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TECHNICAL NOTE 2130

CALCULATION OF TRANSONIC FLOWS PAST THIN
ATRFOILS BY AN INTEGRAL, METHOD

By Williem Perl

"'SUMMARY

A method of calculating two-dlimensional compressible flows past
thin airfoils is presented with particular reference to the transonic
speed range. The method is based on the integral form of the equa-
tion of continuity and on the intrinsic form, in terms of the stream-
line curvature, of the irrotationality condition. The application to
the transonlic range conforms with, and is carried out within the
framework of, the transonic similarity theory. The results include
velocity distributions for various symmetric sections in the
continuous-potential-flow speed range and for the symmetric biconvex
airfoll at zero angle of attack through the transonic speed range
and the assoclated variation of terminal- and head-shock location
and pressure dreg wlth Mach number. Comparisons with other theories
and with available experimental data indicate at least qualitatively
good agreement. The location and the movement of the terminal shock
in the lower transonic speed range are discussed, as well as the
limiting-line phenomenon.

INTRODUCTION
Considerable effort has been expended in recent years on the
investigation of the flow phenomene that occur when aerodynamic
bodies travel at transonic speeds. ZExperimentally, the main fea-
tures of steady transonic flow patterns about airfoll sectlons have
been established. (See, for example, references 1 to 5.)

Thus, the succession of flow patterns, of which an approx-
imate theoretical description is attempted herein, may be briefly
outlined as follows: Consider the zero-lift flow relative to .
an alrfoll that is symmetric with respect to its chord line
(fig. 1). At low subsonic free-stream velocities, the flow
pattern is likewlse symmetric with respect to the chord line and is
everywhere subsonic. Above a certain subsonic free-stream velocity,
a symmetric-type locael supersonic region,bounded by the locus of
sonic speed indicated by 1 (fig. 1), starts to develop in the
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neighborhood of the maximum-thickness location of the airfoil. If
the airfoll had fore-and-aft symmetry with respect to its midchord
location, these locel supersonic regions would likewise have fore-
and-aft symmetry with respect to midchord. As the free-streanm
velocity is further increased, the fore-and-aft type of symmetry

of the flow pattern disappears and an asymmetric pattern develops.
The local supersonic region, indicated by the sonic boundary 2 in
figure 1, is now of an asymmetric type (that is, would be asymmetric
fore and aft even if the airfoil were symmetric fore and aft) and

is terminated on the downstream side by an approximately normal
shock. Near the airfoil especially, this terminal shock is actually
a more or less complex shock structure depending on the Reynolds
number and interacts with the boundary layer in s complex manner,

As the free-stream velocity increases toward sonic, the asymmetric-
type local supersonic region increases in extent and the terminal
shock increases in intensity and moves downstream toward the trail-
ing edge. At slightly supersonic free-stream velocities, an addi-
tional shock, the bow wave, appears ahead of the airfoil and
approaches it as the free-stream speed is increased. The subsonic
part of the flow field has now become finite in extent, as indicated
by the sonic boundary 3 (fig. 1). The terminal shock has reached,
and remains in, the neighborhood of the trailing edge and begins to
slope in a downstream direction. At a certain supersonic free-stream
speed the forward shock attaches at the nose of the airfoil, if the
nose is sharp-edged, and shortly thereafter the flow field becomes,
usually, everywhere supersonic, except, of course, in the boundary
layer.

On the theoretical side, much of the effort expended on the
transonic problem has gone into the solution of the mathematicelly
well~defined problem of the continuous compressible potential
flow past an airfoil, corresponding to the symmetric-type flow
pattern described. (See, for example, references 6 to 20.) FEmmons
and Maccoll and Codd (Treferences 18 to 20), however, have included
shocks in some of their relaxation calculations. Progress with the
methods cited has so far not been rapld, primarily because of mathe-
maticel and computational difficulties. Perhaps the most significant
theoretical result that has emerged is the probability that a sub-
sonic free-stream speed exists for a given asrodynamic shape, such
that continuous symmetric-type flow patterns containing local super-
sonic regions can, at least in principle, be derived for this shape
below this speed but mot above. In regard to the other main
ingredient of real transonic flows, namely, the boundary layer and
its interaction with the terminal shock, interpretation and analysis
is only in a preliminary stage. (See, for example, references 3,

4, and 21 to 24.) It must be noted, however, that progress with a
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coumplete theory is hampered by the practical difficulties involved
in cearrying out good experiments in the transonic speed rangs.

In the present report an integral method is applied to the cal-
culation of transonic flow patterns. Starting from the equation of
continuity in integral form and conservation of energy in the inte-
grated form of Bernoulli's equation, which suffice for the analysis
of quasi one-dimensional flows, two-dimensional effects are then
taken into account by inclusion of the equation of motion normal to
the streamlines, expressed in terms of the streamline curvature.

By an appropriate choice of the streamline curvature, the flow
pattern can then be calculated in a comparatively simple manner.

This method has long been known and applied to the calculation
of flows through curved chennels, for example, between turbine
blades, or in wind tunnels (references 25 and 26). Application has
recently been made to isolated airfoils in continuous compressible
potential flow (references 27 to 29).

The small-perturbation form of the method of reference 29 is
developed herein. The resulting simplifications make feasible the
approximate calculation of some of the more complicated, shock-
containing, flow patterns previously described. The small-perturbation
form also shows explicitly the agreement of the method of reference 29
with the more general transonic similarity theory of wvon Karman
(reference 30) and Oswatitsch, to which any nonviscous-type explicit
solution for thin airfoils in the transonic speed range must conform.

The mathematical simplicity of the present method preserves the
possibility of interpreting results and difficulties at all stages
in terms of the baslic conservation laws. The insight thus permitted
into the nature of transonic flows makes it easy to understand, for
exsmple, the previously mentioned phenomenon of an upper-limiting
subsonic f£flight speed for the existence of contlnuous potential
flows.

In order not to unduly disturb the continuity of presenta-
tion of the main ideas, certain mathematical details are relegated
to appendices A to D and a list of the main symbols used is con-
tained in sppendix E,

The main developments of this report were worked out at
Columbia University in the winter of 1947-1948 under the stimulus
of a lecture given by Professor Theordore von Kerméin on the subject
of transonic similarity. The report was completed at the NACA Lewls
laboratory. .
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The author wishes to express his thanks to Professor Theodore
von Kérmin for having inspired the present treatment of the tran-
sonic problem. This inspiration was not only direct; for, Professor
von Karmén has probably done most to demonstrate the power and
utility in fluid mechanics of the two foundational ideas on which
the present theory is built, namely, the integral-method approach
and the similarity concept. It is to be hoped that the present
structure does not rest too lightly on the foundations.

COMPRESSIBLE POTENTTIAL FLOW

Governing equations. - The flow 1s considered steady, two-
dimensional, isentropic, irrotational, and symmetric with respect
to the airfoil chord (x-axis). The equations of motion can be
expressed iIn terms of the local fluid density p, speed v, pres-
sure p, Mach number M, the corresponding free-stream values
(denoted by the subscript o), the specific-heat ratio 7, and
the streamline curvature C, as follows (fig. 2): (The main symbols
are defined in appendix E.)

Equation of contimuity:

Yo n
j PV odT = pvdn (1)
0 0

Irrotationality condition (reference 31):

%—E+w=o \ (2)

Bernoulli-state equation:

1 , 1 ,
T
.9.:.2)7=1-Z%]_-M02(.Y%-1 7 (3)

P (o) PO vo

The differentials dy and dn in equation (1) aie elements of
length along & potential line in the free stream far shead of the

airfoil and along a potential line in the region of the airfoill,
respectively. The lower limits of integration lie on the zero

1255
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streamline, that is, on the x-axis and on the airfoil contour. The
upper.limits lie on a streamline .DBF, which, as Yy, approaches

infinity, becomes parallel to the x-axis., It is assumed for the
present that as y, approaches infinity the displacement component
® in the y-direction between any two points on the same streamline,
gsuch as D end B, approaches zero. This assumption is valid for
circulation-free (zero-1lift) flows that are subsonic at infinity
and that heve no wakes or unclosed portions of airfoll contour
extending to infinity in the x-direction, inasmuch as such flows
caen be represented at infinity by a collection of incompressible-
type source-sink doublets in the finite part of the plane, and for
such doublets the assumption is valid. This assumption cen also be
regarded, perhaps more generally, as restricting the flow pattern
to that produced in a closed, stralight-walled, two-dimensional wind
tumel in the limiting case in which the walls are infinitely for
apart.

The element of length dn in equation (1) is now approximated
by the element of length dy in the y-direction, that is, the
potential lines are replaced by the lines x = constant. This
replacement is exactly valid for the potential line starting from
the midchord location of a symmetric airfoil that has also fore-
and-aft symmetry. In appendix A, this replacement is shown to be
Justified, in general, for the case of small perturbation of the free-
stream flow by an airfoll.

Next let the lower limit on the right side of equation (1) start
from a point on the airfoll at which the airfoil ordinate is Y.
Set py, Vo, and p, equel to unity, so that the corresponding

. local quantities p, v, and p henceforth represent nondimensional

fractions of free-stream density, velocity, and pressure, respec-
tively. Furthermore, let the unit of length be the airfoil chord ¢
50 that the lengths x, y, and 1/C henceforth represent non-
dimensional fractions of the alrfoil chord length. Subtracting
Yo~ from both sides of equation (1), letting Yo @approach infin-

ity, and using the preceding aessumption for & and approximetion

for dn yields
Y = b/\ (pv-1)dy (4)
Y

Equations (2) and (3) become, respectively,

iy = - & (5)

RS UG e e e ———— - —_— i — —— - e S e e
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The form of the continuity equation (4) is analogous to that defining
the displacement thickness in the boundary-layer theory. The airfoil
ordinate Y here takes the place of the boundary-leyer displacement
thickness. Whereas the subtraction and limiting process leading to
equation (4) is performed in the boundary-layer theory mainly for
definiteness in defining a boundary-layer thickness, the process is
here essential in order to subtract out the infinite mass flow
crossing a potential line and initially introduced perhaps somewhat
artificially by considering the fluid as moving relative to the
stationary sirfoil.

The streamline curvature C, considered positive when the
streamline curves 1n the same sense as the corresponding contour of
the alrfoll at the maximum thickness location, is a function of the
position coordinates x and y of the flow field. At a glven
chordwise location x, +the streamline curvature is a function of ¥y
that varies continuously from the curvature Cg of the alrfoil
contour at y =Y to the value zero at y =o. It proves conven-
ient to consider the curvature C at a given x as a function of
the local velocity v rather than of y. In the applications made
herein, v will be a monotonic function of y. Hence, a2t least for
such applications, C can be expressed as

C = Cuf(x,v) - (7)

The assumption that the streamline curvature can be as well
expresssed by a function of x and v as by a function of x and
¥y may be more generally Justified as follows: Of the four basic
varlebles of the problem, namely, the vector velocity given by the
two variables v and 6, where 6 is the angle of inclination of
the local stream direction to the xz-axis, and the vector distance
glven by the two variables x and ¥y, two varlables are to be
regarded as independent and two as dependent. The solution of the
so-called direct problem of airfoll theory is required in the form
where v(x,y), 6(x,y), and in particular the velocity V(x,Y) on
the given airfoil contour 6,4(x,Y) are finally known. The analysis
of the problem, however, can be made, at least in principle, with
any two of the variables considered as independent and the remaining
two as dependent. The hodograph method, for example, 1s based on v
and 6 as the independent and x and y &8 the dependent varisbles.

1255
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The present method is based on v and x as the independent and 6
and y as the dependent varlables. Conceivably, other possible
combinations might be advantageous in particular problems. Similar
remarks apply with the potential, or the stream function, or both,
replacing one or two of the present variables.

The present method is thus a sort of semlhodograph method.
Whereas it retains the principal advantage of the hodograph method,
namely, that the velocity - v and hence, by equation (6), the demsity
p becomes essentlally an independent varisble, it avolds the well-
known disadvantage of the hodograph method; nemely, difficulty in
satisfying the boundary conditions in obtaining flows past given
fixed alrfoils as a function of Mach number.

Equation (4) becomes, upon substitution of equations (5) and

(7),
1
Vo1 |
1

in which V 1is the sought-for velocity at the airfoil at chordwise

" location x, +the quantity x being held constant in the integration.
Equations (6) and (8) constitute an expression for the velocity V
at a point on an airfoil in terms of the shape parameter TIC, of the

airfoil at that point, the free-stream Mach number M,, and the

curvature function f(x,v). (From the point of view of the inverse
problem, that is, designing an airfoil to satisfy a prescribed
velocity distribution, the shape parameter IC, would be regarded

as dependent upon V, M,, and f.) The basic reason for expressing
the airfoil velocity V in terms of a streamline-curvature function
f is that, in the form of equation (8), V is relatively insensitive
to cholce of f. As will be seen, a reasonasble choice of f can

therefore be made that leads with comparatively little computation to
fairly accurate values of V.

The relation between the local velocity v and the lateral
distance y at a given x is obtained by integration of equation (5)

from an airfoil point (x,Y) or (x,V) to a field point (x,y) or
(x,v) as ’

v
Sy .l v
v

—_— e e i+ o = e S A A = - i T o e e s
e e e o ——
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Solution of equation (8) for V enables the local velocity v(x,y)
at any point in the flow field to be determined from equation (9).
The streamline inclination 6(x,y) can then also be obtained, as
will be subsequently shown.

The only approximation thus far made is to replace the element
of length dn along a potential line by the element of length dy
perpendicular to the chord line. The resulting equations (6), (8),
and (9), together with an assumed form for the curvature function
£(x,v), have been applied in reference 29 to calculate (finite
perturbation) compressible potential flows past airfoils. An
approximstion for the density p(v) i1s next made, which leads -to
the general small-perturbation form of the preceding theory.

Small-perturbation case. - By small perturbation 1s herein
meent that the local velocity increment v-1 produced by the airfoll
is small relative to unity. The density p 1s, by equation (8),
thereby expressible as a power series in v-1. Thus, the numerator
of the integrand in equation (8) can be developed as

p-l=uv-r‘cv2+ono (10)
v
where

VEv -1 (11a)

2
R=E1- M, . (11p)

2

My"  2-y 4 '
Pc51+_'2—'-§ZMO (11c)
lim T2 I'= Z-g—l- (114)
Mpo—1

The velocity increment A at the airfoil, a normalized local-
velocity variable 2z, and a Mach number parameter K are next
defined as
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ASV -1 (12a)
=Y _v-1 .
22 1 =§-1 (12p)
1M 2
K= B = (12¢)

2/3 2/3
@T) /! (1T) s
In terms of the reduced local velocity =z, the curvature function
(equation (7)) can be expressed as

C = Cqy £(x,2,K) (13)

Equation (13) caen easily be shown, from the general transonic sim-
ilarity theory of reference 30, to be the most general possible
form for the streamline-curvature function in the small-perturbation
transonic range. (This possibility was pointed out by Professor
Theodore wvon Kérma'.n.) Conversely, it willl be presently verified
that the use of equation (13) with the present formulation of the
equations of motion leads to the transonic similarity laws of refer-
ence 30. The curvature function f(x z,K) in equation (13)

must satisfy the boundary conditions £(x,1,K) =1 at the airfoil
and f£(x,0,K) = 0 at infinity.

Substitution of equation (10) into equation (8) and changing
the variable of integration from v to 2z by equations (1la),
(12), end (13) yields

1 : .
YC
8 =J\ <z _ 1-'cAzz)
AZ U]
K 0

Similarly, the reletion (9) between local velocity v and lateral
distence y becomes, for small perturbations,

dz
f(x,z,K)

(14)

1
. A dz
YEIve, | men ()

2

Prandtl-Glauert range. - In the subsonic or Prandtl-Glauert
range, defined by 0 <M, << 1 or K- ®, the dependence of the
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curvature function (equation (13)) on K must disappear. Hence,
in the small-perturbation case, A <<1, and for sufficiently
subsonic free-stream Mach numbers M,, the second term in the
integrand of equation (14) can be-neglected relative to the first,
and equation (14) can be written as

IC

—j = F(x) ‘ (18)

where F(x) is a function of x of the order of magnitude of
unity. For smoothly curved, thin airfoils, the shape parameter ICy
can be expressed as the product of the square of the thickness ratio
T (T = maximm thickness/chord length) and a function of x of the
order of magnitude of unity over most of the airfoil. Equation (16)
can therefore be written as

A =T o(x) (17)
T

where T << 1 and G(x) ~ 1. Equation (17) expresses the basic
result of thin-airfoil theory that the velocity increment at chord-
wise location x of one of a series of thin airfoils, all having
the same geometric shape but differing in thickness ratio T, 1is
proportional to the thickness ratio T of that airfoil. Equa-
tion (17) also expresses the Prandtl-Glauert rule that the effect
of compressibility in the lower subsonic range is to increase the

airfoil velocity increment by the factor 1/ l—sz;

Lower transonic range; simllarity rules. - As the free-stream
Mach number M, is increased toward unity, or w-—0, the airfoil
contour being such as to maintain a small velocity perturbation
A< <1, avalue of p << 1 must eventually be reached where
PA/h becomss comparable to unity. The second term in the integrand
of equation (14) is then comparable with the first. Additional
terms in the expansion of the integrand, however, evidently would
remain negligible relative to the first two terms. Hence, at tran-
sonic speeds defined by u ~ 0, instead of the relation of equa-
tion (16) between the two parameters x and YCa/ﬁA?, equa-~
tion (14) constitutes a relation among four patrameters; thus

H .T_z TA _J-‘_7_ =0 (18)
X, mz) I-l’ (Tr.)z 3
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The last three perameters indicated in equation (18) are not inde-
pendent, however, but can be expressed in terms of two independent
parameters. Thus, using the third parameter of equation (18) to
eliminate A from the second yields the equivalent expression of
equation (14)

TA
I <%, E;E§§73? 7;) =0 - (19)

or also, using the second parameter of equation (19) to alter the
third,

rl/sa
d <X, (TI"—)LE/S’ Tz/s) =0 N (20)

Inasmuch as the ﬁressure coefficient P at a point on the airfoil
is obtained in terms of the velocity from equation (3) in the small-
perturbation case as

P= —]T—_—E = -2A (21)
2 PoVo
relation (20) can be written as
: 2/3 ‘
T
- 75 # (x0) (22)

The function £ 1in equation (22) is determined by the shape of the
airfoil and is of the order of magnitude of unity. Equations (22)
and (12c) agree with the transonic-similarity theory as regards
velocity distributions on airfoils.

By multiplying equation (15) by A and using the preceding

relations, there results for the velocity increment in the flow
field

2/3 2/3
v =;—U/gavl[x, (iG-1), ﬂ=§1§3wz|:x: Y31, o (29)
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wWhere "Vl and A5 are functions of the order of magnitude of unity

and A p(y-Y) , the affinely transformed lateral distance of the
Edrmdn theory (reference 30) is of the order of magnitude of unity
by equation (15). Equation (23) agrees with the transonic-similarity
theory as regerds conditions in the flow field. Equation (23)
reduces to equation (22) on the airfoil.

Equation (22) states that if the pressure coefficient has a
certain velue P; at a chordwise location x on an airfoil of

thickness ratio T 1in a flow at speed Mo 1~ 1l and in a fluid
2
of specific-heat ratio 715 ‘then the pressure coefficient Py at

the same chordwise location of a geometrically similar airfoil of
thickness ratio T5 1in a fluid of specific-heat ratio 7, end at

8 speed Mo,z given by

1‘“6,12 _ 142"
(1, T3 (1,0,)%/%

(2¢)

wlll be related to Py by

2/3 1/3 :
P2 (T2 ri)
2@ @ (=)

The Prandtl-Glauert rule is included in equation (22) if an inverse
square root is chosen for the K-dependent pert of the function L.
This result necessarily follows because the Prandtl-Glauert case is
obtainable from the general formulation, equations (14) and (19),
by letting TI'A/u— 0. '

A further simllarity rule that concerns the locel Mach number
may be noted. In isentropic flow, the local Mach number M is
related to the local velocity v &and the free-stream Mach number
M, as follows:

2q2
M = % - - (28)
1-22H, (v°-1)

In the small-perturbation case v-1 = V<<1l, equation (26)
becomes

1255
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Mol = - o+ 2Dy . (27)
where
T, = u2 (1 + L2 M02> . (28e)
and |
) lim oy = T'= Z’zil -(28b)
M1

' Equations (23), (27), and (28b) yield the transonic similarity rule

for local Mach number

_Mf_%%g |z, (T)/3(5-1), K:l (29)
(tT)

Equation (29) may be applied in a manner similar to equations (24)
end (25) to relate local Mach numbers M; and M, at the

corresponding points

[

X =%, (30a)

]

1/3
in the flow fields of similar airfoiis Ty and Ty in fluids
characterized by 1"1 and. 1"2 at corresponding free-stream Mach
numbers Mo,l and Mo,z given by equation (24). TInstead of equa

tion (25), the following relation, obtained from equation (29),
applies:

ﬁzz-l %1

(Tzr.z)z/s = (Tlr.l)z/s

(31)

Various special cases of this similarity rule have been préviously
given in references 4, 32, and 33.
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Tt may be noted that although the use of I'= (7+1)/2 in such
expressions as equations (23) and (29) is valid in the transonic
limit M, =1, in applications for which M, 1is finitely different

from unity equations (28a) and (1lc) for PM and T,, respectively,

should more properly be used. The reason is that in the approxi-
mating equations (10) and (27), only the small-perturbation approxi-
mation V<< 1 was made and not the transonic epproximation

p << 1l. This transonic approximation was made in equation (18),
and so forth, only to show the agreement between the common tran~
sonic limiting value of I'y and I, with the TI' of reference 30.

1255

Explicit solution by choice of curvature function. - Before
choosing a form for the curvature function f = C/Cy5 and thence

calculating the flow pattern explicitly, a few general remarks,

which may be helpful in Judging the degree of approximation of the

resulting solution, will be made. The present formulation of the

alrfoil flow problem is in terms of longitudinal distance x and

locel veloclity v as independent variebles and local streamline

curvature C and lateral distance y as dependent variables,

that is, the solution for given stream Mach mumber M, is :

required in the form C(x, v), y(x, v). Various possible pro- .
cedures for obtaining this solution suggest themselves. For example, '
an iterative procedure would be to assume in first approximation a
curvature function C(x, v), and thence calculate y(x, v) and,

in particular, the streamlines, using equations (1) to (9). The
curvature of these streamlines would then yield a second approxi-
mation C(x, v) and the procedure would be repeated until satis~
factory convergence was achisved. Agein, a network-type procedure
would be to set up the continuity integral (1) between n pairs of
streamlines rather than between the one pair (airfoil and infinity)
in equation (4). The number n would increase in successive steps
of the calculation. In each step a curvature function based on the
curvature velues obtained in the preceding step would be used to

. Yield by simultaneous solution of the continuity and distance equa-

tions (1) and (9) an increased number of curvature and corresponding
distance values for use in the next step.

The rapidity of convergence of the preceding types of procedure
could be expected to depend strongly on the initial choice of cur-
vature function in the first approximation. It is therefore sensible
for computational reasons to choose an initial curvature function in
the light of the information supplied by experiment and other theory
as to the behavior of the streamline curvature in the type of flow
field under consideration.
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Only the first approximation is considered herein and free use
is made of experiment and other theory in setting up an initial
curvature function. In view of the preceding remarks, this use of
experiment and other theory should not be construed as inherently
limiting the degree of rigor in principle attainable in solutions
by the present approach. This ultimate degree of rigor can be
expected to be about the same as with existing perturbation or net-
work formulations of the airfoll flow problem.

An explicit form for ‘the curvature function C/Cq4 = £(x, z, K),

equation (13), in the small-perturbation case is now set up. This
Tfunction must satisfy the boundary conditions of the problem; namely,

at airfoil,

W

<
!

]

Y
A
1

g (32a)

N
1

C=Cq

f(x,1,K) =1 J
at infinity,
7o® )
V0
z—0 B (32b)

C—0

' £(x,0,K) —> 0 )

Furthermore, it may be expected, at least in subsonic flow and at
the chordwise locations near the maximum velocity or thickness
regions of the airfoil (which are of most interest), that the stream-
line curvature will decrease monotonically from the positive value
Ca at the airfoll to zero at infinity. A simple curvature function
that satisfies these requirements is (reference 29)

f =2z . (33)

in which the parameter r 1s a function of x and K to be
determined. '
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Substitution of equation (33) into equation (14) and integra-
tion ylelds

2 3
pd oA
o =25 - 37 (34)

Equation (34) gives the local velocity increment A on a symmet-
ric airfoll in compressible potential flow in terms of the local
shape parameter YC,, the Mach number parameter p, the specific
heat-ratio paraemeter I',, and the parameter r.

In order to determine r, it is first noted that to satisfy
the boundary condition at infinity (equations (32b)), r must be
positlive and the integral for the lateral distance y In equa-
tion (15) must diverge at 2z = O, and therefore r >1. In
addition, the continuity integral (equation (14)) must converge at

= 0, which it does for r <2, Hence r 1is restricted to the

range
l<r<?2 (35)

In the speed range for continuous potential flow, the flow pattern
is largely subsonlic, as mentioned in the INTRODUCTION. Hence, in
this speed range the determination of r will be completed (1) by
assuming r to be independent of K, and (2) by requiring equa-
tion (34) to yield the (presumed) known velocity distribution
A;(x) 1in the incompressible case M, = 0. Conditions (1) and (2)

are appropriate to the Prandtl-Glauert speed range. In the higher
speed ranges discussed in subsequent sections in which the flow
pattern differs very substantially from Prandtl-Glauert type, these
conditions on r will be discarded for new ones. By condition (2)
and equations (11b) and (1llc), equation (34) yields for the deter-
mination of «r

2 3
A5 Ay
e S 36
Iy =575 " 37 | (36)

The values of r determined by equation (36) turn out to be in the
range of equation (35) over the maximum-velocity region of the
airfoil, for which the curvature function (equation (33)) was set
up. This type of inner comsistency will recur often in this report.

The second term on the right side of equation (36) can, in
principle, be neglected in the small-perturbation case considered.
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Better results are obtained, however, in applications to airfolls

of finite thickness ratio (of the order of 0.1) if it is retained.
Some theoretical explanation for this improvement and hence retention
of the term in question can be made as follows: The right side of
equation (34) actually consists of the first two terms of an infinite
series in the velocity increment A, which is evident for any cur-
vature function £, from equations (8), (10), and (14). If the
coefficients multiplying the powers of A are of comparable mag-
nitude, as in equation (36), it may therefore be expected that for
small but finite A +the first two terms of the series would be a
better approxzimation to the complete series than the first term
alone. ’

Thus, f£inally, in order to calculate a velocity increment A
at & chordwise location x on & symmetric airfoil at zero 1ift at
Mach number M, by the present method, the shape parameter YCq

and the low-speed velocity increment A; at that point are deter-

mined first, The quadratic equation (36) for r is then solved
for the value of r 1in the range of equation (35). (If such a root
of equation (36) does not exist, the present explicit solution based
on the curvature function (equation (33)) fails.) While keeping
this value of r constant as M, varies and using the values of u

and Tc corresponding to the desired M,, equation (34) is solved

for the desired velocity increment A(x) at free-stream Mach number
M,. For convenience in solving the cubic equation (34) for A for

various values of the other parameters, these other parameters can be
combined as follows: Let

2-r\ TcA
MESE) W (37)
X = (2 I‘)3 I“C YC&. ' (3Tb)
(3-r)2  w°
Equation (34) then becomes
X =M N (38)

Equation (38) is plotted in figure 3. The most significant feature,
the double-valuedness of (positive) A for given X, will be sub-
sequently discussed in connection with the potential-limit
phenomenon. '
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Conditions in flow field. - Once the veloclty increment A at
the airfoil has been obtained, the variation of local velocity v
in the field with distance y from the airfoil cen be determined
from equation (15). With the curvature function (equation (33)),
equation (15) ylelds .

-1

-1
_ [1 , (r-l)gr—Y)Ca] (39)

The streamline curvature 1is expressed in terms of ¥ by equa-
tions (33) and (39) as

z =

v
A
it

‘( nene ]
c AL i]
sz;:EL-‘- A = (40)

The preceding equations show that both the local velocity and the
gtreamline curvature decrease monotonically with y from their
velues at the airfoil to zero at infinity. The actual manner of
this decrease depends, at & given chordwise location x, on the
airfoil curvature Cg and on the equations of motion through the

parsmeters T and A. Actually there is therefore not a great deal
of arbitrariness in the values of streamline curvature optained here.
Once a basic form such as equation (33) is chosen, the actual values
of streamline curvature in the flow field are determined by the "
equations of motion and in such a wey as to satisfy these equations
on the average or in the large (inesmuch as the integral, rather

than the differentiel, form of the continuity equation was used) .

The insensitivity of airfoil velocity and hence also of the flow
pattern generally to the choice of a particular form of curvature
Punction such as equation (33) is thus plausible.

A streamline in the flow field can be traced out as follows:
A streamline 1s defined by a constant value of y, in the continuity

equation (1), which cen be written as

I, = pvdy (41)

[
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Eliminating v 1n equation (41) by the irrotationality relation
(5) gives the equation of the streamline

y = s(x,5,) ‘ (42)

Thus Yo is In effect the stream function. In the small-
perturbation case, equation (41) can be transformed as follows:

v, - (5-1)

{]
3
1
=
&
1]
P
/\,
1
=
oy

MA !
2
= _1'.. (uv_ Ic‘v ) av = 2 Z _I:c_‘Azz E
% J, t(x, V) Tc, . n T

Hence, using equation (34),

2 2-r 3=
_ I-LA z _ PCAZ r>
Yo =7C g 3-r

(43)

Elimination of 2z 1in equation (43) by use of equation (39) gives
the equation of the streamline (equation 42). The inclination 6
of the local stream direction to the x-axis can then be obtained
as the slope of the streamline,

It is of interest to note that for r = 3/2, which is in the
middle of its pcormissible range (equation (35)), the local velocity
increment far from the airfoil is given in the Prandtl-Glauert
range by equations (39) and (16) as

o
1lim vV ~ 44
S PR e

This expression agrees with that obtained for a source-sink doublet
by conventional methods.

e — = e e e e e ——— ———— — ~—_—
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Illustrative examples., - In order to illustrate the preceding
explicit solution, consider first the Kaplan section (reference 6)
of thickness ratio T = 0.1. This contour, indicated in figure 4,
can be expressed in parametric form as (reference 34)

2Y = 1

I

3 1
I T(sinCP - 3 sin 3cp) A (45a)

2x-1= ¢

( - %) cos P + _;l': cos 30 (45b)

where O < P<2r, When the shape parameter YCa(x) ,» &8s deter-

mined by equation (45), and the incompressible velocity distribu-
tion Ai(x) » &8 determined by conformal transformation, are sub-

stituted into equation (36), the parameter r(x) is found to vary
from r = 1.301 at the midpoint £=0 to r =2 at f=0.645
(because Ay =0 Dbut YC, #0 at ¢ = 0.645). Thus, by
equation (35), the preceding explicit solution fails outside the
range 0 < | t]|< 0.645. The velocity distributions A(x) at var-
ious Mach numbers M,, as obtained from equation (34) within this

chordwise range, are shown in figure 4. For comparison, the results
obtained (reference 29) without making the small-perturbation approx-
imation of equation (10) for the demsity and the results of Kaplan
(reference 6) are shown. The results of Kaplan were obtained by
substituting & series for the potential in powers of T into the
partial differential equation for the potential and successively
solving the Poisson equations obtained by equating orders of meg-
nigude in T, The calculation was carried out to the third order,

T o

The three sets of distributions in figure 4 are seen not %o
differ greatly except for Mach numbers near the potential limit )
that is, the maximum Mach number for which the method yields a
solution. This limiting case will be discussed in the next section.

As a further illustration, A(M,) at the maximum thickness
locations of the three T= 0.1 sections - Kaplan, symmetric
biconvex, and ellipse - as calculated by the small-perturbation
integral method, the finite-perturbation integral method (refer-
ence 29), and by various other authors is shown in figure 5.

The results of Hantzsche (reference.7) for the ellipse were
obtained by a method similar to that used by Kaplan. The calculations

1255
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were carried to the third order in a_thickness-ratio parameter, which
in successive orders equelled T, Tz, end TO 4+ O(‘r4 log T),
respectively.

In the method of Gothert- and Kawalki (reference 17), the influ-
ence of compressiblility was represented by a finite number (12 per
quadrant) of sources and sinks (Rayleigh-Janzen idea) located in the
incompressible-flow field, as corrected by the Prandtl-Glauert rule,
outside a gilven airfoil. The source-sink strength used for calcu-
lating velocity increments caused by compressibility was computed
by iteration from the flow-field velocitles themselves so as to
satisfy continuity. As many successive steps in the calculations
(~ 10 near the potential limit)4were made as required for obtaining
a self-consistent compressible-flow field that could be regarded as
an incompressible-flow field, with the given spatial arrangement of
sources and sinks superimposed. )

Finally, the velocity increments given by the Prandtl-Glauert
and Kérmén-Tsien rules, (reference 35) are included in figure 5.
It can be seen from figure 5 that the results of the present method
differ from those of the other methods by about the same amounts as
the results of the other methods differ amongst themselves.

The Prandtl-Glauert rule has an interesting connection with
the present method. This rule results when the second term in
equation (34) is mnegligible relative to the first term, as is the
case In the subsonic speed range for small perturbations. The tran-
sonic term is also negligible, however, for higher speeds or larger .
perturbations if r ~ 2. As previously noted, r-—2 at those points
on the alrfoil where Ai ~0 but IC, £ 0. Near these (locally

subsonic) locations the Prandtl-Glauert rule may therefore be expected
to apply. On the other hand, the maximum velocity increments on air-
Tolls of the type illustrated in figure 5 turn out to vary with Mach
number in the subsonic range in a manner approximeting the Karmdn- -
Tsien rule. (See also reference 29). Inasmuch as the KérmAn-Tsien
rule itself approaches the Prandtl-Glauert rule for small veloclty
increments, the present method therefore gives results in the sub-
sonic speed range not greatly different from those obtained by the
Kérmén-Tsien.rule. .

Potential-limit phenomenon. - In computing a velocity distri-
bution on an airfoil at a fixed free-stream Mach number M, by
equation (34) as plotted in figure 3, & portion of the airfoil con-
tour is put into correspondence with a portion of the lower branch
of figure 3. For example, on the Kaplan section at M, = 0, the
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<

region of airfoil 0.178 < x <0.823 corresponds to the portion AD
in figure 3, such that traversing the stretch 0.178 < x <0.5 on
the airfoil corresponds to traversing the stretch AD and traversing
the stretch 0.5< x < 0.823 on the airfoil corresponds to trav-
ersing the stretch DA. ’

1255

As the Mach number increases, the same region of the airfoil
corresponds to a greater portion of the lower branch of figure 3,
the point A corresponding to x = 0.178 and 0.823 remaining at the
origin but the point D corresponding to x = 0.5 moving away from
the origin. For example, the fixed airfoil location x = 0.5 corre-
sponds at M, = 0.5 to point Iy, at M, = 0.75 to point Dy, and

at M, = Mb,l = 0.807 +to the turning point B between lower and

upper branches in figure 3. Thus, at a certain lowest free-stream
Mach number Mb,z & point x; on an airfoil comss into corre-

spondence with the turning point B in figure 3. For higher but
still subsonic free-stream Mach mumbers, the stretch AB remsins
fixed et its maximm extent but now corresponds to a diminishing
region of alrfoil, such that the gap on the airfoil for which no
solutions for the velocity are yielded by equation (34) or figure 3
spreads out from X, as M, increases in the range MO Z<Mo <l.

J
For example, on the Kaplan sectlion the forbidden region at M, = 0.85
is 0.35 < x <0.65, Thus, Mo,l is the maximum free-stream Mach

numbef for which continuous potential-flow solutions are obtainable
by the present method. Herein Mo,l is termed "the potential-limit

Mach number," and the corresponding flow pattern, "the potential-
limit solution.”

Quantitatively, the turning point B corresponds to the condition
dx/dk = 0 1in equation (38) or, equivalently, the condition
(a/ah)z o, = const = O 1in equation (34). Hence, at the potential
limit (denoted by the subscript 1), .

_2
AZ =3 (46a)

4 (46b)

Tel 2 (3- -
() -2

o
1t
3l

or, by equation (37)
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(_Ei) = 27 XEZE)E Yca (47b)

r 2 4 (3.0)2

The procedure for obtaining the potential-limit Mach number for a
symmetric alrfoil at zero 1lift is then to plot the right side of
equation (47b) as a function of chordwise location =x. The potential-
limit chordwise location % is that where the right side attains a

maximm velue. This maximum value yields, by equation (47b), a value
of u3/T? that, by equations (11b) end (1lc), determines the
potential-1imit Mach number Mb,1° The corresponding velocity
increment Az is obtained from equation (47a). The velocity dis-
tribution over the rest of the airfoil at Mach number Mo,l is
determined as usual from equation (34) or (38) using figure 3.

The potentigl-limit velocity distributions for the Kaplan sec-
tion by the small- and finite-perturbation integral methods are
shown in figure 4. The potential-limit Mach numbers by these two
methods are 0.807 and 0.843, respectively. Kaplan (reference 6)
estimates from the first three terms of his expansion for the poten-
tial that the entire series would diverge beyond M, = 0.83. Gothert

and Kawalki (reference 17) also locate a limiting Mach number above
which their method does not converge to a self-consistent solution
regardless of the number of lterations performed. Although the var-
ious determinations of limiting Mach number Mb’z and the corre-

sponding velocity increment ‘Az, indicated by the circled points

in figure 5, do not agree extremely closely, nevertheless, consider-
ing the diversity of the methods used, the inference appears war-
ranted that a unique, upper-limiting, subsonic free-stream Mach num-
ber exists beyond which a continuous potential flow past a given
airfoil cannot be derived.

Various properties of the potential-limit rlow pattern can be
derived by the present method, which not only meke it easy to under-
stand why this limiting flow pattern should exist but also connect
it with the so-called limiting-line phenomenon encountered in the
-hodograph method. (See, for example, reference 36.) In the first
place, at the potential 1limit the local Mach number M; at the
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chordwise location x; on the airfoil must be greater than 1, and

hence a local supersonic region must exist in the flow field. By
equations (27) and .(47a),

1" .
2 4 M (3-r
ML=y [5 T, (z_?> - 1:] (28)

In the permissible range (35) for r, the'right side of equa-
tion (48) is positive down to at least My,3 = 0.65. TFor the thin

alrfolls contemplated here, Mo,'l, > 0.63 and hence M, > 1, as
indicated by the constant local Mach number contours in figure 5.

Secondly,‘the velocity gradient A:x is finite and suffers a
finite discontinuity'at =x = x when MO = Mo,?,' Differentiation
(denoted by a subscript) of equation (34) with respect to x ylelds

2\ - 2 3
rA LA
Zpl A-3°,>=(Yc ). -~ wh e (49)
‘A'x <2-r 3-7r a’y X (Z—r)z (3-1‘)2

The quantity in parentheses on the left side of equation (49) is
zero for M, = M,,2> by equation (47a). The right side of equa-

tion (49) is zero at x = % for M, =M, ,, as can be seen from
equation (47a) and from the potential-limit condition that us/l"cz
in equation (47b) be & maximm at x = x;; that is, that its
derivative by x is zero at x;. Thus, , in equation (49) is
glven by an indeterminate form at M, = Mo,z s X =X3. Application

of 1'Hospital's rule to this indeterminate form and use of equa-
tion (47) yields a quadratic equation for Ag. TFor the usual air-

Tfoil shapes, the two roots of this quadratic are real and of oppo-
site sign. (For two-way symmetric airfoils such as in fig. 5,
the two roots are numerically equal.) Hence x undergoes, in

general, a finite discontinuity at x = x; for M, = Mo,Z of an

amount equal to the difference between these two roots. This dis-
continuity in velocity gradient is indicated for the Kaplan section
in figure 4 at x = 0.5 and Mo,'l. = 0.807, Mo,z = 0,843 by the
small- end finite-perturbation methods, respectively. If _
(Ya)  =Tg =Texr =0 8t X=X, M, = M, 7, then also A, =0
end no discontinuity occurs in Ax at the potential-limit point
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in this case. The preceding statements for A, also hold for the
fluid acceleration on the alrfoil inasmuch as the acceleration is
given by (1L+MA,.

Third, by eliminating y between equations (39) and (43) and
~ differentiating the result by =x, an expression for the velsoity
gradient (Vz)g along a streamline in the flow field is obtained

that is & linear function of 'Ax:. (YCa)x, rg, end Cy g, with
coefficients dependent on A, ¥C,, r, and C,. Furthermore, the

slope of a constant velocity, or constant local Mach number, line
(yr)M, multiplied by the local streamline curveture C, equals

Cvx)s. Hence (Vx)s, the local fluid acceleration along a stream-

line, and (yk)M are associated with A, at a given x in being
finite or infinite together. )

Fourth, the present method ylelds a second flow pattern at and
ebove the potential limit, which overlaps the first. This pattern
is glven by the upper branch of the cubic curve, figure 3; for, at
the potential limit, the turning point B is Just reached from along
the lower branch AB upon traversing the airfoil to its potential-
limit chordwise -location X In retracing the alrfoil in the oppo-

site direction, the upper branch BC could be used. For My >'Mb’1,
instead of a single chordwise location x;, two chordwise locations
xz’l and X ,2 correspond to the turning point B, as previously
mentioned. Betwesn the two lines =x = X1 end X = X2 is thus

a regilon of space for which no solution can be found by the present
method. Outside this region two overlapping flow patterns are
derivable, corresponding to the two branches in figure 3. At the
lines x =X 7, X =X p, the velocity gradient A, is, in gen-
eral, infinite. (The left Pactor in equation (49) is zero by eque-
tion (47a), but the right side is not zero, because wS/T 2 of

equation (47b) is here not a maximum.) These results and those of
the preceding paragraph show that the lines x = xl,l' end x = Xz,z:

which are potential lines in the present approximation, are envelopes
of constant-velocity, or constant Mach number, lines. Furthermore,
it is plausible that the lines =x = 3,1 and x = X,z 8are also

envelopes of Mach lines or characteristics; a point of infinite
velocity gradient in a supersonic reglon requires a spacing of Mach
lines closer by an order of magnitude than does a point of finite
velocity gradient, and an envelope of Mach lines sgtisfles this
condition.
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The preceding properties indicate that x = 5,1 and
X = xl’z may be limiting lines in the sense of the hodograph method
and that the potential-limit solution is the boundary solution between
continuous potential-flow patterns, for M, < Mo,z , end flow patterns
with limiting lines bounding forbidden regions, for M, = Mo,z . This

inference is supported by a closer examination of the limiting-line
phenomenon as follows:

A limiting line in a flow field is defined as the locus of
points at which the Jacobian J = d(®,¥)/d(v,8) from the hodograph
(v,6)-plane to the physical (®,¥)-plane vanishes. (Constant &
and V¥ define the potential and streamlines, respectively, in the
physical plane.) Consider the reciprocal of this Jacobian

-1 9(v,6 v 86 Ov 36 .
S (SRR I T k- (50)

The differential equations of motion in intrinsic form are (refer-
ence 35)

. g%_ = __—l(Mi;l .g% (51a)
5-c% o

Substituting equations (51) into equation (50) and noting that
dd = vds and d¥ = pvdn yields

jlt=e@at- (Mz -1> @%)2 - v2 (g%)z (52)

vhere JOv/ds is the velocity gradient along a streamline and -06/ds
is the streamline curvature.

The variation of J‘l along the T = 0.1 bDiconvex alrfoil,
determined by equation (52) and the velocity distributions previ-
ously calculated, is shown in figure 6 for various values of M,.

Figure 6 shows that the present method ylelds finite values of
j~1 in the range M, < M, 3. The only discontinuity in behavior

occurs at X = x; = 0.5 at which point j'l(Mo) undergoes a finite
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discontinuity for M, = Mo,l (because, as previously discussed,
dv/ds undergoes here a finite discontinuity as a function of My).

It may be inferred, in genersl,- that j‘l < O. everywhere for
My S M, 3. For, equation (52) can be solved for (BV/BG)S as

(subscript s denotes values along a streamline)

AN I gt 53
<§—é>s M2-1 ¥ (36/3s)% (52)

For j 1 =0, equation (53) yields the Prandtl-Meyer rate of change
for (dv/d8); in supersonic regions. For j-1>0, equation (53)
yields a numerically greater rate. Now, in a local supersonic region .
embedded in a subsonic flow field, it is known that (3v/30), must
be numerically less than the Prendtl-Meyer value (references 37 and
38) because the sonic boundary reflects Mach waves of opposite sign
to those incident upon it. Flows having finite fluld accelerations
and streemline curvatures and containing local supersonic regions
must therefore have a finite ,j'l < 0 everywhere (in subsonic
regions j-1< 0 by equation (52)). Hence, also J <0 within

such flow fields., The preceding discussion may be regarded as an
indication of a simple proof of a theorem of Friedrichs (reference 39)
to the effect that if a continuous potential-flow solution v(x,¥y,M,),
9(x,y,Mo) varies continuously with M, and approaches a limit as

M, approaches some limiting value, then this limiting solution

itself cannot contain any points at which J = O0; that is, a
limiting line.

The relatively small region of positive values of j‘l indicated
in figure 6 for M, < Mo,], must therefore be regarded as due to, and

indicating the extent of, the approximations in the present method.
A plot of 31 +would appear to be a useful indication for assessing
and possibly improving the accuracy of transonic velocity distribu-
tions. The finite discontinuity in ,j‘l(Mo) at x =x; for

Mo = M,,, may well exist (in theory). The present method thus
illuminates the theorem of Friedrichs.

For M,> Mo,z: figure 6 shows that j"l—)m, hence j—oO0
at a point x‘l,,l(Mo) and at the symmetricelly disposed point
¥ p=1-% 1 (because here Jv/ds—w, as previously noted).
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Thus, formal continuation of the present method to M, >'Mb 1 JYields
discontinuous solutions containing forbidden regions xl 1 <zx <:xi o

bounded by limiting lines, as previously inferred.

. The reason for the existence of two values of A for a given X
in figure 3, and hence two overlapping flow patterns, of which one
corresponds to either subsonic or slightly supersonic conditions
end the other to highly supersonic conditions, is essentially sim-
ilar to the reason for the existence of two possible velocities for
a given flow area in one-dimensional flow, as in a converging-
diverging nozzle., Indeed, the present method, which mskes use of
the equation of continuity in quasi-one-dimensional or hydraulic
fashion, shows rather directly that the potential-limit solution
occurs for essentially the same reason that a converging-diverging
nozzle chokes when a sufficiently high but subsonic Mach number
occurs ahead of the throat (reference 29). (The mass-flow density
pv passes through a maximum at a local Mach number of 1.) The
manner by which steady-flow patterns can nevertheless exist for
the subsonic free-stream Mach numbers betwsen Mb,z end unity, in

spite of the analog of this choking phenomenon (which prevents higher
subsonic Mach numbers from being obtained eheaed of the throat in
nozzles) is considered in the next section. In particular, it

will be seen that the purely mathematical extrapolation made

herein leading to the limiting lines x = % ,1 and X = X 2s

has no physicel significance in connection with the shock that
actually appears at these Mach numbers.

LOWER TRANSONIC ASYMMETRIC FLOW WITH
TERMINAL SHOCK

Velocity distributions. -'In this section, asymmetric flow
patterns with a single terminal shock will be derived for free-
stream Mach numbers from the potentisl-limit Mach number to unity.
The analysis, particularly that connected with the terminal shock,
is more uncertain in this range than in the neighboring speed ranges
because the terminal shock is no longer at most a boundary of the
region of interest,but exists within it.

The procedure for obtaining a symmetric solution at tﬁe
potential-limit Mach number, derived in the preceding section, indi-
cates how asymmetric solutions may be obtained at higher Mach numbers.
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Thus, in determining the airfoll velocity increments at the
potential-limit free-streem Mach number as a function of chordwise
location, the lower branch of the curve In figure 3 was traversed
from A to B, the potential-limit point B being reached, say, at the
midchord location for the symmetric biconvex airfoil. In going from
midchord toward the trailing edge on the airfoil, the curve was
traced back from B to A, giving the symmetric solution. Because the
turning point B at midchord has Just been attained, however, it is
possible to continue around and have part of the upper branch BC
correspond to the rear part of the airfoil. The chordwise location
X =X in the present speed range therefore has the property of a

branch point, as previously explained. This property maintains the
analogy with conditions at the throat of a converging-diverging
nozzle. )

The preceding procedure ylelds an asymmetric solution at the
potential-limit Mach number. In order to obtain a solution, and in
particular an asymmetric solution, without forbidden regions at
higher subsonic Mach numbers, the basic cubic equation (34) must be
modified., The modification made herein is to introduce a nonvan-
ishing, lateral streamline displacement & at infinity (fig. 2).
Such & dlsplacemsnt, of the order of the airfoil thickness, is
clearly necessary for steady-flow patterns to exist near sonic speed
if the free-stream flow is to "get by" the airfoil in accordance
with steady-state continuity relations. (That a steady-flow solution
is yielded by the equetions of motion at precisely sonic speed has
been demonstrsted by Guderley, references 38, 40 and 4l.) The stream-
line at Infinity can still be considered straight and parallel to the
x-axis, relative to the airfoil slope, if its lateral displacement
® 1s assumed to occur gradually over an infihite distance along the
streamline. Thus, & will not be a function of airfoll chordwise
location but will be constant for the entire airfoil. Xt will, how-
ever, be a function of free-stream Mach number. The introduction of
a nonvanishing, lateral streamline displacement ® din the present

speed range Mo<< Mb 1 < 1 does not conflict with the proof pre-
2

viously indicated that & vanishes for subsonic-flow conditions and
no wakes at infinity; the simultaneous introduction of a shock ter-
minating an asymmetric local supersonic reglon implies a shock weke

of slightly decreased total head extending to infinity. Such a wake

provides a mechanism for producing a nonvanishing displacement B
gimilar to that provided by an ordinary subsonic wake produced by
boundary-layer action.
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By subtracting a suitable displacement function B(Mb) from

Y in the basic cubic equation (34), both branches in figure 3 can
now be correlated continuously with the airfoil contour in the
speed range Mb,z < My <1 to yleld an asymmetric solution. In

order actually to calculate this solution, the variation of the
curveture parameter r with x &and K, or its equivelent, must
first be determined. To this end, the assumption is first made
thet the potential-limit condition of equation (47), with Y
replaced by Y-85, will apply throughout the speed range

Mb’z'< M, <1 to the same chordwise location x = x; first found

to require the potential-limit condition. In more geometric terms,
if the basic cubic equation (34) is viewed as a surface in the A,
x, and M, space, then the potential-limit condition, which has

been regarded as determining an absolute maximum of M, on the
projections of this surface in the A, M, plane, can therefore

be regarded as determining the saddle point of this surface. Hence,
‘in the A, x plane, the potential-limit point is a branch point.
Secondly, it is noted that the velocities obtained along the rear
portion of the airfoil, corresponding to the upper branch in fig-
.ure 3, and using the subsonic values of r previously determined,
become much greater than those corresponding to a Prandtl-Meyer
distribution. As pointed out by Tsien and FeJer in reference 37,
however, the velocity in a loeal supersonic region should be less
than that in a Prandtl-Meyer expansion through the same angle of
turn, the difference being due to compression waves reflected from
the sonic boundary and striking the airfoil. Inasmuch as these
compression waves will probaebly be of small influence compared to
the expansion waves emanating from the airfoll for the size and the
shape of local supersonic reglons to be expected in the present
speed range, it will be assumed that the supersonic portion of the
velocity distributions to be derived will be Prandtl-Meyer dis-
tributions. (It would not be difficult to obtain more accurate
velocity distributions in local supersonic regions on the basis of
the shape and extent of the supersonic region determined by the
first approximation considered herein.)  The Prandtl-Meyer velocity-
distribution formule can be written in the transonic small-

perturbation limiting case as (reference 30)

M2-1 = | + 2TA = 30(6-6,) 2/ (54)

where

b= M2l (55)

1
I}
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and 6-6o 18 the (positive) angular change, in radians, of slope of
airfoll contour from the value 6, at which the local Mach number

is 1 to the value 6 at which it is M. Throughout this section
and the next, for simplicity in the calculations, all I''s that
arise, such as the I‘M of equation (28), which should appear in

equation (54), are replaced by I' = 1.2 unless otherwise mentioned.
Hence, the calculations are limiting calculations for M, = 1; that
is, the transonic approximation is made more strictly than in the
preceding section, where the functions T' (My). and Ty(M,) were
used.

By essuming a Prandtl-Meyer distribution, the problem of cal-
culating the supersonic portion of velocity distributions in a gliven
speed range 1s reduced to determining one point of this distribution
(that is, velocity and airfoil location) at each free-stream Mach
number M, in the range, which 1s necessary to evaluate the constant

8¢ 1in equation (54). This one point will be chosen as the velocity
at the potential-limit, or branch-point, location x = X; in the

present speed range. . It is convenient to carry out the determination
with the basic cublc equation (254)J ag modified by inclusion of &,
and the potential-limit condition of equation (47) in explicity
similarity form, thus:

T2 =2r T 37 | (58)
L = % <§f_;> (3-1) (57a)
(T-8)C, 4 (% \° 2
Tz = -2—;[- ET; (3-1‘) (STb)
where
XK= N-/(TP)Z/S (582)
L = 1A/ (r)E/3 . (58b)

Explicit calculations will be made for the thin symmetric biconvex

alrfoil. This airfoll contour is given, for small thickness ratio
T, by ’ '
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e
2x-1 = - 37 (59a)

e
i

T =T (1-t%) -, (s%m)

The left side of equation (56) becomes, by equations (59)

E%=2<1-%§-g2> | (60)

TZ

The potential-limit location for the symmetric biconvex airfoll
is X = 0.5 or ¢, =0. Inasmuch as a unique steady-flow pattern

at M, =1 is essumed, which is continuous with the flow patterns
existing on either side of M, = 1, the velodity at ¢t = gz =0
in particular must have this property. In the next section, the
value I, = 21/3 is derived for the velocity parameter at

tE = El =0 at K=0 or M, =1, by an analysis for M, > 1.

In order for equation (57a) to yield this value also, it is nec-
essary that r— 2 ag K-—0 and in such a way that

tim -3 _ 1890 (61)
Zr - L2/ - 1
k—0 °F 2

At sonic speed, a nonvanishing streamline displacement at infinity
8 1is thereby obtained, given by equatioms (57b), (61), and (60)
with £=0 as :

28/T = 0.5 (82)

This value of ©, half the maximum airfoil ordinate, is of the
right order of magnitude inasmuch as at precisely sonic speed a
streamline displacement at infinity somewhat greater than the max-
imum airfoil ordinate is clearly required by steady-state continuity
considerations. )

The velocity at the potential-limit chordwise location gZ =0
can now be obtained as a function of M, by an interpolation pro-
cedure. The value of K/(2-r) at M, = M,,; = 0.831 and
£ =£, =0 is 1.60 from the results of the preceding section. This
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value does not differ greatly from that at M, = 1 given by equa-
tion (61). Accordingly, e linear variation of K/(2-r) at ¢ =0
as a function of K can be assumed in this range that yields r(K)
and thence I,(K) and 5(K) at ¢ =0, by equations (57) and

(60). The values I;(K) at ¢ =0 enable Prandtl-Meyer velocity

distributions to be determined over the airfoil at each Mach number
M, corresponding to K by equation (54).

As a possible reflnement, the velocity distribution over the
front portion of the airfoil can be interpolated between the Prandtl-
Meyer distribution at M, = 1 and the potential-limit distribution

at M, = Mb,z found in the preceding section. The interpolation is

mede at each chordwise location x between the values of K/(2-r)
given by equation (56) using equation (62) and the values of L
given by the Prandtl-Meyer distribution at M, =1, and the values

of K/(Z-r) at M0 1 = 0.831 determined in the preceding section.
2

The resulting values of r(x,K) and &(K) determined from equa-
tion (57b) then yield intermediate velocity distributions by.equa-
equation (S6).

The asymmetric-type velocity distributions determined as Just
outlined are so far incomplete in two basic respects. First, the
subsonic portion from the leading edge to the point where free-
stream velocity 1s first reached locally is lacking. This lack,
as explained in the preceding section, is mainly due to the inade-
quacy of the simple curvature function (equation (33)) in this
region. For the purpose of calculating pressure drag in the tran-
sonic range, this portion is not needed. (See section PRESSURE IRAG;
USE OF MOMENTUM INTEGRAL.) The second and more important omission,
the terminal shock, is discussed next.

Terminal shock. - The terminal shock is cbserved to form the
downstream boundery of the local supersonic region and to move
toward the trailing edge as the free-stream Mach number increases
toward unity. Assume for the present that this shock is normal
rather than oblique. This assumption appears velid, at least under
the experimental conditions reported in reference 2, in which the
measured pressure rises across the shock and outside the region of
shock-boundary-layer interaction.corresponded fairly closely to
those of ideal (that is, Rankine-Hugoniot) normal shocks.

The velocities across an ideal normel shock are related by
Prandtl's equetion, derivable from the Rankine-Hugonlot relations,
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v = a2
ViV, = & (63)

where a¥ 1is the speed of sound at sonic speed M =1 in an
isentropic flow. In the small-perturbation transonic case, equa-
tion '(63) becomes, for the shock element near the airfoil
(appendix C),

PA, +TA, = u (64)

In terms of the local Mach numbers M; = A/l + ;_1'1 and Mp = /\’1 + ]Iz

upstream and downstream of the shock, respectively, equation (64)
becomes by equations (27) and (28b)

L_1-1+-|.;.-2=0 7 (65)

Equations (64) and (65) are unsatisfactory for determining terminal-
shock locatlions; because first if no boundary layer is assumed and
subsonic values of Az are determined either by a subsonic rule as

in reference 34, or equivalently by the subsonic results of the pre-
ceding section, then the chordwise locations at which such subsonic
values of A2 will "match" the supersonic values of A, previously

determined to satisfy equation (64) or (65) are within about 20 per-
cent of the chord length of the trailing edge for the symmetric
biconvex airfoil. This result would probably not be substantially
altered by a more exact calculation of viscosity-free flow patterns
with single terminal shock, such as by the relaxation method of,
reference 18. Experiment shows , however, (references 3 and 4) that
a well-developed shock exists forward of the aforementioned location.
On the other hand, if a boundary layer is assumed that, in traversing
the shock, separates so completely as to make the pressure downstream
of the shock approximately equal to free-stream pressure, then I‘Az

(the velocity outside the boundary layer) drops out of equation (64).
The shock locations determined by I‘Al = u, however, move forward

instead of rearward es sonic free-stream speed is approached from
below. An intermediate situation, in which A2 could be determined

from veloclty distributions calculated to allow for the presence of a
boundary layer that has interacted with the shock, might yield sat-
isfactory terminal-shock locations by equation (64). Such & calcula-

tion of Az has not yet been attempted because of® the difficulties

of calculating the shock-boundary-layer interaction and its effect
on the downstream velocity distribution.
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Some understanding of. the rearward movement of the terminal
shock can be had,- however, from a modification of equation (64).
Assume that the actual pressure rise across the normal shock differs
from the Rankine-Hugoniot, or ideal value, by an amount Apg. This

difference can be caused inside the region of shock-boundary-layer
interaction by friction processes, in which case the actual pressure
rise is less than the ideal value. A pressure drop Aps can also

occur outside the boundary layer, according to references 2, 18,
and 19. This drop occurs over a short distance just downstream of
the (ideal) normal shock and exists because of the necessity for
the flow to make a quick reversal of curvature from the negative
value given it by the shock to the positive value required by the
airfoil contour. Farther out along the shock, this pressure drop
becomes a pressure rise for the same reason (reference 2). In any
event, this type of pressure change must physically "Jjoin on" con-
tinuously with that in the boundary-layer region. In view of the
preceding discussion, a shock pressure-drop coefficient Cgs TEP-

resenting the over-all departure of a normal-shock element from
Rankine-Hugoniot behavior, can be defined in the small-perturbation
transonic case as

A - -
c. = Ps - (P2 po)ideal - (pz P°)actual
"TL .2 1,2 1.2
zZA1 "1 2P0'0 2P0’ 0
=-2A2-1>2 (68)

If the element of shock front under consideration is near the air-
foil, as is the case here, then P, in equation (66) is the pres-

sure coefficient at the airfoll Just downstream of the~shock and

Az is the Rankine-Hugoniot velocity that would exist just down-

stream of the shock if c¢g; were zero. Substitution for 1\2 from
equation (64) yields

cs=zq\1-rﬁ,>-1=2 ‘ (67)

The additional assumption is now made that the pressure on the
downstream side of the shock equals free-stream pressure, or
Py, = 0. (In a conversation with the author, von Karméin mentioned

having used this condition some years ago.) This condition, in
general, requires separation of che boundary layer as it traverses
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the shock. If cg were known as a function of M; (and of a

suitable Reynolds mumber at the shock if cg; represents a fric-

tional effect), shock locations could be determined from equa~
tion (67) with P, = 0. In the absence of such knowledge, however,

an assumed rearward shock movement can be used to calculate Cge

Thus assume the following boundary conditions on the terminal-shock
location: (a) At the potential-limit Mach number Mb,Z’ the ter-

minal shock occurs at the potential-limit chordwise location x
(x; = 0.5 for the biconvex airfoil); and (b) Atea free-stream Mach

number of unity, the terminal shock is at the trailing edge, x = 1.

These boundary conditions are, of course, approximate. The
terminal shock appears to be formed by the ever-present random pres-
sure disturbances that are continually propagating through the flow
field at locally sonic speed. Some of these disturbances, traveling
upstream (reference 1), encounter the locally supersonic region and
tend to pile up; that is, the terminal shock eppears to form as an
envelope of characteristics in the x,y,t space (t is time) rather
than as an envelope of characteristics in the x,y plane (limiting ’
line). It may be necessary, however, for the symmetric-type locally
supersonic region to reach a finite size before the unsteady dis-
turbances can coalesce to form a steady terminal shock (reference 4).
The boundary condition (a) idéalizes this process by assuming no
shock and & symmetric solution up to the potential-limit Mach num-
ber, thence a sudden change-over to an asymmetric solution with
steady terminsl shock. Presumably, the disturbances that form the
terminal shock have a tendency to pile up as far upstream as possible.
The termingl shock could hardly form upstream of the potential-limit

location, however, because of the "choked" condition at this location.

(See preceding section. In this connection compare the experimental
data and the semiempirical analysis of reference 24.) As regards
boundary condition (b), there are no experimental data on terminal-
shock location and structure at Mach number unity. In the super-
sonic speed range, this shock becomes the oblique shock, which does
start close to the trailing edge. The schlieren photographs of
Liepmann (reference 3) suggest that the terminael shock will reach
the vicinity of the trailing edge at sonic speed but will also be
curved in the direction ultimately required in the completely
supersonic regime.

Boundary condition (a) and equation (67),with Py = 0, mnow
yield for the T = 0.1 biconvex airfoil, at M, = Mo,l = 0,831
and Al =.AZ = 0.389 (values shown in fig. 5), the shock pressure-
drop coefficient cg = 0.26. At M, =1 and x =1, & =0.47

1255



Ge21

NACA TN 2130 . ' 37

(from the following section and fig. 7) giving cg = 0.94. The
assumption of & linear variation of .Al with p between the pre-

ceding end values (the extreme values of 'Al. do not differ greatly)

determines, from the velocity distributions previously calculated,
the variation of terminal-shock location xg with Mach number My

(fig. 8). Typical velocity distributions as thus completed by
location of the terminal shock are shown in figure 7. (The velocity
increment A is related to the pressure coefficient P by

P = -2A. By the assumption P; = 0, A is therefore indicated as

zero behind the shock. This A refers to conditions outside the
boundary layer.)

Other shock conditions have been advanced. Tsien and Fejer
(reference 37) regard the shock as an oblique shock producing mex- .
imm outward deflection of the streamline outside the boundary
layer. Theodorsen (reference 42) regerds the shock as the oblique
shock that produces locally sonic speed on its downstream side.

In the small-perturbation transonic case, these shock conditions
lead to equations similar in form to equation (64): namely
(appendix C),

Maximum deflection: PAj/B +TA, = 2/3 " (e8)
Crocco's point: PA1/7 +TAy = 4/7 (89)
Sonic point: PA, =1/2 ¢ (70)

An additional shock condition has been included in equation (69).
This condition is the oblique shock for which the streamline cur-
vature on the downstream side is zero (if the oblique shock has
finite curvature, reference 43). It is defined by Crocco's point
on the shock polar (appendix C).

From the similarity between the preceding equations and eqgua-
tion (64), essentially the same objections as regards ability to
predict shock location that have been made to equation (64) can be
made to the preceding equations. In addition, as has been mentioned,
measurements indicate the terminal shock to be normal under the
experimental conditions of reference 2. Making the same mod- '
ifications, however, in equations (68) and (69) as were made in
equation (64), that is, introducing a shock pressure-drop coefficient
cg; and assuming P, = 0, ylelds, with the same shock boundary con-

ditions as before, practically the same variation of shock location
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with Mach number M, but different ranges of variation of cg.
These conditions are listed in table I. (Bquation (70) does not
yield a solution for shock location inasmuch as, unlike the previous
equations, it does not relate conditions across the shock but speci-
fies only the velocity on its downstream side. Equation (70) there-
fore depends in an essential way on the knowledge of the velocity
distribution downstream of the shock.)

TABLE I

Shock-pressure-drop
Terminal-shock condition coefficient, cg

Mb,z = 0.831 Mb =1
Normal 0.26 0.94
Maximum deflection - .09 31
Crocco's point - .18 .14
Sonic point - .26 0

The pressure measurements of reference 2 indicate values of
¢g of about 0.1 just outside the boundary layer and of about 0.3

at the surface of the airfoil at an effective free-stream Mach number
probably much closer to the potential-limit Mach number than to
unity. The surface-pressure and wake survey measurements of refer-
ence 44 can be interpreted as indicating values of c¢g up to about

0.5 in the boundary-layer region. These éstimates of cg would
appear to favor the normal-shock condition (table I), particularly
inasmuch as the negative values calculated in teble I are probably
unrealistic. The actual shock-boundary-layer structure near the
airfoil is, of course, considerably more complicated than that of

a single straight shock, whether normal or obligque. The introduction
of a coefficient such as c¢g to represent an over-all departure
from ideal single-shock behavior, however, may possibly be useful .
-practically.

The reason for the rearward movement of the terminal shock with
increase of Mach number is not necessarily indicated by the pre-
ceding correlation between terminal-shock location and pressure-drop
coefficient c¢g. It would seem more likely that a given terminal-
shock location resulting from other, more powerful, dynamical
requirements should cause a particular value of cg to exist,
rather than conversely. These other dynamical requirements may be
connected with the necessity for the streamline displacement at
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infinity G(Mb) to increase with Mach number in the present speed

range. An increasing 8 could be produced by a more extensive

and intensive shock-boundary-layer wake, which in turn would require
& longer and stronger terminal shock, such as would occur at the
higher local Mach numbers farther to the rear of the airfoll.

It need hardly be emphasized that the calculations of this
report, particularly those in this section, are of a provisional
and exploratory character. At the present stage, not much more has
been rigorously demonstrated than that the methods used herein can

"yield results of the right order of magnitude.

Finelly, it is of interest to note that the condition used in
this section, that shock back pressure shall equal free-stream pres-
sure, can be regarded as a special case of a more general condition;
namely, that the shock back pressure shall be as close as it can get
to free-stream pressure. This more general condition is discussed
in appendix D. . o

UPPER TRANSONIC FLOW WITH DETACHED SHOCK

Analysis. - The upper transonic or detached shock regime extends
from free-stream Mach number 1 to that supersonic Mach number Mb a

at which the shock ahead of the airfoil becomes attached to the
leading edge, assumed sharp-edged. In the transonic small-
perturbation case, Mb,a is given by (reference 30 and ‘appendix c),

2
Mo a L 3

(@ 1..)2/3 22/3

= 1.890 (71)

where GL is the semivertex angle at the leading edge (fig. 9).

Calculation will now be made of the movement of the head shock
(fig. 1) and of the supersonic part of the airfoil velocity dis-
tribution as a function of M,. The terminal shock is assumed to

start from the trailing edge (se2 preceding section) so that it need
not be considered in the analysis. As in the preceding section, the
supersonic part of the velocity distribution on the airfoil is
assumed to be a Prandtl-Meyer distribution given by equation (54).
This assumption increases in validlty with the Mach number. At a
Mach number of 1, the flow pattern derived by Guderley (refer-

ence 40) indicates the approximate validity of such an assumption,
except in & small region near the beginning of the supersonic
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velocity distribution that is relatively more substantielly influ-
enced by compression waves from the sonic boundary. The preceding
assumption is therefore probaebly a much better one in the present
speed range than in that of the preceding section.

As in the preceding section, by assuming a Prandtl-Meyer dis-
tribution the problem of calculeting the supersonic part of velocity
distributions in the upper transonic range is again reduced to deter-
mining one point of this distribution at each free-stream Mach num-
ber M, in the range, which is necessary to evaluate the constant
ee in equation (54). This calculation is performed along the same
lines as In the preceding section. The continuity condition is first
set up for the flow across a section AB in the y-direction (fig. 9),
where A is a point on the shock, to be specified presently, at a
distance ¥y from the x-axis and B is the laterally opposite point

on the airfoil at the same chordwise location X Thus

o

2%
Y= (ov-1)dy ' (72)
Y

The irrotationality condition (equation (5)) applies also in the
present speed range, inasmuch as fluid rotation introduced by var-
iable entropy increase across a curved shock in the small-perturbation
transonic case, being of the order of the third power of the Mach num-
ber increment across the shock, is negligible. Substituting equa-

tion (5) into equation (72) and making the small-perturbation sub-
stitution of equation (10) for the density yields

L
- 2
‘ Y.-.-f }E'—Fg—vdv' C o (73)
vW

~

where v,, 1s the velocity increment on the downstream side of the
shock at A and A is the velocity increment at B.

A streamline-curvature function is now assumed as

' v-v,\8
C = Cal g5~ (74)
W.
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where s 1is a parameter to be determined as a function of X and

K. Equation (74) satisfies the boundary condition at the airfoil

end in eddition states that the curvature is zero at point A. It is
desirable that the streamline curvature should be zero at point A
because if it were not, then the determination of the curvature at
point A would greatly complicate the problem. Now a point A exists
on & curved shock at which the streamline curvature Just downstream
of the shock is zero. It is called Crocco's point (references 38, 40,

41, 45,and 46) and is defined by the condition

= endix C Instead of choosi
(ov/3 e)along streamline = (app ). ° e

point A as Crocco's point, however, it will be chosen as the sonic
point, that is, as that point at which the local Mach number Jjust
‘downstream of the shock is unity. The reason for this choice is

the following: Because of the additional degree of freedom pre-
sented by the position of the shock relative to the airfoil, that is,
determination of the distance y,, one more condition in addition

to those already given is neéessary'to meke the problem determinate.
If point A is the sonic point, & very simple such condition is
obtained, because at the, sonic point, (Be/av)along ap = O (appen-

dix C). Hence, to the first order in the change of velocity between A
and B (that is, in the small-perturbation case) the stream direc-
tion 6, at A will equal the airfoll inclination 6y at B. The

violation of equation (74), because the curvature will not be zero

et A, is probably not serious inasmuch as it is known that the sonic
point and the point of maximum streamline deflection are quite close
to each other on the shock polar and Crocco's point is between these
two points (appendix C). Hence the streamline curvature should be
close to zero at the sonic point A in the physical plane. It is
noted that choice of a point with a particular property on the head
shock 4o determine the path of integration in equation (72) mskes

the chordwise locatiord x, @& function of the Mach number parameter K

in the analysis. Hence the parameter s in equation (74) becomes &
function only of K. )

Substitution of equation (74) into equation (73) and integration
yields

(v 2 v
(TCadg, =0, = - Sy ul "{i:;’ )(A-”w)+ (_,(,2 53’)(3 '(-—73133 (A—”w)ﬂ

(75)
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in which the aforementioned condition 64 = 6;; is indicated in the
subscript on the left side.

The distance Jy,, of the shock point A from the airfoil point B
is obtained by integration of the irrotationality condition (equa-
tion (5)) with the curvature function (equation (74)) as

A-v,

Tu T T=vy= Cail-si (76)

In order to satisfy the condition of zero curvature at Vv = v, by

equation (74) and for convergence of the integrals leading to equa-
tions (75) and (76), it is necessary to restrict the range of values
for the parameter s to

0O<s<l1 (77)

The distence d of the normal element E of the shock from the
leading edge O of the airfoll cen be expressed as follows: The
angle of inclination ¢ of the tangent AC to the shock at the sonic
point A is given by (appendix C)

cos 6 =Nn/2 (78)

This inclination is somewhat steeper than that for a Mach wave, for
which cos @ =Aﬁ_, as is to be expected. The distance CD is thus
glven by

CD = ¥, coto = 3, cos O (79)

Introducing a factor A to allow for the reduction CE due to cur-
vature of the shock between A and E therefore gives, using
equation (76),

= ANu/2 (A-v)
d+x, = A n/2 3, = o (10) (80)
: a

The preceding equations will now be applied to the thin biconvex air-
foil. For this contour, conditions at the chordwise location x

analyzed here are given by equation (59) as
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_1 Oy
xw-zQL—-z—T> (1)
a - 2
a =% - (Qz)

It is convenient to proceed with the equations expressed explicitly
in transonic-similarity form. At the sonic point behind a shock

(appendix C),
v
. .1 (83a)
H 2
Te
W 1
372 = 372 (83b)

Substituting equation (81) into (80), equation (82) into (75), noting
that the second term on the right side in equation (75) vanishes
because of equation (83a), and expressing equations (75), (81), and
(80) in similarity form with the aid of equations (83a) and (83b)

and the definitions

Ky = E/z(-rr')z/3 = -K/2 ' (84)
L= M3 AP " (85)
.- yilelds, respectively,
(YCa)o, = 6 K K K )
) iz =2 - “%— 5 (L) - (L"+ T (86)
% -3(1-15%) (67)
3/2
g-(-%(lv+Kl) -—(1-§Kl/> (88)

The parameter s in equation (86) is next determined as a function
of Kj. To begin with, as EK;—0, s must—1, and in such a way
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1

that Kj%/(1-s)—>constent, for if not, then at K; = 0, L, < O

(by equation (86)), which is incorrect in view of the direction of .
curvature of the flow. It willl be assumed that the variation of s
with K; 1is glven, not only near Ki = 0, Dbut throughout the entire

upper transonic range 0 < K < 3/2 by
- Klz

—= =B (a constant) (89)
1-8

The value of this constant can be determined es follows: Equa-
tion (86) is similar in structure to the corresponding subsonic
equation (56). It was assumed -in the preceding section that equa-
tion (56) should comply with the potential-limit condition

@%)x = (‘%l()_ =0 (90)
X

at x = X, = 0.5 throughout the lower transonic range. The sub-

script x in equation (90) indicates that x is held conmstant in
the differentiation. Now, if a unique continuous solution exists at
M, =1, then equation (86) should become equivalent to equation (56)

at M, = 1  and hence should obey the potential-limit condition
analogous to equation (90) at M=l or K3 =0 and x = 0.5. An

analogous condition to equation (90), rather than the same condition,
is necessary because here x = X,; 1is a function of K; and so cen-

not be held constant in differéntiating L. However, inasmuch as

.

Ty (L ) a\ Ay \ (91)
& ~\&K /) T\3&/ &
X Kl )

end the second term on the right side is finite and, in fact, zero at
Kl = 0 by equation (87), it is seen that the enalogous potential-

limit condition to be applied to equation (86) is

E} =0 ’ (92)
Ky

A -
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The chordwise location at which equation (92) is applied is, at
Ky =0, by equation (87), x, = 0.5, which jJoins on continuocusly

with the branch-point location for the biconvex airfoil in the lower
transonic speed range. On an airfoil for which the 6q = 0 chord-
wise location differs from the branch-point chordwise locatioh %

previously derived, interpolation between these two locations as a
function of X would be necessary in order to obtain the branch-
point locations in the lower transonic asymmetric-flow range. Apply-
ing the condition of equation (92) to equation (86) results in, by
equation (89),

B = % Ly 12 | (93)

Inserting this value into equation (86) yields

’ 1/3
Ly = |—5— =27° = 1.260 (s4)
T
end, by equation (93), -
B = —2 = 2.380 (95)
21 3 *

The remaining constant A, occurring in equation (88), is
evaluated by the boundary condition that the shock distance d—>0
as Klf—’Ki,a’ where Ki,a corresponds to the Mach number for

attachment of the shock and is given by equations (71), (59), and
(84) as Kl,a = 3/2. With these values for d and K; and by

equations (89) and (95), equation (88) yields
(1+3/2) A = 0.126 ' (96)

On the other hand, equations (89), (95), and (86) yield a cubic for
I:43/2 at X1=3/2, with the solution

Nl

= 0.1318 (97)

L, +

Hence

=
i

0.955 (98)
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The constant A 1s of the expected order of magnitude, namely, some-
what less than unity, although perhaps too close to umnity to indicate
& high degree of gquentitative accuracy.

The other boundary condition on shock distance, d-— o as
K1—>0, 1is already satisfied by equation (88), which gives a

limiting variation, using equation (89) and the preceding numerical
values,

ABly  0.716

lim d— =
4Kr13/2 Ki37§

Ki—)O

(99)

The variation of s with Kl, given by equation (89), and the

various numerical constants Just derived enable such quantities as
the longitudinal shock distance d, the lateral shock distance
Yy, the chordwise locatlion x;, and the veloclty L. at chordwise

location x,, on the airfoll-to be derived as functiomns of Ki from
equations (76) and (86) to (88). From Ly(%1), =,(Xy), which con-
stitute the determination of a known point of the velocity distribution
at each K;, the supersonic part of the velocity distribution on the

symmetric biconvex airfoil is obtained by the Prandtl-Meyer
formula (54).

The varlous shock distances calculated as indicated are shown in
figure 10. Some velocity distributions are shown in figure 7. The
numerical values in figures 7 and 10 are plotted for a biconvex air-
foil of = 0.1. These values, however, were actually derived from
the similarity parameters calculated by the equations of this section,
which yield only limiting values for T = O, M, = 1. As an indi-

cation of the error involved in applying the results of figures 7 and
10 to biconvex airfoils of finite thickness ratio, figure 10 indicates
the Mach nmumber for shock attachment to a T = 0.1 biconvex airfoil
as 1.31; whereas the exact oblique-shock relations show it to be 1.48,
Practical application of the results of this section therefore requires
further investigation in the direction of the counterpart of the
present calculation for T and [ finitely different from zero.
(Calculations by integral methods of detached-shock configurations
relative to thick bodies have recently been made by W. E. Moeckel,
reference 47.)

Some comparisons with experiment. - Figure 7 has been cross-
plotted in figure 11 to show the velocity increments A at the
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x =0.5 and x = 0.8 chordwise locations through the entire tran-
sonic speed range. From these velocity increments, local Mach num-
‘bers M have been calculated by equation (27), assuming I'y = TI'= 1.2

for over-all consistency with the determination of A. These Mach
numbers are shown as the solid lines in figure 12. The relative con-
stancy of M at x = 0.5 1in the transonic range maey be especially
noted. (In the low subsonic and high supersonic ranges, M should
approximately equal Mb.) This phenomenon is of particular interest
in view of the rather independent derivations of the maximum local
Mach number at the potential-limit Mach number Mb,l and at sonic

speed M, = 1. The potential-limit derivation depended on the

Incompressible velocity distribution for the parameter r; whereas
the sonic-speed derivation depended on a property at the sonic point
of the shock polar (BG/B‘D)y = 0. The relatively constant value of

M a8t x = 0.5 throughout the transonic speed range is plausible
from the expected tendency of the flow to maintain a maximum average
value of pv ~ 1 along the line x = x;, when both subsonic and

supersonic velocities occur along this line.

The discontinuities in the theoretical curves for x = 0.8 at
M, = 0.85 and at M, = 0.94 correspond to the assumed sudden

appearance of the terminal shock at the potential-limit Mach number
(and the condition Py, = 0) and to the shock passing through the

x = 0.8 1location, respectively, (fig. 8).

Pressure distributions in the lower transonic range on 6- and
12-percent thick symmetric biconvex airfoils of 3-inch chord spanning
a two-dimensional tunnel 20 inches high and 2 inches wide were meas-
ured in references 3 and 4. The Reynolds number based on airfoil
chord was of the order of ome million. The results were not cor-
rected for tumnnel-wall effect. Terminal-shock locations plotted in
figure 8 were estimated herein from the given pressure distributions
end schlieren photographs. The local Mach numbers given in refer-
ence 4 were presumebly obtained by applying the finite-perturbation
formulas (equations (6) and (26)) to the pressure differences actually
measured. Accordingly, these formmlas were used in obtaining velocity
increments and local Mach numbers from the experimental results glven.
A11 velocity increments A, local Mach numbers M, and free-stream
Mach numbers M, were reduced from T= 0.06, 0.12 to T = 0.10 by

the transonic similarity rules of equations (24), (25), and (31).
The experimental results as thus reduced are shown in figures 8, 11,
and 12.
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Several points uncorrected by the transonic similarity rules
are included in figures 11 and 12. It is seen that these rules do
substantially correlate the different thickness-ratio results. The
residual discrepancy in the results for x = 0.5 after correlation
may be due to the finite difference between M, and 1, to the
finite-perturbation velocities involved, to differential tunnel-wall
effects, or to differential Reynolds number effects. Also included
in figures 11 and 12 are several points similarly reduced from the
tests described in reference 48. These tests were made on a 6-percent
thick, 4-inch chord symmetric biconvex airfoil in a two-dimensional
tunnel 18 inches high and 4 inches wide. Reynolds number was of the
order of one million. The discrepancy between the highest speed
points of reference 48 and the lowest speed points of references 3
and 4 is possibly due to larger tunnel-wall effects and the somewhat
higher Reynolds number in the tests of reference 48.

Agreement of the present theory with the experimental results
is considered to be good at least qualitatively. The theoretical
calculations are, as previously noted, limiting calculations for
T=0 and M, = 1. As an indication of the necessity of allowing
for finite departures from at least the transonic limit M, =1 in

order to attain closer agreement with experiment, several alternative
theoretical local Mach number curves are included in figure 12. In
one, the function 'PM(MB) of equation (28a) was used in equation (27)

to obtain local Mach numbers from the theoreticel velocity increments
of figure 11. In the other, the exact equation (26) was used. It

is seen that the differences between these altermative curves is of
the same order as the difference between theory and experiment. The
experimental local Mach numbers appear, nevertheless, to be definitely
lower and higher than the theoretical values at x = 0.5 and x = 0.8,
respectively. It remesins to be seen whether experiments at higher
Reynolds number would not better the agreement with the (essentially
infinite Reynolds number) theory. The changes with increase of
Reynolds number may be expected to be in the direction for better
agreement., '

PRESSURE DRAG; USE OF MOMENTUM INTEGRAL

. The flow patterns obtained in the preceding sections, together
with the momentum equation in Integral form, yield an estimate of
the pressure drag of the symmetric biconvex airfoil in the transonic

speed range. The pressure drag of an alrfoil is defined es that
portion of the total drag that can be obtained by an integration
around the airfoil of the component in the free-stream (x-) direc-
tion of the normal force or pressure on the airfoil. The remaining
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portion of the total airfoil drag, the skin friction, due to the
tangential forces on the ailrfoil surface produced by viscous action
in the boundary layer, will not be considered here. The skin fric-
tion, for example, on & 10-percent thick airfoil, is known to be
small relative to the pressure drag in the transonic range.

In the range of continuous potential flow, that is; from Mach
number zero to the potential-limit Mach number Mb,l’ the pres-

"sure drag is zero, corresponding to the fact that the completely
subsonic potential-flow field bounding the airfoil provides no
mechanism for transporting x-direction momentum away from the air-
foil., In the range of transonic flow with shock, however, the shock
structure provides such a mechanism, both in the direct shock wake
of decreased total head and in the additional wake due to boundary-
layer thickening in traversing the terminal shock. In this range,

a nonvanishing pressure drag is therefore obtained that could be .
directly calculated by integration over the airfoil of the x-component
of the pressure., This direct integration can be carried out here over
the rearward part of the symmetric biconvex airfoil for which velocity
distributions have been previously derived. The contribution of the
remaining forward part of the airfoil to the pressure drag can be
obtalned from knowledge of the conditions in the flow field by use of
the momentum integral.

Integration of the x-component of the pressure between two chord-
wise locations x, and xp yields for the pressure-drag coefficient

°a,r' of this part of airfoil (upper and lower surface)

- % T
Cq,r = T_’Q_,a_ =2 P tan 6, 4x = -4 Aggax  (100)
'é'povo c
Xa : | Xa

in the small-perturbation case., For the symmetric biconvex airfoil
equation (100) becomes, by equation (59a),

£y
ca,r = 4T Atat (101)
ta

Substituting the transonic small-perturbation limiting form (54) of
the Prandtl-Meyer velocity distribution into equation (101) yields




T gﬁ—ﬁ Bty -850 %(-3-)1/5 [(tb " (to+E) - ta- ge>5/3(§a+%geﬂ

4

(102)
In the lower trensonic range, equation (102) wes used to calculate the pressure drag of
the biconvex girfoil T = 0.1 from the midpoint = 0 to the terminal-shock location

11ing adse E=1 1is zero., by the
== 4 = v

[ndan = T SeY

Ee
8y = §. The pressure drag from ¢ = f; to the tr
spsumption made in the section LOWER TRANSONIC ASYMMETRIC FLOW WITH TERMINAL SHOCE that
fres-stream statlc preesure exists on the airfoil Qownstream of the terminal shock. In
the upper transonic range, equation (102) was used to calculate the pressure drag of

the biconvex eirfoll from the chordwise location equal to that of the sonic point of the
detached shock {. = £, to the trailing edge §, = 1.

The pressure-drag contribution of the remaelning forward parte of the biconvex airfoil
in these ranges was determined by the womentum integral. Thms, the net decreesse of flux
of x-momentum out of the region ABDE, (fig. 2)(momentum flux is here defined as static
pressure plus flux of kinetlc momentum) gives the pressure drag on the portion of the
airfoil from the leading edge O to point A. As shown in detail in appendix B, the
resulting expressions for the pressurs drag on the biconvex profile are as follows:

(e) Lower transonic renge; leading edge, £= -1, to midpoint § = 0

5/3
K 2 L
a,r = §T73 Ls[} 2(3-7) 7 3 (E—ri} (103)

(b) Upper transonic range; leading edge, £ = -1, to f = gw, L = L,

3 ] 3
5/5 \‘ (Ty+E1)” Ky (L +Kq) K ‘I
T 2 1/ M 1 5 %1
Cd._,f ijg (L"-l- K]_)L-s (4:_3) (3___5) + 3 (l--ﬁ)_l (104)

0S

0¢T2 NI, VOVH
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The resulting pressure drag on the symmetric biconvex airfoil
is

cg = cq,r + ca,r (105)

and is shown in'figure 13 as a function of free-stream Mach number.
The finite value of cq = 0.015 at the potential-limit Mach num-

ber Mj = 0.83 results from placing the terminal shock at the
potential-limit chordwise location at this Mach number (see pre-

ceding section). As the terminal shock moves toward the trailing
edge, the drag rapldly rises to a maximum value of cg = 0.098

at sonic speed M, = 1. There are several points of interest about
this value., Tirst, it is of the same order of magnitude as that
derived by Guderley (reference 40) by an entirely different (hodo-
graph) method for a somewhat differently shaped 10-percent-thick
airfoil. Second, the value of Cq,f = 0.017 given at M, =1 by

the lower transonic formula (equation (103)) was slightly different
from the value 0.0ll obtained at M, = 1 from the upper transonic

formula (104). This slight difference is due to r approaching a
different value, 2, from s(—1) as M,—> 1. Inasmuch as this

difference in cq,f is not great, and in view of the considerable

differences in procedure on the two sides of sonlc speed, the small
difference in cd,f is to be regarded not as a defect but rather

as Indicating the consistency of the present approach. The occur-
rence of a drag maximm at M, = 1 rather than somewhere in the

vicinity is probably due to the approximations involved in the

present calculetion, espscially that which assumes that the terminal
shock starts at the trailing edge.

As the free-stream Mach number increases from sonic speed, the
drag coefficient decreases because of the decreasing over-all pres-
sure level. As the shock attaches and the field of flow becomses
completely supersonic, the drag finally approaches the Ackeret rate

of variation with Mach number, l/A’sz-l. Several drag coefficients

have been calculated in the completely supersonic range by using the
exact Prandtl-Meyer pressure distribution with initial conditions at
the leading edge given by the exact oblique-shock relations of refer-
ence 49. The difference between the first such point, cg = 0.051

at My = 1.50, &t which sonic'speed occurg behind the attached shock

at the leading edge, and the point cg = 0.065 at My = 1.31 by the
present method, indicates again the approximetion introduced into the
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present results primarily by the transonic approximation i << 1
(that is, setting all the I' values equel to 1.2) and, probably
to a lesser extent, by the small-perturbation approximation:

A << 1,

1255 .

CONCLUDING REMARKS

The small-perturbation form of an integral method has been used,
with the aid of simplifying assumptions indicated by experiment or
other theory, to calculate approximate flow patterns for a symmetric
biconvex alrfoil through the transonic speed range. The wholly sub-
sonic symmetric flow field develops symmetric continuous locally
supersonic regions when the subsonic free-stream Mach number exceeds
a definite (lower critical) value. Above an equally definite (poten-
tial limit) free-stream Mach number, no continuous symmetric solu-
tion exists by the present method. Above the potential-limit Mach
number, the method yields both a physically unreal symmetric solution
containing forbidden regions bounded by limiting lines and a physi-
cally reel asymmetric solution containing an asymmetric locally super-
sonic reglon. Termination of this locally supersonic region on the
downstream side by a shock required additional hypotheses concerning
the shock. These hypotheses were quite unrelated to the limiting- .
line phenomenon. It was found possible to Jjoin the asymmetric solu-
tion continuocusly to the asymmetric solution that exists for slightly
supersonic free-stream Mach numbers. The mein results of the method, .
such as the variation of pressure drag with Mach number, relative
constancy of local Mach number ahead of the terminal shock in the
transonic range, and so forth, agree qualitatively with experimental
data., More extensive experimental date are needed in the form of
pressure distributions, wake surveys, and terminal-shock surveys on
airfoils of simple shape under isolated airfoil conditions at high
Reynolds numbers., The present method is probebly simple and flex-
ible enocugh to enable sultable alterations and extensions to be made,
whether for more rigorous solutions of the cases treated, or to
more general situations, such as airfoils with 1lift, bodies of
revolution, and so forth. '

National Advisory Committee for Aeronautics,
Lewis Flight Propulsion Leboratory,
Cleveland, Ohio, December 19, 1949.
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S3
APPERDIX A

SMALL-PERTURBATION APPROXIMATION OF
CONTINUITY INTEGRAL

The exact form of the equation of continuity, equation (1),
can be written as follows (see fig. 14):

o NFod
dy, = pv cos € dy (A1)
o Y :

where & is & possible lateral displacement of a streamline far
from the airfoll, Subtracting y,-Y from both sides of equa-

tion (Al), as in the section COMPRESSIBLE POTENTIAL FLOW, and pro-
ceeding to the limit y,—>= ylelds

(= -]

Y-3 = (pv cos 6-1)dy

(a2)

An expression for dy Iin terms of v and 6 18 next derivéd
starting from the differential equations of motion in intrinsic
form. These equations are (reference 35)

ov
S = -Cv (A3)
Sm2-1) (ST = 98 (a4)
< s on .

where

C = -@_:) ‘ ’. (a5)
8

and the subsoript s denotes values taken along a streamlins.
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Consider the variation of velocity v and stream directlon 6
along & line making an angle a, with the free-stream direction
(fig. 14). If z denotes distance measured along this line, then,
using equations (a3) to (a5),

Sv_ (3) (38 3,
dz  \08/g4 Bs)s dz on Oz

§I.> C cos (ag-8) - Cv sin (0g-6)
96 /g

-Cv sin (agp-6) [_ <_) cot (agy-6) + l] (48)

20 _[20) 3, 20
oz \d8/g 0z On Oz

n

2
o) . ¢ G [y ]
~C cos (0p-8) - C = (8—9)8 sin (ag-8)

i

2
-C gin (ay-6) [cot (ap=0) +(E.;i)<g—g>s:l (A7)

BEquations (A8) and (A7) yield, respec’cive_ly, for variations along z,

dz sin (dg-0) = - (48)

[v +< ) cot (a -e)]

de

oy . (ME-1) fdv
c l:cot (ao=-8) + = (56)5]

If the angle a, 1s now taken as ::/z the line element
dz becomes dy, ani equations (A8) and (A9) become

dz sin (ay-6) = - (A9)
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dv

o[reeme (@)

de
2
C[ta.n9+(M l)(i]
v 06/

Substitubting equation (Al0), the definition v = 1+V, the small-
perturbation expressions cos 6 = 1 - 62/2, tan 6 = 6, and the
expansion equation (10) of p in powers of vV into equa-

tion (A2) yields

dy cos 6 = -

(410)

dy cos 6 = - (a11)

2

Y-5 = [}m-l"gz - 9—2--uv eves] %"- (a12)
in which
2
M 2=
(o] 7. 4
PC 1+ —-é—- - —Z—Mo (AlS)
=[oV

Ues —<§5>B _ (Al4.-)

The next higher order termg in the bracket of equation (Al12) would
be of order v«3, vez, MV “BVgg. The order of magnitude of eves

is V. If equation éAlZ) is consistent with the transonic similarity
rules, then 92 ~ ur¢. The two terms involving 6 in eque-

tion (Al2) therefore can at most only affect the function ToM,)

but not its limiting value I (1) =T = (y+1)/2. Thus the small-
perturbation equation (4) of the continuity integral is correct to
‘the order v In the subsonic range p ~ 1 and to the order p2

with I, =I' 1in the transonic range u <<1. The small-perturba{iion

form of the lrrotationality condition (egquation (5)) is seen from
equation (A10) to be correct to the first order in VvV and 6.

In the important special case where the alrfoil has fore-ani-
aft symmetry, equations (4) and (5) hold exactly at the midchord

location, for hers, by symmetry, 6 = O in equations (AY) and (A10).
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In the nelghborhood of such a location and, more generally, in the
nelghborhood of any 6 = O 1locatlion on an alrfoll, it may therefore
be expected that the essentliel small-perturbation approximations

are those involving the velocity increment v , @8 in equation (10)
rather than those involving the flow direction .6. This expectation
is the justification for the use of I, rather than I' in the
continuous-~-potential -flow calculations of this paper.
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APPERDIX B

SMALL-PERTURBATION APPROXIMATION OF
MOMENTUM INTEGRAL -

The momentum principle in integral form states that the vector
rate of flow of momentum out of a fixed volume of space equals the
vector-integrated pressure on the bounding surface of the volums.
Applying this principle to the two-dimensional region ABDE (fig. 14)
glves, for components in the x-direction,

Yo T, +0 Jotd

(Po+Povo?)dy + J/‘ Pody = (p+ov2 cos? 0)ay + | DAy
yO

ED DB AB EOA

(B1)

in which the paths of integration are indicated under the respective
integral signs. Rearranging the terms of equation (Bl) as with

the continuity equation (Al), proceeding to the limit y,—> o,
denotlng by p, p, &and v fractions the respective free-
stream quantities, and noting that pyv,°/p, = M 2 Tesults in

Y N Jo
D, - -
8= | 2 Y + J; [p 12 + (pv? cos © 9-1):|d.y (B2)

Subtraction of the continuity equation (A2) then yields for
the pressure-drag coefficient o3 ¢ on the airfoll from the leading
edge to the point A (including a factor 2 for both surfaces of the
symetric airfoil), .

Y ©

c = % -l)iy = -4 {P__.g.'l + pv cos 6(v cos 9-1)|dy
a,f T X (?a oy
(B3)




S8 NACA TN 2130

Substituting the definition v = l+v, the expansion

cos 8 =1-62/2 4+, . ., the expansions for p and p as power
series in v obtained from equation (6), and the irrotationality
expression (A10) into equation (B3) ylelds

A
- 1e2 ,.2pn 3,02 po.2 av
°q,r = 4 L [ %'D + gl"mv + 5 + 5 91795]3- (B4)
where

2 .
1M
3 2=y M

and Vgy 1s defined in equation (A14). Equation (B4) shows why
the momentum integral equation (B2)(or rather the derivative of
equation (B2) with respect to Y) 1is inconvenient to use along
with equation (4) in solv the velocity-distribution problem.
The flow-direction term 62/2 in equation (B4) is of the seame
order of magnitude as the velocity term -(p/2)v2 and so cannot
be neglected in the small-perturbation case, as was the same term
in the continuity integral eq%a:bion (A12). The other 6 term in
equation (B4) is of order pv° and, as in the continuity integral,
at worst merely modifies the function I'p(M,) bdbut not its limit-
ing value at sonic speed Iyp(1l) =T = (1+7)/2. Thus, in this paper,
of the three first integrals of the differential equations of
motion - that is, conservation of energy, mess, and momentum - the
first two (the first as Bermoulli's equation) were used in calcu-
lating the baslic flow pattern, and the x-component of the third
Integral, on the basis of the calculated flow pattern, was used

to determine a portion of the pressure drag. The 1ift and the
moment of the forces acting on different portions of the alrfoil
could similarly be calculated from conditions in the flow fleld

by the y-component momentum integrel and the angular momentum

integral, respectively.

For the calculation of the pressure drag on the forward
portion of the biconvex airfoil in the lower transonic range, the
forward portion extended to midchord. Hence the two terms involving
@ 1in equation (B4) were considered as vanishing to a sufficient
approximation. The resulting integration of equation (B4) using
the curvature function (equation (33)) then yilelds equation (103).
In the uppser -transonic range, the forward portion of the airfoil
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extended to the 6 = 8, location and 6 was held constant at

this value in the integration of equation (B4). The term involving
Vgg 1n equation (B4) venishes in the limiting case M, = 1 or

I'm =T, for which the calculations in this rangs were made. Inte-
gration of equation (B4), using the curvature function and other
relations pertaining to the upper transonic range (see section
UPPER TRANSONIC FLOW WITH DETACHED SHOCK) leads to sequation (104).
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APPENDIX C

TRANSONIC SMALL-PERTURBATION APFROXIMATION OF
OBLIQUE-SHOCK RELATTONS
An element of oblique-shock front, inclined at an angle . o

to & free~-stream flow at Mach numbsr Mo (fig. 9) produces a flow
deflection 6 given by (reference 49)

7+1) l:7-1)Mo 1 - cos\ZO:I = sin 20 tan (0-0) (o1)

The corresponding velocity ratio v Just downstream of the element
is

v = cos o (CZ)
cos (g-6 ‘

Elimination of 0 between equations (Cl) and (C2) yields the
equation of the shock polar. A relation between the slope
(0v/38)sh of the tangent to the shock polar, that is, the rate
of change of velocity ratlo with respect to stream direction along
the downstream slde of the shock and the similar rate of change
along & streamline (Ov/00)g at the same downstream point of the
shock, is obtained by dividing equation (BB) by equation (AS9) and
replaoing ag by o; thus,

%g-) cot (0 -8)
<5->9 oot (5-6) + ﬁ%ll (ﬁ>
8

(c3)

08

'

A similar relation for the rate of change of velocity with stream
direction in the y-direction at a point on the downstrean side of
the shock element is given by setting 0 = /2 1in (C3),

ad v () | (ce)
@l
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For smell- perturbations v~ 1= v << 1, eguations (Cl) and
(c2) becomse .

W:-PGt&no:-Lz+coszo (c5)

My

Also, meking the transonic approximatioﬁ cos g ~ «J!;ioz-l = l\/ﬁ << 1
and using equation (27) with Ty =T ylelds, in place of equations
(c5), (c4), and (C3),

I'o =T oosg - cos’ g (cs).

Tv = T8fcos 0= -1 + cos?o (c7)

v 1+ co8 o (3v/o8)4
B 2255
8/)sh  cos 0 + (+2TY (dv/28),
69) — y [OD \
) | (e I‘v)(——) (co)
(av v 06 /g .
Equation (C7) can be differentiated to yield
ov\
P(—a—o>sh = -2 cos O (c10)
8‘0) 2008 O
z) == (c11)
(89 sh p-=3 cos® o
Equations (C8), (C9), and (C10) combine to give
(?.L.’. _ (5 cos? o -t) (c12)
06/ cos 0 (7 cos? 0 -31)
_3_9_) L (2 coszc-i)(s cos? 0 -1) (C]l.?;)
ov b cos 0 (7 coso ~3u)
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The ratio of the local curvature Cgy = - (30/0z)gy of a shock
front to the curvature of the streamline Just downstream of the
shock element is obtained by dividing equation (48) by (d0)gy,
setting o, = 0, and golng to the transonic small-perturbation

1irit. Thus,

1255

Csn (& + cos® o)
T = (014)

cos 0 (3n-7 cos? o)

The condltions at varlous points on the shock polar in the small-
perturbation transonic range can now be determined by the preceding
equations. Crocco's polnt, for example, is defined by (Bv/ae)El =w,
Equations (C12) and (Cl4) show that this condition implies zero
streamline curvature 1if the shock front itself has finite curvature,
which is usually the cese for e detached shock wave. Crocco's con-
dition yilelds, by equation (C12),

cos2g = 3/7 (c15)

for the Inclination of the shock front in the physical plane abt

Crocco's point. Using equation (C15), the various flow gquantities .
v, 6, and the local Mach number M Just downstream of the shock

element can be determined from equations (C6), (C7), and (27)

with Iy =T.

The derivative (39/3‘!))y (equation (C1l3)) i1s infinite at
Crocco's point, zero at the sonic point (defined by M = 1), and
zero also at a subsonic polnt of the shock polar defined by
cos? ¢ = 1/5 §. At this last point, the downstream streamline
starts out at constant pressure, inasmuch as here (X/d8)y = O by
equation (C12).

The properties of various points on the shock polar in the
small-perturbation transonic limit, determined in the manner indi-
cated, are listed in similarity form in table IT. uations (64)
and (68) to (70) are obtained from the values of I'v /i glven in
the table. The velocity inorement v in the table is (vp/vy) - 1,
and hence equals L1 -A; in the section LOWER TRANSONIC ASYMMETRIC
FIOW WITH TERMINAL SHOCK. Similarly, § in table I 18 -p+21"A1

in the same section.

Further discussion of the shock polar in the transonic small-
perburbation limit is given by Guderley (reference 38) y who shows,
in particular, that from Crocco's point to the point of maximum
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deflection on the shock polar, the obligue shock in the physical
plane is attached to the vertex of a wedge with curved sildes and
hag infinite curvature at the vertex (Cyy/C = ); reference. 38
also shows that the point of maximm deflection on the shock polar

corresponds to the point of shock detachment from the vertex,

which hed been doubted by Crocco (reference \46) and more recently
by Thomes (reference 50).

TABIE IT
Defini- i@ﬁ) coslo [cos o| Iy T'_9P1/3v Me-1
tion i \ov ¥ H i (o |-.-1'3/2 92;3 B
Mach
wave v=0 -1 1 |1 0 0. 0 1
Sonilc
M=1 0 1/2 0.707|=0.500] 0,354 | =1 0
point /
Crocco's| (06
S = . -Ue . "'1.1 "‘0.143
point av>s 0 el 3/7 |0.655(-0.571]|0.374
Maximum | /36
deflsc- |\3Jy ol-1/A/3 | 1/3 |0.577|-0.667|0.385|-1.260|-0.300
sh -
tion
Constant|/dv
pressure (53>s =0| O 1/5 |0.447|-0.800|0.358 |-1.587 [-0.600
Normal
shock 6=0 *® Y 0 -1 0 P .
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APPFENDIX D

TERMINAL-SHOCK CONDITION IN LOWER
TRANSONIC RANGE

The condition that for finite perturbation of the flow the
terminal shock in the lower transonlc range be such that its back
pressure 1s as close as it can get to free-stream pressure may bde
regarded as a rough statement, for a specific purpose, of the
theorem that the equatlions of motion cen be derived from the vari-
ational principle

6ﬂ" (Po-p) dx dy = O : (p1)

where p 1s locel pressure at 2 point (x,y) and po is the free-
stream pressure at infinity. This theorem has been established for

nonviscous flow fields containing curved shocks (references 16, 43,

and 51 and unpublished results of Chi-Teh Wang). It is assumed here
to hold at high Reynolds number in the lower transonic range More-
over, the extremum value of the integral in equation (D1) is assumed
to be the same as for irrotational flow, namely, a minimum.

Consider a stream tube of flow Just outside the boundary
layer (fig. 15). In this streeam tube, the flow accelerates isen-
troplically from free-stream pressure and free-stream Mach number
at station O to a supersonic condition at station 1, reverts
through a normal shock to subsonic conditions at station 2, and
returns ultimately to free-stream pressure, but not to free-stream
veloolty, at station 3. The flow from station 2 to station 3 need
not be assumed isentropic. If the normal shock 1s assumed to occur
in a diverging portion of the stream tube, as 1is indicated by
stability considerations (reference 52), then the maximum velocity,
or minimm pressure, on the alrfoil occurs Jjust ahead of the shock
at station 1. If the shock does not form in a diverging portion
of the stream tube, then the pressure cosfficient to be derived is
that Just ahead of the shock, not the minimum in the stream tube.
The small-perturbation assuymption is not made.

The shock back pressure pz 1s now expressed as a fraction
of free-stream pressure ©po. By the isentropic relation, the ratio
of the pressure just ehead of the shock p; to the free-stream
pressure pPo 18 given by
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-1
.. l+-‘)’—m—];M0
e (p2)
Po 1+ZZ—-M1

The ldeal pressure ratlo across the shock is glven by the Rankine-

Hugoniot relation
27 y=1
CYRE- T 03)

As In the section on lower transonic asymmetric flow, to allow for
the possibllity that the pressure rise across the actual shock
reglon of finite extent 1s different, for whatever reason, fram
the pressure rise across an ideal normal shock, s shock-pressure-
drop coefficient is introduced: (The desirability of considering
the Influence of the shock-boundary-laeyer interaction in +this con-
nection wes pointed out to the author by A. Silverstein.)

Aps A Py
Cyg = (D4)
' —91"1 Zlel

such that the actual pressurs ratlo across the shock 1s glven by

Ap
22.. = <.p_z. - 8 (DS)
1 Py B2 ‘ A

Equations (D2) to (D5) combine to give for the actual shook back
pressure ratlio

7
-1 2
Q LM 7+1 My -7%-05%1%) (p8)

For given M, and cg, this expression is found to have a maxi-
mm at a value of M; glven by
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743 - c_(7+1) '
My = 8 (D7)
1 \/z - og(7+1)/2

The meximum shock back pressure ratio is accordingly

V4
2, 7-1 4-cg(7+1) 7-1
(p8)

-1 _ 2
B~ (o) o iy

It is now inferred, from the condition that shock back pressure be
as close as possible to free-stream pressure, that if (Pz/po)max<l’

then the shock Mach number M; is given by equation (D7), whereas
it (Pz/Po)m> 1, the shock Mach number M; 1s given by equa-

tion (D6) with py/p, = 1.

The ideal-shock case c¢g = 0 1is discussed first. Here the
free-streem Mach number M,, at which (Pz/po)max =1, is 0.78.
Hence, by equation (D7), the shock Mach number M; for free-stream
Mach numbers M, < 0.78 18 glven by

My =§/7—;'3- = 1.483 /(7=; 1.4) (D9)

For free-stream Mach numbers in the range 0.78 < My <1, equa-
tion (D6) with Pz/Po =1 and cg = 0 glves a relation between
M; and Mo. The preceding relations between M; ami My, can be
converted into relations between the shock pressure coefficilent

P, -P P
1l "o 2 1
P. = — -
1 : - < ) (D10)

:;'-'Povo Mo

and My by equation (D2). The result is shown in figure 16.

Shown for comparison are the pressure-coefficilent curves for sonic
velocity (Mj = 1 in equation (D2)) and for perfect vacuum (Mj.=
in equation %DZ)).
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Included In figure 16 are scme experimental data given in
references 44 end 53. The data of reference 53 consist of the
minimm pressures measured on the wings of various alrplanes in
both low-speed supercritical flight (stalled pull-ups) and in high-
speed supercritical flight (dive pull-outs). Of the six circle
data points in figure 16, the three polnts at free-stream Mach
numbers of 0.42, 0.445, and 0.645 represent minimms of all the
pressures measured on the wings of the P-47C-1, the XP-51, and the
8B2C-1 airplanes, respectively, in stalled pull-ups. The cluster
of three points at approximately My = 0.73 represents minimum
pressures selected in reference 53 from the pressure distributions
measured on the wings of the XP-51 airplane in successive dive
pull~outs. A further dive pull-out polnt for the XF2A-2 airplane
coincides with the middle one of thls cluster of three points.

The deta of reference 44 were obtalned on a NACA 4412 eirfoll
spanning the Langley 24-inch high-gpeed closed circular tunnsel.
The variation of minimum pressure on the upper surfeace with Mach
mimber at an angle of attack of the airfoil of 1052.5' was taken
as representative of thelr results. Further wind-tunnel data of
the same type are gliven in reference 24.

Comparison of the experimental data with the theoretical limlt
curve shows that the 1limit pressures Indicated by the theory are,
in fact, approached or reached but not exceeded. The leveling off
of the pressure dlstribution of reference 44 somswhat below & local
Mach number of 1.5 may be due to low Reynolds number, wind-tunnel
effect, or both. Thus the concept of a limit curve derived from a
shock condition independent of Reynolds number and airfoil shape
appears to have some significance, at least in the limit of large
Reynolds numbers (single normal terminal shock), isolated airfoils,
end for an alrfoll shape that permlis high local Mach number super-
sonlic reglons to develop at low free-stream Mach numbers.

Consider now the effect of shock pressure-drop coefficient cg.
As noted in the section LOWER TRANSONIC ASYMMETRIC FLOW WITH
TERMINAL, SHOCK, values of c¢g 1in the approximate range 0.1 to 0.5
occur experimentally. Assume for definiteness a value ¢, = 0.33,
The effect of this value of cg 1n equations (D6) to (D8) is to
increase the shock Mach mumber M; yielding meximum py/p, to 1.5
and to shift the free-stream Mach mumber M, at which (pz/po)m =1

to Mgy = 1. Hence, the portion ABCD of the cg = 0 1limit curve
(fig. 16) would be eliminated and replaced by the curve BE, slightly
shifted to correspond to Mj = 1.5 1nstead of 1.483. The intro-
duction of a shock pressure-drop coefficlent c¢g thus ylelds prac-
tically the same value of limit shock Mach number, and hence mini-
mum pressure, as when cg = O 1in the range My <0.78. It may be
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noted that the value c¢g = 0.33 yields the pressure ratio
P2/Do = 0.527 in equation (D6), that is, the pressure ratio cor-
responding to locally sonic velocity in isentropic flow, which
provides an interpretation for the statement occasionally made
that sonlc velocity occurs behind the terminal shock.

The shock condition as thus far developed applies to finite
and, In fact, quite large velocity perturbaticns and where 1-M,.
can, and possibly should, be of the order 1. The transition to
the transonic small-perturbation case is equivalent to replacing
the branch AB of the limit curve (fig. 16) (or its modification
for cg ;! 0) by the tangent to AB at the point A. This fact is
gseen from equation (67), which is the limiting form of equa-
tion (D6) for p = 1-M,2—>0 amd M;%-1—>0. For constant cg
near Mp = 1 and by the shock back pressure condition P2 = O in
this range, equation (67) yields -2A (= P;) as a linear function
of 1-M,, tangent to equation (D) at M, = 1.

As remarked in the sectlon LOWER TRANSONIC ASYMMETRIC FLOW WITH
TERMINAL SHOCK, application of the shock condition py/p, = 1 or
Py = 0 1in equation (67) implies approximately zero pressure change
along the airfoll downstream of the shock. If this condition
exists regardless of airfoll shape, & severe separation of the
boundary layer must occur in traversing the shock. Similarly, for
finite perturbations at lower free-stream Mach numbers, the present
analysis applies only if the boundary layer can so vary in thick-
ness &8s to provide sufficlent flexibility in the airfoil boundery
condition for the terminal shock to be free to stabilize at dif-
ferent local Mach numbers along the airfoil. Only then does the
possibllity arise of choosing one of these local Mach numbers in
accordance with equation (D1) for shock location, independently of
alrfoll shape. .

With such freedam of shock location, eguation (Dl1) also indi-
cates that the terminal shock will form in a diverging portion of
stream tube, as this provides less variation of static pressure
than if the shock formed (at the same local Mach number) in a con-
verging portion of the stream tube, which would necessarily be pre-
ceded by a diverging part. Where substantial Pressure change does
ocour downstream of the shock, the terminal-shock condition given
herein requires modification; for example, in the small-perturbation
cage the .P, term in equation (67) would have to be ‘retalned.

Finally, it is of interest to note that thes shock Mach number
' given by equation (D9) is also that for which the streamline curva-
ture vanishes Just downstream of a.normal-shock slement of finite
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curvature (references 18 and 43)., This property is derived by
finite-perturbation considerations analogous to those of appendix G;
thus no close connection with the present derivation of equa-

tion (D9) appears to exist. Inasmich as a separating boundary
layer traversing a shock should, however, tend to produce zero
streamline curvature downstream of the shock element , this property
of equation (DY) mey also help to explain terminal-shock stabili-'
zation at approximately M; = 1.5.

e e ¢ te e e o e e e e —
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APPENDIX E

SYMBOLS

The more important symbols used in thls report are as follows:
2]
treamline curvature, -
s NN

chord length, taken as unity

D(drag) /-21- Povolc, seotion drag coefficient

Apg /%‘- plvlz , shock-pressure-drop coefficient

-

drag
distance of normal element of detached shock from leading edge

-2K] = (l-I;Ioz) / (‘rl")z/ 3, transonic similarity parameter,
(equations (12c) and (84))

pl/3A/1-2/3, velocity parameter, (equations (58b) and (85))

local Mach number, ratlio of local velocity to local velocity
of sound

(P-Po)/%bovoz, pressure coefficient

pressure (fraction of free-stream valus)
curvature function paramesters, (equations (33) and (74))

1 + A, resultant velocity at airfoil (fraction of Pfree-stream
value) . '

1 + v, resultant velocity (fraction of free-stream value)

L (14+t). chordwise location, distance in free-stream direction
2 2 3

ordinate of airfoll

lateral dlstance perpendicular to free-stream direction

1255
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z = v/A, (distsnce in appendix C)

MZ 2
I' = 14— - 2L K7 (equation (1lc))

3
o
1

(r+1)/2, (equation (11d))

I'y = Mo2 (l + L;i Mo?‘), (equation (282))
y ° 7ratio of specific heats, 1.4
5] streamline displacement at infinity, figure 2

e engle between local stream direction and free-stream
direction, figure 2

A = (2;1') I_'Ei\, (equation (37a))
3-r/ p
W= - @ = 1-M2 )
P density (fraction of free-stream velue)
(o] angle between shock element and fres-stream directlion
T thickness ratio, ratio of maximum thickness to chord length
' 3 T 2yc
X = (2-r)” e 2 (egquation (37b))
(3r)2 3

~ of the order of magnitude of

Subscripts:

a et alrfoil

e calculated sonic point of Prandtl-Meyer distribution
1 incompressible or low speed

1 potential limit
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free-stream condition
sonic point of obligue shock

upstream and downstreem of terminal shock, respectively
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Figure 1. - Schematic superposition of three transonic flow
patterns about symmetric airfoll.
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biconvex airfoll in lower transonic range. Limiting
calculation for 7—>0, Mo —1. Plotted by transonic
similarity rules for 7 = 0.1.
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