter speed) 

Modified p-k 
method 

Number of modes 4 

Speed range [2,40] m/s 

Speed step 0,25 m/s 

Speed loops 153 

k-interpolation No 

V-interpolation No 

CPU time 216s (3min 36s) 

 

Figure 48: imaginary part of the dimensional part of “p” corresponding to the aeroelastic damped frequencies versus 
the flight speed, calculated with the Strip Theory 

 

Figure 49: real part of “p” corresponding to the aeroelastic damping versus the flight speed, calculated with the Strip 
Theory 

The plots in Figure 48 and Figure 49 depict the aeroelastic system’s first four complex eigenvalues 

versus the mean airspeed, similar to the plots in Figure 45 and Figure 46 for the panel method. Even 

though Patil et al does not provide such plots for comparison, these results could be close candidates 

for them as one can infer after detecting the flutter boundary. This theory predicts flutter at UF =

32,2134 m/s as a consequence of the instabillity of the 1st torsion mode with a damped frequency of 

ωF = 22,6576 rad/s  and are approximately the numbers obtained by Patil in his linear aeroelastic 

analysis (Table 20). 

Table 20: natural frequencies and aeroelastic results obtained by the implemented Strip Theory and comparison 
with the corresponding values from reference [30] 

Structural Results Ritz method 
Patil et al 

[30] 
Relative Error (%) 

1st spanwise bending 2.243 2.247 -0.1780 
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2nd spanwise bending 14.056 14.606 -3.7656 

1st chordwise bending N.A. 31.739 N.A. 

1st torsion 31.046 31.146 -0.3211 

3rd spanwise bending 39.356 44.012 -10.5789 

Aeroelastic Results Ritz Method + Strip Theory 
Patil et al 

[30] 
Relative Error (%) 

Flutter speed (m/s) 32.2134 32.21 0.0106 

Flutter frequency (rad/s) 22.6576 (1st torsion) 22.61 (?) 0.2105 

 

Unfortunately, there are few similarities between these results and the ones obtained for the developed 

panel method. Most importantly, the first instable mode is of a fundamentally different nature being a 

bending mode according to the panel method and a torsional mode according to the strip theory. Finally, 

for the sake of completeness, the lift and pitching moment along the span have been obtained and are 

depicted below: 

 

 

Figure 50: non-dimensional unsteady lift and pitching moment per unit span calculated due to the 1st spanwise 
bending and k=0.4 in terms of the real (blue) and imaginary (red) parts. Top left – non-dimensional lift per unit span 
calculated with the Strip Theory. Top right – non-dimensional pitching moment per unit span calculated with the 
Strip Theory. Bottom – Non-dimensional pitching moment per unit span calculated with the developed aeroelastic 
code 

For the strip theory, both unsteady lift and moment spanwise distributions behave like the respective 

mode shape for the full length of the wing. It is important to stress out the absence of the drop to zero 
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at the wing tip observed in these plots as otherwise seen6 in the panel method (Figure 47 left and Figure 

50 bottom) and in the paper by Patil et al (Figure 47 right). Such behavior is expected since the strip 

theory is fundamentally two dimensional and the concept of a finite wing has not been taken into 

account. In the pitching moment plot obtained with the panel method (Figure 50 bottom), the 3D effects 

are less evident indicating that possibly a finer mesh was required near the wing tip. 

  

                                                      
6 Actually, since the last structural node is not exactly at the wing tip, the value of the force and moment could not 

be obtained there and thus the value appearing at y = 16m have been enforced manually. However, the start of the 
declination to zero can be observed in the plots, for instance in the lift plot of Figure 47 – left side 
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8 CONCLUSION 

A computational tool was developed with the purpose of determining the aeroelastic flutter speed of a 

3D aircraft wing. The aeroelastic model was created based on the coupling of a structural model with 

an aerodynamic model. The structural model consisted in a one-dimensional beam-rod clamped at the 

aircraft fuselage, and representative of the wing elastic axis. The aerodynamics were modeled according 

to compressible potential fluid theory in which the pressure forces were calculated based on the 3D 

geometry of the wing. The methodology of solution consisted in a finite element approach centered at 

the structural nodes, involving the inertial, elastic and aerodynamic forces, expressed by the mass, 

stiffness and aerodynamic influence coefficients matrix (AIC), respectively. While mass and stiffness 

matrices were easily calculated using the finite element software ANSYS®, the AIC matrix was 

calculated by a panel method, developed and implemented in MATLAB® environment, constituting the 

main part of the current work. The developed panel method, originally presented by L. Morino [38], is 

formulated in the frequency domain and it is valid for subsonic flow around closed surfaces within the 

framework of small disturbances. The method is presented as an alternative to the usual linear flutter 

calculation methods, such as the DLM, allowing the study of more complex geometries, the inclusion of 

thickness effects, and free surface discretization schemes. Once the discretized aeroelastic equilibrium 

system of equations was established, the stability roots were extracted through an iterative process 

based on the p-k method. The modified p-k method was developed in this work in order to avoid losing 

the track of the correct mode after some frequency or velocity iterations, during the process of searching 

for the stability boundary. 

To validate the computational framework, the linear flutter calculation of a high aspect ratio wing 

performed by Patil et al in [30] was simulated, and the frequency and flutter speed were calculated for 

comparison. However, even though flutter was evident after inspecting the results, the corresponding 

values of frequency and speed were far above the ones obtained in [30], with relative deviations around 

700% and 90% respectively. In the preliminary modal analysis performed in ANSYS®, the values and 

types of natural frequencies obtained were similar to the ones provided in [30], suggesting that the error 

was originated in the aerodynamic calculations. 

By comparing the non-dimensional spanwise lift plot with the one provided in [31] corresponding to the 

same wing (Figure 47), it was possible to notice strong similarities between the curves, indicating that 

the obtained results may have some qualitative significance. However, the numerical values still 

revealed great deviation from the reference. 

As a way of confirming the source of the error, the same wing was modeled resorting to the Strip-Theory 

for the aerodynamics and Rayleigh-Ritz for the structure. Since the results were identical to the ones 

from reference [30], the validity of these results was confirmed and the cause of the discrepancies 

observed was attributed to possible errors in the developed program. 

Among the multiple possible causes or error, the most probable might be related with the force and 

DoFs transformation from the aerodynamic nodes to the structural ones, seeing that the meshes were 
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different and the techniques used in this process were somewhat rudimentary. In addition, the code 

contains issues concerning the numerical efficiency as seen in the excessive computation time required 

for the validation study. The interpolation methods used were not effective enough to render multiple 

flutter calculations feasible using the mesh parameters imposed by the convergence study. This was 

mainly due to the lack of exact formulas for the integral coefficients, thus ending up being calculated 

exclusively by numerical means. 

From a practical point of view, the developed tool did not bring any advantage over the usual methods 

used today for linear flutter calculation, namely the DLM or even the classical Strip Theory. These 

methods are known to produce accurate results in linear aeroelasticity and its multiple computer 

implementations over the last decades have made them superior in terms of efficiency. 

From the academic point of view, considering the distinct and broader domain of applicability of the 

present method over others within the framework of potential aerodynamics, there might be interest in 

revisiting the methodology implemented in the present work. In a hypothetical future approach, the 

aspects concerning the theoretical formulation and the implementation procedures of the panel method 

should be reviewed in order to gain some additional insight about the nature of the errors and, if possible, 

to increase the overall efficiency. 

As a final remark, it is important to stress that, within the field of research of aeroelastic stability, the 

present work did not constitute a new contribute but was rather an attempt to implement an existing 

methodology, while resorting to the limited available bibliographical resources. The occasional lack of 

information led to certain aspects of the implementation of the method to be defined by the author of 

this dissertation. In this sense, the success or failure of the present work relied heavily not only on the 

interpretation of the available information, but also on the ability to find solutions when this information 

revealed scarce. 
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APPENDIX A 

The method involved in the calculation of the singular source integral is presented here. Consider the 

following integral, representing the influence of an unsteady source singularity distribution over a flat 

panel: 

IS
Q
=∬

e−s0r0

r0
dS0 =∬

e
−s0√(XQ−x0)

2
+(YQ−y0)

2
+(ZQ−z0)

2
 

√(XQ − x0)
2
+ (YQ − y0)

2
+ (ZQ − z0)

2
dS0 (136) 

Originally, the Cartesian coordinates are expressed in the transformed global coordinate system. 

However, being an integral quantity, the integral may be performed in any convenient coordinate 

system. The logic choice is to use the panel local transformed coordinate system with origin at its 

centroid. For the current self-influencing case, this choice allows point Q to vanish in the integrand along 

with the coordinate 𝑧0 . In addition, the differential 𝑑𝑆0  is now expressed in terms of the integration 

variables given by dx0dy0. The simplified integral takes the following form: 

IS =∬
e
−s0√x0

2+y0
2 

√x0
2 + y0

2
dx0dy0 

(137) 

It is still not possible to evaluate the integral exactly. Also, the singularity is still present within the domain 

of integration which prevents an efficient numerical integration. It is shown next that a conversion to 

polar coordinates eliminates the singularity: 

x0 = r cos θ , y0 = r sin θ (138) 

|𝐉| = r (139) 

After the coordinate transformation the integral becomes: 

IS =∬
e−s0r

r
rdrdθ = ∬e−s0rdrdθ (140) 

This integrand is defined in every point inside the panel domain allowing any integration scheme to be 

used. The integration in the radial coordinate can be evaluated exactly by integrating from r = 0 to r =

R(θ): 

IS = ∫ (∫ e−s0rdr
R(θ)

0

)
2π

0

dθ =
2π

s0
−
1

s0
∫ e−s0R(θ)dθ
2π

0

 (141) 

The symbol R(θ) represents the radial distribution of the panel boundaries in terms of the angular 

coordinate θ. Due to the triangular or quadrilateral shape of the panels, the function R(θ) must be 

defined by three or four branches respectively. In Cartesian coordinates, each side of the panel is given 

by 1st order polynomials: 
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yi(x) = mix + bi ,     i = 1, … ,3 or 4 (142) 

x = xi ,     mi → ∞ (143) 

The subscript “i” refer to the 3 or 4 corners of the panel (Figure 51). For instance, m2 refers to the slope 

of the side connecting corners number 2 and 3 of the panel. The corresponding boundary functions in 

polar coordinates are given by: 

Ri(θ) =
bi

sin θ − mi cos θ
 (144) 

Ri(θ) =
xi
cos θ

,      mi → ∞ (145) 

After replacing R(θ) in equation (141) by the above generic formulas, the integral can be evaluated by 

any standard numerical rule.  

IS =
2π

s0
−
1

s0
∑∫ e

−s0
bi

sin θ−mi cos θdθ
θi+1

θi

, N = 3 or 4 

N

i=1

 (146) 

 

Figure 51: generic quadrilateral panel with local Cartesian and polar coordinate systems. Point Q is placed at point 
P indicating a self-influence case (singular integral) 

This procedure not only eliminates the singularity, but reduces the surface integral to a line integral, 

therefore significantly reducing the computational cost. As a final remark, it should be noted that the 

above formulas are only valid for the self-influence case, where the origin of the local coordinate system 

coincides with point Q. 
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APPENDIX B 

The doublet singular integral is treated here. The influence of an unsteady doublet singularity distribution 

over a panel on a certain point Q is given by the following integral: 

ID
Q
=∬

∂

∂nQ
(
e−s0r0

r0
) dS0 =∬

∂

∂nQ
(

 
e
−s0√(xQ−x0)

2
+(yQ−y0)

2
+(zQ−z0)

2

√(xQ − x0)
2
+ (yQ − y0)

2
+ (zQ − z0)

2

)

 dS0 (147) 

In general, the above integral has no exact solution and can only be approximated using numerical 

methods. However, in the self-influence case where point Q is inside the integration limits, the integral 

becomes singular at that point and numerical methods become highly inefficient. The procedure used 

here follows a similar approach presented in Appendix A for the source singular integral. It is shown in 

this appendix that a suitable coordinate transformation can remove the singularity and that ultimately 

the integral can be evaluated exactly, thus excluding the need of a numerical integration scheme. 

Consider the transformed local Cartesian coordinate system with origin at point P, the centroid of the 

influencing panel. In the self-influence case, the influenced point Q is coincident with point P thus 

creating a singularity at this point, given by (x0, y0, z0)P = (0,0,0) = (xQ, yQ, zQ) . In this coordinate 

system, the normal direction is also the vertical z0 direction so that the derivative can be evaluated 

directly. Formally, since zQ = 0 = z0 over the panel surface, the integral being sought can be evaluated 

by solving the following limit: 

ID
Q
= lim

zQ→0

[
 
 
 

∬
∂

∂zQ
(

 
e
−s0√(xQ−x0)

2
+(yQ−y0)

2
+(zQ−z0)

2

√(xQ − x0)
2
+ (yQ − y0)

2
+ (zQ − z0)

2

)

  dx0y0
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xQ=yQ=z0=0

= 

= lim
zQ→0

∬−zQ
e
−s0√x0

2+y0
2+zQ

2

(x0
2 + y0

2 + zQ
2)

3
2

(1 + s0√x0
2 + y0

2 + zQ
2) dx0dy0 (148) 

Choosing the polar coordinates (r, θ):  

x0 = r cos θ , y0 = r sin θ (149) 

|𝐉| = r (150) 

The integral becomes: 

ID
Q
= lim

zQ→0
∬−zQ

e
−s0√r2+zQ

2

(r2 + zQ
2)

3
2

(1 + s0√r
2 + zQ

2) rdrdθ (151) 

Another convenient transformation is the following: 
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R2 = r2 + zQ
2 ⟺ r = |√R2 − zQ

2 | (152) 

dr =
R

√R2 − zQ
2

dR 
(153) 

Simplifying the integral in equation (151) to: 

ID
Q
= lim

zQ→0
∬−zQ

e−s0R

R2
(1 + s0R)dRdθ (154) 

The integrand is similar to the one from the singular source integral except for denominator 𝑅2 or 𝑅 

which prevents any exact integral evaluation. It is possible to go further by expanding the exponential 

term in an infinite series: 

e−s0R =∑
(−s0R)

n

n!

∞

n=0

 (155) 

After some algebra, retaining the terms up to order 2, the integral becomes: 

ID
Q
= lim

zQ→0
∫ ∫ −zQ ∗ (

1

R2
−
1

2
s0
2 +

1

3
s0
3R −

1

6
s0
4R2 + O(R3))

√r2(θ)+zQ
2  

zQ

2π

0

dRdθ (156) 

It is clear from equation (156) that all the integrals over the radial coordinate are immediate for they can 

be solved exactly according to the formula: 

I = ∫ −zQ ∗ cte(n) ∗ R
mdR = −zQ ∗ cte(n) ∗ [

Rm+1

m+ 1
]
zQ

√r2(θ)+zQ
2

√r2(θ)+zQ
2

zQ

 (157) 

m ∈ ℕ0 ∪ {−2},       n = m + 2 (158) 

Then the limit becomes: 

ID
Q
= lim

zQ→0
∫ −zQ ∗∑

cte(n)

m + 1
[(r2(θ) + zQ

2)
1
2
(m+1)

− zQ
m+1]

∞ 

n=0

2π

0

dθ (159) 

The integral in θ can be performed term by term by moving the integral inside the infinite series. In 

addition, since the limit does not concerns the index “n” of the series, nor the integration parameter “m”, 

the limit operator can also be calculated term by term by placing it inside the series. There are two 

different limits to be performed: 

L1 = lim
zQ→0

∫ −zQ ∗ (r
2(θ) + zQ

2)
1
2
(m+1)

dθ
2π

0

 (160) 

L2 = − lim
zQ→0

∫ −zQ ∗ zQ
m+1dθ

2π

0

 (161) 

The limit operator can be interchanged with the integral operator provided that the integrand is bounded 

for all θ ∈ [0, 2π]. The function r2(θ) represents the radial distribution of the boundaries of the panel for 
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a coordinate system centered at the panel’s centroid. This function is a positive number limited by the 

panel boundaries therefore it is bounded. Since the remaining parameters are constant and zQ → 0 ≠

r2(θ), no singularities are possible. This means that for any “m”, the integrands are bounded and the 

limit can interchange with the integral operator. Consider the following cases for “m”: 

m ≥ 0 ∶  

{
 
 

 
 L1 = ∫ lim

zQ→0
−zQ ∗ (r

2(θ) + zQ
2)

1
2
(m+1)

dθ = ∫ 0 ∗ (r2(θ) + 0)
1
2
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2π

0
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 (162) 

m = −2 ∶  

{
  
 

  
 L1 = ∫ lim
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2
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√(
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2π
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2π

0

 (163) 

As can be seen, only the second limit L2 provides a result different than zero that occurs when m = −2. 

The respective multiplicative constant 
cte(0)

−2+1
 resulting from equation (159) is equal to −1, as can be 

inferred from the series expansion in equation (156) and the integral formula in equation (157). 

Therefore, the final result for the singular doublet integral is simply: 

ID
Q
= −2π (164) 

This concludes the calculation of the singular doublet integral.  

 


