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Abstract. The Generalized Aeroelastic Analysis Method (GAAM) is applied to the analysis
of three well-studied checkcases: restrained and unrestrained airfoil models, and a wing
model. An eigenvalue iteration procedure is used for converging upon roots of the complex
stability matrix. For the airfoil models, exact root loci are given which clearly illustrate the
nature of the flutter and divergence instabilities. The singularities involved are enumerated,
including an additional pole at the origin for the unrestrained airfoil case and the emergence
of an additional pole on the positive real axis at the divergence speed for the restrained airfoil
case. Inconsistencies and differences among published aeroelastic root loci and the new,
exact results are discussed and resolved. The generalization of a Doublet Lattice Method
computer code is described and the code is applied to the calculation of root loci for the wing
model for incompressible and for subsonic flow conditions. The error introduced in the
reduction of the singular integral equation underlying the unsteady lifting surface theory to a
linear algebraic equation is discussed. Acknowledging this inherent error, the solutions of the
algebraic equation by GAAM are termed ‘exact.’ The singularities of the problem are
discussed and exponential series approximations used in the evaluation of the kernel function
shown to introduce a dense collection of poles and zeroes on the negative real axis. Again,
inconsistencies and differences among published aeroelastic root loci and the new, ‘exact’
results are discussed and resolved. In all cases, aeroelastic flutter and divergence speeds and
frequencies are in good agreement with published results. The GAAM solution procedure
allows complete control over Mach number, velocity, density, and complex frequency. Thus
all points on the computed root loci can be matched-point, consistent solutions without
recourse to complex mode tracking logic or dataset interpolation, as in the k and p-k solution
methods.

1 INTRODUCTION

Aeroelastic divergence of a restrained lifting surface or vehicle is a static stability problem
that can be solved easily and accurately by eigenvalue methods for general, real matrices (e.g.
pp. 431-440 of Ref. 1). The stability of an unrestrained vehicle, however, is a dynamic
problem that cannot be solved accurately by static or quasi-steady methods. A number of
recent publications have brought attention to differences and inconsistencies in calculations of
the flutter and divergence behaviors of restrained airfoil’™, unrestrained airfoil>*®, and
cantilevered wing””®* models when analyzed by dynamic stability methods. The use of a
number of approximations to the unsteady airloads has led to this situation. Also, the various
procedures of incorporating available, harmonic, unsteady airloads into the aeroelastic
analyses, the methodologies of ‘root-sorting” and ‘mode-tracking’ for reporting results, and
the use of ‘decay rates’ as ‘damping values’ for nonoscillatory, real roots (with attendant
‘bifurcations’, ‘jumps’, and ‘activation of lag roots’) contribute to the differences.



The unrestrained three Degree Of Freedom (DOF) airfoil model shown in Fig. 1 was studied
by Rodden and Bellinger’ using the p and p-k methods and is Example HA145A in Ref. 9.
The case has also been studied by Chen’ using the g-method and by van Zyl® using four forms
of the p-k method. The restrained 2 DOF airfoil model (obtained by eliminating the
‘fuselage’ in Fig.1, or by letting the the fuselage mass approach infinity) was studied by
Rodden and Bellinger® using the p, p-k, and k methods. The case has also been studied by
Chen’ and by van Zyl*. Both cases have been studied for two locations of the center of
gravity. For the forward location, the divergence speed, U,, is lower than the flutter speed,
U,. Also, for the 3 DOF unrestrained case, a low frequency oscillatory mode instability

appears instead of the well-known quasi-static divergence behavior. Since the mode “finds its
origin in a tendency to static divergence,” it was termed ‘dynamic divergence’. Small
differences in the flutter and divergence speeds are reported for these cases. More
significantly, differences are reported in the composition, origin, and continuity of the system
modes for speeds well below and above U, and U,, and for highly damped or undamped

modes. Thus, there are discussions of speeds at which aerodynamic lag roots ‘become
active’>', speeds at which two damped, oscillatory modes merge and are no longer found for
higher velocities®, and differences over the origin of the divergence root>*® (i.e., whether it
derives continuously from a structural mode or from an aerodynamic lag root).
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Figure 2. Transport (BAH) wing planform and

Figure 1. Three degree of freedom airfoil and aerodynamic strip modeling.

‘fuselage.’

The jet transport wing model, the BAH wing, shown in Fig. 2 was introduced by
Bisplinghoff, Ashley, and Halfman' and has become a standard checkcase for flutter and
divergence analysis of wings. It is Example HA145B in Ref. 9. Rodden and Stahl’ studied
the BAH wing using the transient (p) method with airloads from strip theory and in Ref. 9 it is
studied using the p-k method with the loads computed by the Doublet Lattice Method''
(DLM). The wing has also been studied by Chen® using the g-method and by van Zyl® using
three forms of the p-k method. There is agreement for the general structure of the
instabilities: a bending-torsion flutter mode and a real divergence root. Again, small
differences in U, and U, are noted, depending upon details of the calculations. Also, the

discussions and differences noted above for the airfoil cases regarding the composition,
origin, and continuity of the system modes are also present for the BAH wing case.

All of the above calculations have been based upon unsteady aerodynamic theories which
assume purely harmonic structural oscillations. This leads directly to many of the issues
underlying the results discussed above. A generalization of the harmonic oscillation
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assumption has been available and will be shown to resolve the issues and differences.
Edwards'>™ and Edwards, Ashley, and Breakwell'® proved the validity of the unsteady,
linear, potential equation for arbitrary complex values of the Laplace transform variable, s,
giving examples for Two-Dimensional (2-D) incompressible'>'>", subsonic'*, and
supersonic'®'® speeds and for Three-Dimensional (3-D) subsonic'* speeds. Examples of exact
aeroelastic root loci for general complex values of sillustrating flutter'™">  and
divergence'>"® instabilities are given for 2-D incompressible and supersonic flow. For
incompressible flow, it was shown that, above the divergence speed, an additional pole (the
divergence mode) is found on the positive real axis. The mode exists in addition to those
deriving from the structural degrees of freedom. Edwards'® also showed that existing
computer codes, developed for the calculation of harmonic oscillation airloads, could be
generalized in a straightforward manner. A DLM computer code was generalized, and
damped and undamped airloads were calculated for a swept and tapered wing. Cunningham
and Desmarais'® and Cunningham'’ performed similar generalizations of 2-D and 3-D
unsteady potential theory Kernel Function Method codes for subsonic and supersonic flow,
respectively. They present generalized airloads for an oscillating airfoil and generalized
flutter analyses for several wing configurations.

The purpose of this paper is to present new analyses of the restrained and unrestrained airfoil
models, and the BAH wing model using a Generalized Aeroelastic Analysis Method.
Generalized unsteady airloads (incompressible and subsonic) are used to calculate the exact
root loci of these models throughout the complex s-plane, including their flutter and
divergence behaviors. Along with attention to the number and nature of the singularities
involved, the new analysis gives a complete, intuitive explanation of the stability of the
models and new insights into the capabilities and limitations of the computational methods in
use.

2 AEROELASTIC SOLUTION METHODS

Aceroelastic stability analyses are based upon the Laplace transformed flutter equation
[Mssz+BSS+KS—A(§,M)]{C1(S)}=0 (1)

where M, B,, and K are the structural Mass, Damping, and Stiffness matrices and A4 is the

Generalized Aerodynamic Force (GAF) matrix which is a function of the generalized reduced
frequency, 5§ =sb/U and Mach number, M. Hassig'® summarizes aeroelastic solution
methods which have become well known: the p method (‘transient’ method™”), the k method
(‘American’ method, ‘U-g’ method, ‘K’ and ‘KE’ methods in MSC/NASTRAN’), and the p-k
method (‘British’ method, ‘PK’ method in MSC/NASTRAN®). All of these methods have
been based upon the assumption that the required unsteady aerodynamic loads, 4, are
available, except in some special cases, only for purely harmonic oscillation of the structural
degrees of freedom. References 12-15 show that this has been an unnecessary restriction and
that airloads for arbitrary complex values of frequency, p (ors=o +iw herein), can be
computed by suitably generalized computational methods and codes.

Returning to the development of solution methods, the p-k method has been further
differentiated by the treatment of aerodynamic damping. Rodden, Harder, and Bellinger'”
introduced the 4 matrix as



A=(4peUQ" /k)p+LpUQ” (2)

where O =0" +iQ’ is the matrix of GAFs for purely harmonic oscillations at a given reduced
frequency § =ik =iwb/U . In his ‘g-method’, Chen * introduces the 4 matrix as

A=1pU’Q(ik)g +% peU’Q(ik) 3)

with special attention to numerical problems at £ =0 by means of spline approximation of the
elements of Q and its derivative. The use of derivatives of the GAF matrix in Eqs. 3 and 4
makes these methods questionable for use in divergence analysis, with £=0. Subsonic
airloads have a logarithmic branch point at the origin where their derivatives are undefined.

All of the checkcases to be considered are for incompressible flow, M =0. For the BAH
wing model, the generalized DLM code described below is also directly applicable for
subsonic, compressible flow and example calculations are given. For the 2-D airfoil cases the
Q matrix loads are available in closed form (e.g., Egs. 5-311,312 of Ref. 1). They involve the
Theodorsen function, C(ik), which can be utilized in tabulated form (for a series of reduced
frequencies, k, and with interpolation for intermediate values) or in approximate forms, such
as that of W. P. Jones” wherein the Wagner function is approximated by a two term
exponential series curve fit

Q(Utb)=1-" o, exp(—B,Ut/b) (5)

C(ik) and ®(Ut/b)were known to be a Fourier transform pair, enabling the approximation

of Eq. 5 to be incorporated into the flutter equation (1) as two additional linear, constant
coefficient, ‘lag’ equations. These properties of the lag equations suggested that the
approximation could be used for arbitrary complex values of reduced frequency, which is the
essence of the p method for flutter analysis.

As summarized by Rodden and Johnson® these methods and approximations lead to forms of
Eq. 1 which can be solved by linear matrix eigenvalue methods for general, real (Eq. 2) and
complex (Egs. 3 and 4) matrices. In the k-method, the introduction of structural damping, g,
leads to an  NxN  matrix equation for the  ‘eigenvalue’  variable

p’ =(—U2/(1+ig))=an+ibn, n=1,..,N. Velocity and damping values are recovered as

U, =, /—(an2 +bh} )/ a, and g =-Db, /a,. Interpretation of the results leads to complex mode

tracking and root sorting logic and solution iterations are required in order to obtain consistent
‘matched point’ flutter solutions. The p-k method (p method) leads to a 2Nx2N (2Nx2N + 2)

matrix equation for the variable p =®(¢+i7) where the viscous damping is ¢ =+g. Real

roots resulting from the lag equations in the p method, and the occurrence of real roots for the
p-k method, have led to the use’ of the decay rate of real, non-oscillatory roots as damping
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values in which g is assigned the value 2Re(p)b/U(In2). This facilitates some continuity

in plots of the frequencies and dampings; however, many details of the resulting
U-gandU - f plots are incorrect as will be shown below.

Ref. 21 discusses the problems of mode-tracking and mode-switching which surface in these
aeroelastic solution methods and investigates two methods of improving solution performance
by using information from the eigenvectors. Ref. 22 introduces a ‘piecewise aerodynamic
flutter method,” an alternative to the p-k method, in order to address problems with solution
convergence and the difficult and time-consuming construction of state-space models.

3 MODEL DESCRIPTIONS

3.1 Airfoil Models

The transformed equations of motion for the 3 DOF airfoil of Fig. 1 are presented in Eq.6:

Slx, 7 0 |+s| 0 22rm O|+| 0 g 0 [ os) 1y c,(s) (6)
0

Iy 0 2y, 0 0] |g 0 -glhs) j‘Q(S)b
0 0 mfm, 0 0 0 |4 0 ||~ (

The bending and torsion springs are attached to a mass (fuselage), free to move vertically.
Two examples are considered, differing only in the location of the center of gravity: in
example 1 it is at 37% chord and in example 2 it is at 45% chord. Both examples assume
incompressible flow. The aerodynamic center is at 25% chord and the elastic axis is at 40%

chord. The chord is 6 feet, the nondimensional radius of gyration is 7 =0.25, and the mass
ratio ft =20. The static un-balances are x, =—0.06 for example 1 and x, =0.10 for example
2. The uncoupled bending and torsion frequencies are @, =10rad/sec and @, =25rad/sec.
Equal viscous damping of ¢ =1g=10.03is applied to the first two modes. The fuselage
mass is assumed to be equal to the airfoil mass, m,=m,. The 2 DOF airfoil model is
obtained from Eq. 6 by eliminating the row and column associated with the fuselage, /.,

keeping all the airfoil properties unchanged.

For incompressible flow, the airload coefficients in Eq. 6 are

Cul5)

(_Cl(s)b ): [M,5°+B,5+K, +C(F)R(S,5+5, )]{hw(s)} @)

The matrices in Eq. 7 are defined in Ref. 13. The generalized Theodorsen function is

Oerk® U

where K, and K; are modified Bessel functions which are defined and analytic throughout the
S -plane except for logarithmic branch points at the origin and at infinity. A branch cut along



the negative real axis makes them single-valued. Combining Eqs. 6 and 7 and defining the
state vector X' =(h,,0, h;,sh,,,s0,sh, ), the equations of motion can be written as®

[sT— A(s)} X (5)=0 (9)

where
A(s) = 0 ! 10
(S)_[MlK(s) MlB(s)] (19

Note that K(s)and B(s)are functions of C(5). Thus the stability matrix, A(s), has non-
constant, complex elements and attention must be paid to the logarithmic singularity at the
origin. Thus, common eigenvalue methods of determining system stability using computer
codes for real, general matrices cannot be applied to Eq. 9. Instead, a shareware family of
routines for determining eigenvalues and eigenvectors of complex, general matrices was
utilized, along with an eigenvalue iteration method to converge upon, and to track the
singularities (e.g., poles) of Eq. 9. Thus, starting from an initial search location, s,, the

eigenvalues A° =(Sl,...,S6) of A(s,)are determined and interrogated for the value of

s'closest to s,. An iterative relaxation method was used to converge upon a root of Eq. 9:
Sn+1:Sn+rac(Si_Sn) (11)

In this manner, exact root loci of the modes of Eq. 9 are calculated by incrementing U
following the determination of a converged root. Typical starting locations are the coupled,
wind-off structural frequencies. The method was very robust for the complex structural
modes; relaxation factors of V fac =0.8 and velocity increments of 5 ft/sec were used. For

studying behavior along the positive real axis, particularly near the origin, starting locations
along the real axis were used with initial velocities selected to capture any potential real,
divergence root. Smaller relaxation factors and velocity increments/decrements were also

required there. For the airfoil examples, the convergence criterion was ’(si -s,)[<0.001

rad/sec. Since A(s) is complex, the sets of eigenvalues, A(s"), of A(s,) for any converged
root, s' =0’ +i@', are not in general a collection of real roots and complex conjugate root

pairs. Checks confirmed that, for complex valued roots, their complex conjugates, 6" —i@',
were also converged roots. Only the roots for the upper half s -plane are presented.

The use of another shareware computational routine for calculation of the determinant of a
general, complex matrix was very useful in gaining understanding of the location and

development of singularities. Thus, by evaluating det{sI— A(s)}along a ray in the s-plane,
the singularities (e.g., poles and zeroes) of the system characteristic equation can be studied.
Also, by evaluating det{sI— A(s)} along a circle contour about a test point, the number of

singularities within the circle may be studied by noting the number of 27 radian phase
changes.

3.2 Wing model



The BAH wing model shown in Fig. 2 consists of the truncated normal mode equations
.. . N
mé&; +2ml W, + miwl-zéi = przzQi,jéj; i=LLN (12)
f=

where (), ; are elements of the NxN complex GAF matrix, 0. The mode shapes, masses, and

frequencies of all ten modes, N =10, were extracted from the MSC/NASTRAN code. The
viscous damping is zero for this case. Following transformation and identifying
X' =(&,...€,.5,...E,), Egs. 12 can be written in the same form as Eqs. 9 and 10 where

B(s)=0and K(s)=K, —+pU’Q(s,M). The GAF matrix, O, was obtained from a modified

5

version of the DLAT module of the ISAC program (Interaction of Structures, Aerodynamics,

and Controls) described by Adams and Hoadley”. The original DLAT module implements

the DLM code described in Ref. 24, calculating the GAF matrix, Q(ik, M), for purely
harmonic reduced frequencies. The modified DLAT module calculates the GAF matrix for
generalized reduced frequency, 5, in the manner described by Edwards'®. Changes to the
code are straightforward, with all occurrences of the real input reduced frequency variable,
k,, replaced by the generalized complex variable, k =k, —io £, signifying arbitrary 5 -plane
motion with complex reduced frequency s =0 & +ik, . For example, in the DLM the kernel
function of the integral equation to be solved involves functions such as Eq. A.26 in Ref. 24:

L. k) =" | [1— u(l+u? )’”]e*”‘l“du (13)
which is approximated by exponential series (Eq. A.30 in Ref. 24)
11 anefncul )
Io(ul,kl)z%nzcz_'_klz(nc—zkl) (14)

where the real constants @, and ¢ are given in Ref. 24, k, =wr /U , and the variables u; and r
are lengths related to the surface integration of the kernel. Generalization is accomplished by
generalizing the real variable, k, to the complex variable,
k =(w—io)r/U=(k,—ic&)r/b. Itis shown in Refs. 12, 13, and 15 that the stability of

linear aeroelastic systems is determined by these generalized airloads. Portions of the system
response which are not included (they are dependent upon initial conditions) do not affect
system stability.

In the Appendix of Ref. 16, Cunningham and Desmarais discuss the singularities of the
subsonic kernel function, showing that Eq. 13 has no singularities in the finite part of the s -
plane except for a logarithmic branch point at the origin. Similarly to the Theodorsen
function, a branch cut along the negative real axis is required to make the function single-
valued. Now, the approximation of Eq. 14 has zeroes at k, =—inc and poles at k, =tinc.
Accounting for pole-zero cancellations, the approximation has poles located at
5= —(b/ r)nc, n=1,11 on the negative real axis in the § -plane. Ref. 16 discusses the

effect these poles on the performance of several approximations like that of Eq. 14. As
‘arg(s)—n/ 2‘ increases towards /2, the approximations become unacceptable for
determining accurate airloads.



4 RESULTS

4.1 Airfoil models

The root loci for the 2 DOF restrained airfoil model are shown in Fig. 3 for the c. g. at 37%
chord and in Fig. 4 for the c. g. at 45% chord. The corresponding plots for the 3 DOF
unrestrained airfoil model are shown in Figures 5 and 6. Table I summarizes the flutter

speeds,U ,, and frequencies, @,, and the divergence speeds, U, (and frequencies, @, for

the 3 DOF cases) for these cases. For the 2 DOF case, divergence is aperiodic with the
divergence root emerging from the origin at U,. For the 3 DOF case, the additional fuselage
mass results in a low frequency oscillatory mode which becomes unstable at speeds near those
of the restrained 2 DOF model divergence speeds. Rodden and Bellinger® refer to this mode
as a ‘dynamic divergence’ mode, which seems appropriate. All of these root loci were
calculated using the eigenvalue iteration method of Eq. 11 and the exact Theodorsen airloads
for arbitrary complex values of s and thus are the exact roots of the flutter equation (within
the error band due to the convergence criterion). All of the published calculations of these
characteristics (see Refs. 2-6, 8, and 9) are close to those given in the table and differences are
due to the various approximations to the airloads (c.f. Egs. 2-5) used by these authors. Of
course this is as it should be, as these stability characteristics are defined by the airloads for
purely harmonic oscillations which is the foundation of all of these approximate methods. It
should be expected that deviations between the exact root loci of Figs. 3-6 and those
calculated by the approximate methods would become progressively larger as root locations,
s, become further removed from the vicinity of the iw axis. The ‘X” symbols in Figs. 3-6
give the coupled, wind-off root locations. (The virtual mass airloads are included.) The root
locus branch in Figs. 3-6 originating from the coupled torsion mode near 25 rad/sec behaves
similarly in each case. The mode initially becomes damped for increasing speed along with
decreasing frequency due to interaction with the lower frequency plunge mode. The mode
eventually becomes the flutter mode and achieves a maximum level of negative damping
before becoming asymptotic to a complex frequency value near the iw axis. The root locus
branch originating from the coupled plunge mode becomes monotonically more heavily
damped in all cases. It never coalesces with its complex conjugate root to form real roots on
the negative real axis. For both the 2 DOF and 3 DOF cases with U =1000 ft/sec, the root

is located at s=-100.87+:30.89 rad/sec with the c¢.g. at 37% chord and at
s =—113.65+i36.97 rad/sec with the c.g. at 45% chord.

The emergence of the divergence root as an additional, fifth root in the 2 DOF case was
discovered by Edwards'>. A simple explanation of this additional root is given by a low
frequency model of a single degree of freedom pitching airfoil, which leads to the
characteristic equation (c.f. Eq. 8-7 of Ref. 1)

1—c@| L | e(s)=0 with U;ZLa (15)
Us 2*(3+a) %

“A pole of this aeroelastic system occurs at values of s for which the coefficient in Eq. 16 is
zero. Since C(5) is purely real only on the positive real axis, poles can only occur there.
Also, along the positive real axis, C(3) decreases monotonically from a value of 1.0 at |s|=0.
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Figure 3. Exact root loci as a function of Figure 5. Exact root loci as a function of
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degree of freedom airfoil, c. g. at 37% chord. degree of freedom airfoil, c. g. at 37% chord.
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airspeed, showing flutter and divergence: two Figure 6. Exact root loci as a function of
degree of freedom airfoil, c. g. at 45% chord. airspeed, showing flutter and divergence: three

degree of freedom airfoil, c. g. at 45% chord.

to 0.5 at ‘S‘ =oo, Hence, a pole cannot occur for U <U,, and for U > U, only one real pole
can occur. This mode produces the motion of the diverging airfoil and occurs in addition to
the 2n structural poles.”* Another explanation of the possibility of additional roots is based
on a fundamental theorem of algebra: an nth order constant coefficient polynomial equation
(characteristic equation) has n and only n roots, but if the coefficients are not constant, as in
Egs. 1 and 9, no such guarantee exists.

The emergence of the divergence root at the origin for the 2 DOF case with the c.g. at 45%
chord is illustrated in Fig. 7. The complex determinant of the stability matrix is evaluated
along rays in the s— plane just above and just below the real axis at speeds bracketing the
divergence speed, U, = 216.6 ft/sec. The development and emergence of the divergence pole
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2 DOF 3 DOF is clearly seen. The effect of the branch

c.g., %c 37 45 37 45 cut along the negative real axis is also
evident in the jump in phase there. Figure
U,, f/sec | 257.1 | 169.1 | 284.1 | 159.5 8 shows the complex stability determinant
at a higher speed, U = 315 ft/sec, with the
o, rad/sec | 15.64 | 16.07 | 16.84 | 17.37 divergence pole located at s =+11 rad/sec.
Uy, ft/sec | 217.0| 216.6 | 232.9 | 215.2 The ability of aeroelastic models utilizing
state-augmentation to accurately predict
static divergence speeds has become
wp, rad/sec | — - 729 1730 accepted. Models akin to that of Eq. 5,
termed Rational Function
Approximations® (RFA), generally
Table I. Flutter and divergence employ a sequence of negative, real
characteristics of restrained and eigenvalues  (roots)  bracketing the
unrestrained airfoil models. frequency range of interest. The resulting

additional roots have been termed ‘aerody-

namic lag roots’’. They tend to cluster
about the negative real axis and as speed increases towards U, the root closest to the origin
migrates to the right, crossing onto the positive real axis at U . Edwards'? illustrates this for

an airfoil model with stability behavior similar to that of the above 2 DOF model (with the
c.g. at 37% chord).

The 3 DOF airfoil case of Figs. 5 and 6 presents a different situation regarding the number of
singularities in the problem. Here the stability matrix (Eqgs. 6 and 9) is 6x6 and at least six
roots would be expected. However, the complex determinant shown in Fig. 9 indicates the
presence of a seventh root at the low speed of U =5ft/sec for this case with the c.g. at 45%
chord. An isolated singularity (pole) is evident at the origin, along with a pair of damped,
complex conjugate roots which constitute the dynamic divergence mode at U =232.9 ft/sec
(see Fig. 6). Fig. 10 shows the presence of three real roots at the higher speed of
U =315ft/sec; the additional pole at the origin and the two poles resulting from the merger of
the dynamic divergence mode poles on the positive real axis at U =308.15 ft/sec (see Fig. 6).
(The four other roots of the bending and torsion modes are not displayed in Figs. 9 and 10.)
Comparison of Figs. 8 and 10, at the same speed, is instructive in illustrating the differences
between the 2 DOF and 3 DOF airfoil cases. Physically, the seventh root at the origin
accounts for a quasi-static airfoil motion with constant plunge velocity for this unrestrained
airfoil case.

Further calculations, not shown, explored the transition from the 3 DOF model to the 2 DOF
model by calculating root loci for increasing values of the fuselage mass, m,, in Eq. 6. As

m, increases, the bending and torsion mode loci of the 3 DOF models of Figs. 5 and 6

approach those of the 2 DOF models of Fig. 3 and 4. Also, the ‘oval’ locus of the dynamic
divergence mode near the origin becomes smaller, shrinking to the origin in the limit of
infinite m,, and the dynamic divergence speed approaches the static divergence speed of the

2 DOF model. Rodden®® also notes this behavior. Of course, in the limit of infinite m,, the
3 DOF model with its 7 singularities becomes the 2 DOF model with its 5 singularities.
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4.2 BAH wing model
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For three-dimensional wing configurations, like the BAH wing, the stability matrix in Eq. 9
again contains non-constant elements, i. e. the airloads, Q(s,M). The same procedure
described above for the airfoil cases was used to determine the root loci of the model. Ten
modes were included resulting in a 20x20 general, complex stability matrix. The wind-off,
coupled structural mode locations were used as starting values for the oscillatory roots. The
velocity, for this M = 0 case, was started at 100 ft/sec and incremented by 2 percent following
convergence at each speed. The reference sea-level density is p,,. = 1.1468x107 sl(in)/in.?

In this case, the virtual mass in not included in the wind-off calculations, accounting for the
small jump from the ‘x’s at the start of each locus. The iterative relaxation method of Eq. 11
was again very robust for the oscillatory modes and a relaxation factor of 0.80 was again



used. For the real divergence mode root, speed increments or decrements of 0.5 percent and a
relaxation factor of 0.02 were required. The convergence criterion was

’(si —sn)’ < 0.03 rad/sec.

The root loci for the first seven modes and the divergence mode are shown in Fig. 11. The
lowest flutter speed involves the second mode with U, =1059.7ft/sec and w,=19.39

rad/sec. A real, non-oscillatory root was found for 1450 <U <2036 ft/sec with divergence
occurring at U, =1647.25 ft/sec. Flutter modes are also found at higher speeds for modes 3,
5, and 6 at U =2449, 2217(5280), and 6000 ft/sec respectively. For mode 5, looping of the
locus produces two flutter speeds in the speed range covered. Such looping of the stability
root loci is reminiscent of looping of airfoil load coefficients for lightly damped oscillations at
high reduced frequencies shown by Cunningham and Desmarais'®. Fig. 12 provides another
viewpoint of the flutter instability from the determinant of the stability matrix versus io at
U =1056 ft/sec, near the flutter speed. The presence of the flutter mode is clearly evident at
0=1i0;.

This example with its very coarse structural and aerodynamic paneling cannot be expected to
yield high accuracy aeroelastic results, especially for the higher frequency modes and high
values of reduced frequency. It is, however, a very good tutorial checkcase and has been well
used to highlight differences obtained from alternative analyses. Fig. 11 illustrates that the
‘exact’ aeroelastic root loci for the oscillatory modes of this problem are well behaved, with
no discontinuities, jumps, or bifurcations. (The present results are termed ‘exact’ in a sense
that is discussed below.) Crossings of the loci do occur, but for very different speeds and lead
to no ambiguity in interpreting the results, in contrast to the difficulties encountered in the k
and p-k solution methods.” Tt is the opinion of the authors that the s— plane presentation,
with velocity as a parameter, gives a much clearer view of system stability than U —g and

U — f diagrams. There is also no need to introduce decay rates as damping values for non-
oscillatory real roots in order to interpret the plotted results.

An important result of this study is the insight gained of the behavior of the root loci along the
real axis, particularly for the negative real axis. The loci of the first three oscillatory modes in
Fig. 11 are shown approaching the negative real axis. Numerical convergence difficulties
prevented further calculations for these loci and also for the locus of the real root for speeds
U <1450 ft/sec. To understand the numerical issues involved, the determinant of the stability
matrix versus Re(s) =0 was calculated for several velocities. Figs. 13 and 14 show the

determinant for U =1450and U =1647.25(U, ) ft/sec, respectively. The source of the

numerical difficulty is immediately apparent in the numerous singularities (poles and zeroes)
occurring along the negative real axis starting about —7 rad/sec. For U =1450 ft/sec, Fig. 13,
an isolated pole has migrated out of the numerically difficult region, becoming the divergence
mode, at U, =1647.25 ft/sec, Fig. 14.

We return now to discuss the intent in referring to the current stability loci results as ‘exact’
results. The GAF matrix, Q(5, M), produced by the generalized DLAT module (the DLM
code) contains the exact solutions for the linear matrix equation resulting from the several
approximations utilized in the DLM formulation. The subsequent use of Q(s,M)in
determining the root loci of the stability matrix of Eq. 9 throughout the s-plane is exact (a
small error is due to the convergence criterion of the eigenvalue iteration method). Thus, any

12
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error involved in the current root loci calculations is that introduced by the reduction of the
linear potential equation boundary value problem (BVP) to a linear matrix equation. The
solution of the BVP is expressed as a singular integral equation'"'® involving a kernel
function whose singular behavior has been discussed above'®. Two main methods of solution
of this integral equation are the Kernel Function Method (see, e.g. Ref. 16) and the Doublet
Lattice Method (Ref. 11). Both methods reduce the singular integral equation problem to a
linear algebraic problem for the pressure loads on the surface and both methods use several
approximations to accomplish this reduction. Both utilize exponential series similar to Eq. 14
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to approximate expressions like Eq. 13. The effect of this upon the singular behavior of the
problem is to replace the logarithmic branch point singularity of the kernel function with
isolated singularities (poles, or lag roots) typically located along the negative real axis as
discussed  above. Other  approximations employed in the DLM are
the discretization into the lattice of doublet lines and a parabolic approximation of the kernel
along doublet lines. Approximations used in the Kernel Function Method are the truncation of
the series approximation of the pressure distribution and the choice of the pressure loading
functions to be used in the truncated series. It is with this understanding of the
approximations introduced by the generalized DLM solution that the root loci computed by
the current eigenvalue iteration method are termed ‘exact’.

The similarity between RFA models and the exponential series approximation, Eq. 14, used in
the DLM suggests that the singularities in Figs. 13 and 14 for Re(s) < —6rad/sec derive from
this series approximation. (The RFA given by the transform of Eq. 5 has negative, real poles
as does Eq. 14.) Clusters of lag roots on and near the negative real axis similar to those seen
in Figs. 13 and 14 are a well known feature in RFA flutter analyses.

These discussions of DLM solutions in the vicinity of the negative real axis lead naturally to
the issue’ of the origin of the divergence mode in Fig. 11. Does the divergence mode derive
from the bending mode or from a lag root? From Fig. 11 it is apparent that the bending mode
and its complex conjugate root do merge onto the real axis at a speed slightly higher than
1392 ft/sec and that a real root does emerge from the cluster of roots at a speed slightly below
1450 ft/sec. The change in the nature of the singular behavior of the kernel function resulting
from the use of exponential approximations like Eq. 14 must also be acknowledged here.
That is, the complication of the dense collection of poles and zeroes along the negative real
axis is an artifact of the solution approximations, masking the behavior of the true exact
solution in this region. Along with the above discussion of the inaccuracy of solutions for
these highly damped values of complex frequency, this would appear to render the issue of
the origin of the divergence root moot.  In any case, the root has not been tracked for
1392 < U <1450 ft/sec.

The robustness of the GAAM eigenvalue iteration procedure in tracking the loci of the
oscillatory structural modes of Fig. 11 was investigated. At issue is the maximum increment
in velocity allowable in order to track the proper locus. For the two lowest frequency modes
near 12 and 22 rad/sec all velocity increments up to 1000 ft/sec were able to track the loci
over the range of velocity shown in the figure. For the third, fourth, and fifth modes near 46,
74, and 94 rad/sec the maxima were 500, 200, and 100 ft/sec respectively. Of course these
maximum increments are related to the closeness of the roots on the loci for corresponding
velocities; ¢. f. the fourth and fifth mode loci near s =—10+i60 rad/sec for U = 4500 ft/sec.

Finally, the current Generalized Aeroelastic Analysis Method using the generalized DLM
code is not restricted to the incompressible, M =0, condition of the BAH wing example.
The main application of the DLM is in fact to lifting surface configurations in subsonic flow.
To this end, root loci of the BAH wing model flutter mode versus Mach number were
calculated. For this example, the sound speed is assumed to be ¢_ =15001ft/sec and U = Ma_.

Fig. 15 shows the Flutter mode locus for two densities: the solid line is for the density of the

above example and the dashed line is for a 50 percent higher density. The flutter Mach

number (and velocity) decreases from 0.778 to 0.662 with increasing density. The symbols

denote 0.10 Mach number increments. Note that each point on these loci are ‘exact’ matched

point values of frequency and damping and are directly calculated by GAAM with no root-
14



sorting, complex mode tracking logic, or
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exact results given in Figs. 3-6, the ‘exact’ Figure 15. ‘Exact’ root loci of flutter mode as a
results given in Fig. 11, and those reported function of Mach number and density: transport
for these approximate solutions. Rather (BAH) wing model.

than focusing on each detail, the discussion to follow offers comments on the origin of these
differences. All solutions produce good agreement for the flutter and divergence properties of
the cases. This to be expected as all methods are based upon airloads which are accurate for
purely harmonic oscillations (flutter and dynamic divergence) and for steady flow (static
divergence). Differences in these properties are due solely to the differences utilized in these
references for interpolating or approximating the oscillatory airloads. For speeds which are
well removed from these flutter and divergence speeds and for highly damped or undamped
modes, there are curious behaviors reported for the aeroelastic root loci (as shown in
U-gandU— f plots). These include “discontinuous roots™”, speeds for the ‘activation of
aerodynamic lag roots’®, “bifurcations’ of the roots™, inconsistency over the origin of
certain of the roots*, and oscillatory roots ceasing to exist above critical speeds”.

-0.5 0
Real(s), rad/sec

These behaviors can be attributed to the use of harmonic oscillation airloads to infer loads for
complex frequencies well removed from the iw axis. Edwards'>" proved that airloads
derived for harmonic oscillation conditions can be used to derive airloads off the iw axis by
appealing to analytic continuation. There are, however, practical limits to this process.
Regarding the airfoil cases, note that all of the exact loci shown in Figs. 3-6 are continuous
and have no discontinuities or jumps. No lag roots become ‘active’ at any speed and the only
type of root ‘bifurcation” which occurs is for the dynamic divergence mode roots joining the
real axis in Figs. 5 and 6. All of these types of features shown in Refs. 2-6, and 16 which
differ from the corresponding root loci in Figs. 3-6 are spurious and are introduced by the
airload modeling approximations used or by the aeroelastic solution methods.

A clarification of terminology is needed regarding use of the term ‘bifurcation’ to describe the
merging of the dynamic divergence mode roots in Figs. 5 and 6 onto the positive real axis
near s=6-—8rad/sec. In nonlinear system theory, locations in parameter space at which a
qualitative change in response occurs are termed bifurcation points. For the linear aeroelastic
systems considered in this paper no such qualitative change in response occurs. These
locations should be termed break-in (or breakaway) points.
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The issue of an additional real root emerging from the origin for restrained airfoil cases, Eq.
16, has also been addressed by Heeg”” who analyzed a 1 DOF pitching airfoil model using an
unsteady discrete vortex lattice method and eigenmode analysis. By varying the mass ratio,
elastic axis, and radius of gyration, cases are shown in which the divergence mode is an
additional eigenmode (as in Figs. 3 and 4) and in which the divergence mode results from the
pitching mode root locus joining the real negative axis at a break-in point with subsequent
divergent behavior. In the latter case, there would be no additional singularity. Ref. 27 also
provides experimental verification of the former case from low speed wind tunnel model tests.

Regarding the BAH wing case (and by extension, three-dimensional lifting surface
applications in general), the number of oscillatory frequencies for which the loads are
available is limited in practice and can be insufficient to accurately define loads well removed
from the i@ axis. Also, Ref. 16 shows that sin-gularities introduced by the exponential series,
such as Eq. 14, in the kernel function solution lead to errors rendering the resulting ‘exact’
solutions unusable for significant regions of the s -plane. For a 12-term series'® solutions for

larg(3)| <7 /4 or [arg(s)|>37/4 become inaccurate or uneconomical, or both. An 11-term

series” commonly used in DLM codes (and in the code used in the present study) was
evaluated and found to be acceptable for arg(s) =57 /8 but unacceptable for arg(s)=3r/4.
Thus, for the BAH wing all root loci in the vicinity of the negative real axis which are
presented in Refs. 3, and 7-9 or shown in Fig. 11 have questionable accuracy.

Most of the curious behaviors of aeroelastic root loci mentioned above occur for heavily
damped/undamped or real values of s where this issue of accuracy of the airloads is most
pronounced. On the other hand, the root loci of Fig. 11 obtained with the generalized DLM
are the exact solutions to the linearized algebraic problem resulting from the approximations
to the kernel functions discussed above. The harmonic oscillation DLM airloads used in Refs.
3, and 7-9 are all based upon this same linearized algebraic problem. Thus the ‘exact’ root
loci of Fig. 11 can be used to evaluate corresponding solutions from these references. Fig. 11
shows that the ‘exact’ root loci are continuous and have no discontinuities or jumps. No
bifurcations of roots occur and only one real root participates in the static divergence of the
wing. Any differences among the ‘exact’ root loci of Fig. 11 and those from Refs. 3, and 7-9
are introduced by the airload modeling approximations or by the aeroelastic solution methods
used in these references.

Desmarais and Rowe”® present alternative kernel approximation algorithms which are tailored
to enable accurate approximations throughout the several regions of the complex plane. In
place of exponential series like Eq. 14, the algorithms utilize Neuman series, continued
fractions, asymptotic series, and Modified Functions. To the authors knowledge, they have
not been implemented in an aeroelastic analysis program.

It is interesting to contrast this predicted behavior of the bending mode of the BAH wing
model approaching divergence with that of the forward swept wing wind tunnel model
described in Ref. 29. There, one of three cantilevered elastic models was lost due to static
divergence while testing at M =1.05 and at 88 percent of the predicted divergence dynamic
pressure. Significantly, the bending strain gage signal clearly indicated the presence of the 2
Hz. bending mode throughout the event. It is possible that this event is similar to that shown
in Fig. 3 where divergence occurs due to the emergence of an additional singularity at the
origin while the bending mode remains distinct and oscillatory.
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Two main points resulting from the present investigation are: (i) the possibility of additional
singularities occurring in aeroelastic analyses over and above those introduced by the
structural dynamics and (ii) inherent limitations in computational codes commonly used for
aeroelastic analyses for the study of behavior well removed from the iw axis. It must be
emphasized that only a small number of examples have been studied. No attempt has been
made to delineate boundaries of parameters which exhibit the novel singular behavior shown
in Figs. 3 and 4. The studies of Ref. 27 imply that sharp boundaries may not be found.
Problems with the accuracy of the airloads for heavily damped wing motions notwithstanding,
the BAH wing example appears to show that divergence for this case does occur subsequently
to the bending mode frequency dropping to zero. It has been past practice to assume that this
pattern must be involved in cantilevered wing divergence . Results of this study (and the
experimental results of Refs. 27 and 29) show that this assumption must be called into
question. There is also the possibility of new insights which may be beneficial for subcritical
divergence testing methods.

The following commentary provides further insight on issues dealt with herein: “An incorrect
solution to an ‘unrestrained divergence problem’ was given in Ref. 10 using the static method
and has been corrected in an errata®. In the errata, it was observed that in Ref. 10 the
presumed instability occurred at a dynamic pressure at which the mean structural axis of the
vehicle remained aligned with the freestream velocity vector rather than at the dynamic
pressure of an actual physical structural instability. The incorrect quasi-static solution was
applied to two example airfoils with an additional fuselage degree of freedom’ (c.f. the cases
treated in Figures 5 and 6 herein) and compared with a dynamic solution. In one case the
quasi-static divergence speed was lower by 1.7% than the dynamic solution; in the second
case the difference was lower by 6.8%. Since the errata had not yet been published, the
explanation for the discrepancies offered’ was also in-correct. The conclusion of the errata
was that ‘divergence of an unrestrained vehicle should always be investigated by dynamic
stability methods.”” (private communication, W. P. Rodden, July 2002) Dykman and
Rodden®’ also treat the transient response of an unrestrained, flexible vehicle and compare the
dynamic ‘correct’ solution with those obtained using modal residualization, modal truncation,
and quasi-steady aerodynamics.

It must be emphasized that the use of the Generalized Aeroelastic Analysis Method for the
calculation of aeroelastic root loci as illustrated in the above examples has not cast doubt on
other methods of determining flutter and divergence characteristics (velocity and frequency).
However, the ability of performing aero-elastic analysis without the necessity of root-sorting’,
root-searching®, lining-up’, or reduced-frequency-sweep’ techniques is attractive. It is
important to understand that each converged root locus value shown in Figs. 3-6, 11, and 15
is a ‘matched-point’ solution. By appropriate specification of density, Mach number, and
speed direct calculations of such ‘matched-point’ aeroelastic root loci can be computed for
constant altitude with varying Mach number and velocity, or for constant Mach number with
varying altitude and velocity.

6 CONCLUSIONS

The Generalized Aeroelastic Analysis Method (GAAM) is applied to the analysis of three

well-studied checkcases: restrained and unrestrained airfoil models, and a wing model. An

eigenvalue iteration procedure is used for converging upon roots of the complex stability

matrix. For the airfoil models, exact root loci are given which clearly illustrate the nature of

the flutter and divergence instabilities. The singularities involved are enumerated, including

an additional pole at the origin for the unrestrained airfoil case and the emergence of an
17



additional pole on the positive real axis at the divergence speed for the restrained airfoil case.
Inconsistencies and differences among published aeroelastic root loci and the new, exact
results are discussed and resolved. The generalization of a Doublet Lattice Method computer
code is described and the code is applied to the calculation of root loci for the wing model for
incompressible and for subsonic flow conditions. The error introduced in the reduction of the
singular integral equation underlying the unsteady lifting surface theory to a linear algebraic
equation is discussed. Acknowledging this inherent error, the solutions of the algebraic
equation by GAAM are termed ‘exact.” The singularities of the problem are discussed and
exponential series approximations used in the evaluation of the kernel function shown to
introduce a dense collection of poles and zeroes on the negative real axis. Again,
inconsistencies and differences among published aeroelastic root loci and the new, ‘exact’
results are discussed and resolved. In all cases, aeroelastic flutter and divergence speeds and
frequencies are in good agreement with published results. The GAAM solution procedure
allows complete control over Mach number, velocity, density, and complex frequency, thus
all points on the computed root loci can be matched-point, consistent solutions without
recourse to complex mode tracking logic or dataset interpolation, as in the k and p-k solution
methods.
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