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Abstract 
 

A nonlinear structural solver has been implemented internally within the NASA FUN3D 
computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal 
representation of the structure, a set of differential or differential-algebraic equations are derived for general 
thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, 
and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is 
retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is 
validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. 
Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, 
but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found 
at any of the tested trajectory points, though LCO may be possible in the transonic regime. 
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1 Introduction 
 

Aeroelastic analysis using computational fluid dynamics (CFD) has been a subject of great interest 
in recent years. CFD has allowed for the most physically representative aerodynamic calculations of 
complex structures, making it ideal for a complete fluid-structure interaction simulation. The major 
challenge that remains is how to efficiently couple a complex structural system with the fluid solver, while 
maintaining the important physics of both the flow and structural dynamics. The NASA FUN3D code [1] 
is a Reynolds-Averaged Navier Stokes (RANS) CFD code in development since the 1980s. At NASA, it 
has been used for the design of the Mars Science Laboratory [2, 3], an aeroelastic evaluation of the Ares 
launch vehicle [4], and an aeroacoustic analysis of aircraft landing gear [5], among many others. Boeing, 
Lockheed, Cessna, and others have also used the code for new concept studies [6]. FUN3D uses 
unstructured grids, and solves the full viscous Navier Stokes equations to resolve the complete unsteady 
flowfield. Up to this point, the FUN3D aeroelastic capability allows for solutions with a modal 
representation of linear structural models. The internal structural dynamics equations are solved using the 
method of Edwards et al. [7], which is a linear state transition matrix predictor-corrector scheme for time-
marching the structural modal coordinates. This approach is sufficient for calculating flutter dynamic 
pressures, but limit cycle amplitudes cannot be determined. Nonlinear response, including limit cycle 
behavior, may be of interest in cases with large deformations where linear theory no longer applies. 
 

In this memorandum, a nonlinear modal structural solver is integrated into FUN3D.  The solver is 
generalized to accept mode shapes and modal coefficients for a subset of structures with geometric 
nonlinearities. Common structures of this type are plates (panels), shells, and some wings. The nonlinear 
equations are solved in a predictor-corrector scheme at every time-step of the fluid integration. As a test 
case for the nonlinear solver, the static and dynamic aeroelastic response for a conical shell model of the 
NASA Hypersonic Inflatable Aerodynamic Decelerator is calculated and compared with linear theory. 
 
 
 
2 Mathematical Formulation and Numerical Methods 

 
In this section, a discussion of the existing linear and new nonlinear aeroelastic equations of motion 

and numerical solution approaches will be presented. 
 
 
 
2.1 Linear Structural Dynamics 

 
Before discussing the nonlinear equations of motion and new solution methods, it may be 

advantageous to review the existing methods for linear structural dynamics, since the nonlinear solver will 
make use of the general structure of this scheme. This formulation follows that of Edwards, et al. [7].  The 
current linear structural dynamics equations are:
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�
1 0 0
0 ⋱ 0
0 0 1

 �  {𝑞̈𝑞} +  �
2𝜔𝜔1𝜁𝜁1 0 0

0 ⋱ 0
0 0 2𝜔𝜔𝑁𝑁𝜁𝜁𝑁𝑁

�  {𝑞̇𝑞} +  �
𝜔𝜔12 0 0

0 ⋱ 0
0 0 𝜔𝜔𝑁𝑁

2
�  {𝑞𝑞} 

=  �
𝑚𝑚1

–1 0 0
0 ⋱ 0
0 0 𝑚𝑚𝑁𝑁

–1
�  {𝑄𝑄} 

(1) 

  
where q are the modal coordinates and ωn, ζn, mn are the natural frequency, damping ratio, and 

modal mass for the nth mode, respectively. Q are the generalized aerodynamic forces defined as:
  

𝑄𝑄𝑛𝑛 = 𝑞𝑞∞𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 �𝑐𝑐𝑝𝑝 𝛹𝛹���⃗𝑛𝑛  ∙ 𝑑𝑑𝑠𝑠 − 𝑔𝑔𝑔𝑔0 (2) 
where q∞ is the free-stream dynamic pressure, grefl is the scale factor between CFD and 
structural grid units, cp is the pressure coefficient, ψn is the mode shape for the nth mode, and 
gf0 is a static offset for the generalized forces.   

Edwards et al. [7] takes advantage of the linear structure by using a state transition matrix 
scheme to integrate these equations of motion. The solution, at time t, of any forced linear system 
is given           by [8] 

 

𝑥𝑥(𝑡𝑡) = Φ(𝑡𝑡)𝑥𝑥(0) + �Φ
𝑡𝑡

0

(𝑡𝑡 −  𝜏𝜏)𝑄𝑄(𝜏𝜏)𝑑𝑑𝑑𝑑 (3) 

  
The state transition matrix Φ is: 
  

Φ = exp(𝐴𝐴𝐴𝐴) (4) 

where 
 

𝐴𝐴 =  � 0 𝐼𝐼
𝑀𝑀–1𝐾𝐾 0� (5) 

  
M and K are the mass and stiffness matrices, respectively.  Since the equations are solved 

at a fixed time-step increment, the integral of the state transition matrix over interval ∆t may be 
used: 

 

Θ𝑖𝑖 =  � exp[𝐴𝐴(Δ𝑡𝑡 – 𝜏𝜏)]
Δ𝑡𝑡

0
𝑑𝑑𝑑𝑑 (6) 

 
Solutions to Eq. 3 are computed in a predictor-corrector scheme which is consistent with 

the mesh-deformation procedure within FUN3D.  
The predictor step is [9]: 
 

𝑥𝑥�𝑛𝑛+1 = Φ(Δ𝑡𝑡)𝑥𝑥𝑛𝑛 +
1
2
Θ𝑙𝑙(3𝑄𝑄�𝑛𝑛 − 𝑄𝑄�𝑛𝑛−1) (7) 
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with 
 

𝑥𝑥 =

⎩
⎪
⎨

⎪
⎧
𝑞𝑞1
𝑞̇𝑞1
⋮
𝑞𝑞𝑁𝑁
𝑞̇𝑞𝑁𝑁⎭
⎪
⎬

⎪
⎫

 ,𝑄𝑄� =

⎩
⎪
⎨

⎪
⎧

0
𝑄𝑄1
⋮
0
𝑄𝑄𝑁𝑁⎭

⎪
⎬

⎪
⎫

 (8) 

 
A second order extrapolation has been used to determine the form of generalized forces, since 

1nQ +  is not yet known in this step. 
 

After the predictor step, the mesh is deformed using the predicted modal solution, and 
the new flow field is computed and converged in several subiterations, leading to new generalized 
forces at  step n+1. 

The corrector step is: 
  

𝑥𝑥𝑛𝑛+1 = Φ(𝛥𝛥𝛥𝛥)𝑥𝑥𝑛𝑛 +
1
2
𝛩𝛩𝑖𝑖(𝑄𝑄�𝑛𝑛+1 + 𝑄𝑄�𝑛𝑛) (9) 

 
Note that the both the fluid and structural solvers are second order accurate, so the aeroelastic 
solver is also second order accurate. 
 
 
2.2 Nonlinear Structural Equations of Motion 

 
While nonlinear structural equations can be written in many forms, here we consider only modal 

equations. This approach is favorable because we may take advantage of the existing modal methods for 
mesh deformation and aerodynamic forces currently in FUN3D. As implemented, these equations only 
allow for second and third order geometric nonlinearities, though source code modifications could be 
made rather easily to include other effects. Three different types of modal equations can be solved using 
this scheme, and each is described in detail in the following sections. 
 
2.2.1 Case 1: Deflection Only 

First, we consider a set of deflection equations of the form: 
 

�𝑀𝑀𝑖𝑖𝑖𝑖𝑞̈𝑞𝑗𝑗
𝑗𝑗

+  �𝐶𝐶𝑖𝑖𝑖𝑖𝑞̇𝑞𝑗𝑗
𝑗𝑗

+ �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡

𝑗𝑗

𝑞𝑞𝑗𝑗 + 𝐾𝐾𝑁𝑁𝑁𝑁 = 𝑄𝑄 (10) 

 
The first three terms on the left hand side of Eq. 10 are the standard linear terms involving 

the mass, damping, and stiffness matrices, respectively. In this case, the form of the mass matrix 
and modal damping is: 

  

𝑀𝑀𝑖𝑖𝑖𝑖 =  �𝑚𝑚𝜓𝜓𝑖𝑖 𝜓𝜓𝑗𝑗𝑑𝑑𝑑𝑑 (11) 

   
𝐶𝐶𝑗𝑗𝑗𝑗 = 2𝜁𝜁𝑗𝑗𝜔𝜔𝑗𝑗 (12) 
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The stiffness matrix is decomposed here as: 
 

𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐾𝐾𝑖𝑖𝑖𝑖𝐿𝐿 + 𝑛𝑛1𝐾𝐾𝑖𝑖𝑖𝑖

𝐿𝐿,𝑛𝑛1 + 𝑛𝑛2𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑛𝑛1 (13) 

  
The constant in-plane force components n1 and n2 are taken out of the stiffness matrix to allow for 
more efficient computations at varying dynamic pressures, which may affect the membrane force 
distribution in some thin structures. These forces are included in the nonlinear_structure.input 
file, so the stiffness matrix does not have to be recomputed at different dynamic pressures. 
 

The nonlinear stiffness is defined by: 
 

𝐾𝐾𝑁𝑁𝑁𝑁 = ��𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

+ ���𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗𝑞𝑞𝑘𝑘
𝑘𝑘𝑗𝑗𝑖𝑖

 (14) 

 
It has been shown [10, 11, 12] that both plates and shells have geometric nonlinearities of this type 
when large deformations are considered. 

 
2.2.2 Case 2: Deflection and Two In-Plane Coordinates 

 
When formulating the large deformation structural equations for thin structures using all three 

displacements (deflection and two in-plane), there are two ways that the displacements may couple. 
First, linear functions of in-plane displacements may appear in deflection equations and linear 
functions of deflection may appear in in-plane equations. Second, there is nonlinear coupling, which 
involves second and third order products of deflections and displacements. However, for most plate 
and shell structures obeying linear stress-strain laws, these coupling terms have a particular form. 
Nonlinear terms involving only in-plane displacements do not exist; rather, only geometric 
nonlinearities in deflection or products of deflection and in-plane displacements can be derived from 
structural theory. More specifically, equations for in-plane displacements are linear with respect 
to each other and nonlinear with respect to deflection. Since in-plane inertia is generally small 
compared to out-of-plane inertia, it may be neglected, allowing in-plane algebraic equations to be 
written in matrix form and solved separately from the deflection equations. We emphasize that 
this approximation also reduces the computational cost, since in-plane frequencies are significantly 
higher than out-of-plane frequencies, which would require a reduction in the time step size. With 
these simplifications, the nonlinear aeroelastic equations for this case are: 

 

�𝑀𝑀𝑖𝑖𝑖𝑖𝑞̈𝑞𝑗𝑗
𝑗𝑗

+ �𝐶𝐶𝑖𝑖𝑖𝑖
𝑗𝑗

𝑞̇𝑞𝑗𝑗 + �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡,𝑞𝑞

𝑗𝑗

𝑞𝑞𝑗𝑗 + �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡,𝑎𝑎

𝑗𝑗

𝑎𝑎𝑗𝑗 + �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏

𝑗𝑗

𝑏𝑏𝑗𝑗  +  𝐾𝐾𝑁𝑁𝑁𝑁 = 𝑄𝑄 (15) 

 

�𝐿𝐿𝐿𝐿𝑆𝑆11
𝑡𝑡𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿𝑆𝑆12𝑡𝑡𝑡𝑡𝑡𝑡

𝐿𝐿𝐿𝐿𝑆𝑆21𝑡𝑡𝑡𝑡𝑡𝑡 𝐿𝐿𝐿𝐿𝑆𝑆22𝑡𝑡𝑡𝑡𝑡𝑡
�  �𝑎𝑎𝑏𝑏� =  �𝑅𝑅𝑅𝑅𝑆𝑆𝑎𝑎𝑅𝑅𝑅𝑅𝑆𝑆𝑏𝑏

� (16) 
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𝐾𝐾𝑁𝑁𝑁𝑁 = ��𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

+ ���𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗𝑞𝑞𝑘𝑘
𝑘𝑘𝑗𝑗𝑖𝑖

+��𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

+ ��𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

 
(17) 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝑎𝑎 =  �𝐹𝐹𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡

𝑗𝑗

𝑞𝑞𝑗𝑗 +  ��𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

 (18) 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝑏𝑏 =  �𝐻𝐻𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡

𝑗𝑗

𝑞𝑞𝑗𝑗 +  ��𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

 (19) 

  
Coefficients with “tot” superscripts indicate that they have the same form as Eq. 13, where 
constant in-plane force components are taken out of the matrix. 
 
 
2.2.3 Case 3: Deflection and One In-Plane Coordinate 

In cases with only one in-plane coordinate, the equations in section 2.2.2 reduce to: 
 

�𝑀𝑀𝑖𝑖𝑖𝑖𝑞̈𝑞𝑗𝑗
𝑗𝑗

+ �𝐶𝐶𝑖𝑖𝑖𝑖𝑞̇𝑞𝑗𝑗
𝑗𝑗

+ �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡,𝑞𝑞

𝑗𝑗

𝑞𝑞𝑗𝑗 + �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡,𝑎𝑎

𝑗𝑗

𝑎𝑎𝑗𝑗 +  𝐾𝐾𝑁𝑁𝑁𝑁 = 𝑄𝑄 (20) 

 

[𝐿𝐿𝐿𝐿𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡]𝑎𝑎 = �𝐹𝐹𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡

𝑗𝑗

𝑞𝑞𝑗𝑗 + ��𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

 (21) 

 

𝐾𝐾𝑁𝑁𝑁𝑁 = ��𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

+ ���𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗𝑞𝑞𝑘𝑘
𝑘𝑘𝑗𝑗𝑖𝑖

+ ��𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑞𝑞𝑗𝑗
𝑗𝑗𝑖𝑖

 (22) 

 
Equations of this form arise in symmetric analyses of shells, or in stress function formulations of thin 
structures [10]. 
 
 

2.3 Nonlinear Solution Method 
 

To solve the nonlinear equations numerically within FUN3D, the existing predictor-corrector 
scheme was modified to include calls to ODEPACK [13] and LAPACK [14] routines. These FOR- 
TRAN packages were developed at national laboratories and in major university collaborations, and
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have proven to be robust in their many decades of public release. ODEPACK routines, specifically 
DLSODE, solve first order ordinary differential equations of the form: 

 
𝑥̇𝑥 = 𝑓𝑓(𝑡𝑡, 𝑥𝑥) (23) 

   
Equations 10, 15 and 20 may be written in a similar form, though the mass matrices 

are not necessarily diagonal and must be inverted. A call to the LAPACK DGESV function is 
used here for an LU decomposition, though a direct inverse could be computed instead. If in-plane 
equations are present, they must also be inverted at each time step using DGESV. 
 

The state space form of the ODE in case 2 is: 
 

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑞𝑞
𝑀𝑀𝑞̇𝑞�

= �−�
𝑞̇𝑞

�𝐶𝐶𝑖𝑖𝑖𝑖𝑞̇𝑞𝑗𝑗
𝑗𝑗

+ �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡,𝑞𝑞

𝑗𝑗

𝑞𝑞𝑗𝑗 + �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡,𝑎𝑎

𝑗𝑗

𝑎𝑎𝑗𝑗  + �𝐾𝐾𝑖𝑖𝑖𝑖
𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡,𝑏𝑏

𝑗𝑗

𝑏𝑏𝑗𝑗 + 𝐾𝐾𝑁𝑁𝑁𝑁�

+ 𝑄𝑄� 

(24) 

 
Solutions to these equations (along with Eq. 16 or Eq. 21 if in-plane displacements are 

considered) must be computed in a similar predictor-corrector scheme as the linear equations, in 
order to provide the correct generalized coordinates for mesh deformation. The system of equations 
must be updated after mesh deformation with the new aerodynamic generalized forces. For 
convenience, calls to DLSODE were added to the existing FUN3D subroutines for the predictor 
and corrector   steps. 
 

Differences between the nonlinear predictor and corrector routines are as follows. In the predictor 
routine, the structural equations are integrated forward in one dimensional time step (dts) from the 
previous time (t) to the current time (times or tout). In the corrector routine, t = tout, thereby preventing 
the system from being integrated further in time, but allowing for the structural solution to be updated 
with different input parameters. In the predictor scheme, the generalized aerodynamic forces are those at 
the previous time step. In the corrector, the post-mesh deformation forces are used, requiring the structural 
solution to be updated. In both schemes, DLSODE calls the subroutine eqsys, which contains the nonlinear 
equations of motion. It is rather lengthy and not provided here, but it can be found in the FUN3D source 
distribution (within source file subode.F90). 
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3 Determining the Nonlinear Coefficients 

 
The nonlinear coefficient matrices and tensors for Eqs. 10 - 22 may be determined using a variety 

of methods. First, we consider quasi-analytical approaches for a subset of structures that may be of interest 
for aerospace applications. 
 
 
 

3.1 Panels 
 

The large deformations of a plate (panel) are governed by Von Karman’s equations [10]:
 

𝐷𝐷∇4𝑤𝑤 =
𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕2

𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕2

𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

− 2
𝜕𝜕2𝐹𝐹
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

−𝑚𝑚
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

− ∆𝑝𝑝 (25) 

  
∇4𝐹𝐹
𝐸𝐸ℎ

= �
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

2

− �
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2��

𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2�

 (26) 

  
where w is the deflection and F is the airy stress function, which defines the in-plane stresses. 

Assuming modal series of the form: 
 

𝑤𝑤 = �𝑞𝑞𝑚𝑚𝜓𝜓𝑚𝑚(𝑥𝑥,𝑦𝑦)
𝑚𝑚

 

𝐹𝐹 = �𝑎𝑎𝑟𝑟𝜑𝜑𝑟𝑟(𝑥𝑥,𝑦𝑦)
𝑟𝑟

 
(27) 

 
and applying the Galerkin averaging procedure, a set of nonlinear aeroelastic modal equations can be 
derived which have the form of Eqs. 20-22. The mode shapes ψm and ϕr are usually assumed functions 
that satisfy the boundary conditions. A detailed derivation of these equations can be found in Ref. [10]. 
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3.2 Conical shells 
 

Another structure of interest for aerospace applications is the conical shell. Nonlinear behavior of 
shells may include circumferential buckling at pressures above the linear buckling pressure, coupling 
between multiple circumferential modes during flutter, as well as limit cycle oscillations. There are many 
ways to formulate the shell equations using quasi-analytical methods. Here, we consider the Rayleigh-
Ritz approach. A detailed derivation is provided in Ref. [12], but a brief summary of the mathematical 
formulation is given below. 
 

The nonlinear Donnell strain-displacement relations are given by: 
 

𝜀𝜀𝑦𝑦 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

 

𝜀𝜀𝜃𝜃 =
𝑢𝑢 − 𝑤𝑤cot𝛽𝛽

𝑦𝑦
+

1
𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1

2𝑦𝑦2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
2

 

𝜀𝜀𝑦𝑦𝑦𝑦 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝑣𝑣
𝑦𝑦

+
1
𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

(28) 

 
The curvatures are linear functions of deflection (and its derivatives): 
 

𝜒𝜒𝑦𝑦 =
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

 

𝜒𝜒𝜃𝜃 =
1
𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
𝑦𝑦2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2  

𝜒𝜒𝑦𝑦𝑦𝑦 =
1
𝑦𝑦
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

−
1
𝑦𝑦2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

(29) 

 
The force and moment relations are: 

 

𝑁𝑁𝑦𝑦 =
𝐸𝐸𝑦𝑦ℎ

1 − 𝑣𝑣𝑦𝑦𝑣𝑣𝜃𝜃
�𝜀𝜀𝑦𝑦 + 𝑣𝑣𝜃𝜃𝜀𝜀𝜃𝜃� 

𝑁𝑁𝜃𝜃 =
𝐸𝐸𝜃𝜃ℎ

1 − 𝑣𝑣𝜃𝜃𝑣𝑣𝑦𝑦
�𝜀𝜀𝜃𝜃 + 𝑣𝑣𝑦𝑦𝜀𝜀𝑦𝑦� 

𝑁𝑁𝑦𝑦𝑦𝑦 = 𝐺𝐺𝑦𝑦𝑦𝑦ℎ𝜀𝜀𝑦𝑦𝑦𝑦 

(30) 

 
𝑀𝑀𝑦𝑦 = −𝐷𝐷𝑦𝑦�𝜒𝜒𝑦𝑦 + 𝑣𝑣𝜃𝜃𝜒𝜒𝜃𝜃� 
𝑀𝑀𝜃𝜃 = −𝐷𝐷𝜃𝜃�𝜒𝜒𝜃𝜃 + 𝑣𝑣𝑦𝑦𝜒𝜒𝑦𝑦� 
𝑀𝑀𝑦𝑦𝑦𝑦 = −𝐷𝐷𝑦𝑦𝑦𝑦𝜒𝜒𝑦𝑦𝑦𝑦 

(31) 

 
The displacements u, v, and w are in the in-plane axial, in-plane circumferential, and out-of- plane 

directions, respectively. The angle φ = θ sinβ, where θ is the circumferential angle and β is the shell half-
cone angle. 

 
The strain energy is constructed by integrating over the entire shell surface the forces times strains 

and moments times curvatures: 
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𝑈𝑈𝑆𝑆 =
1
2
� � �𝑁𝑁𝑦𝑦𝜀𝜀𝑦𝑦 + 𝑁𝑁𝜃𝜃𝜀𝜀𝜃𝜃 + 𝑁𝑁𝑦𝑦𝑦𝑦𝜀𝜀𝑦𝑦𝑦𝑦 − 𝑀𝑀𝑦𝑦𝜒𝜒𝑦𝑦 −𝑀𝑀𝜃𝜃𝜒𝜒𝜃𝜃 − 2𝑀𝑀𝑦𝑦𝑦𝑦𝜒𝜒𝑦𝑦𝑦𝑦�𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

2𝜋𝜋

0

𝑦𝑦2

𝑦𝑦1
 (32) 

 
The membrane energy associated with static axial or pressure loading is given by McNeal [15]: 

 
𝑈𝑈𝐼𝐼𝐼𝐼 = 1

2 ∫ ∫ �𝑁𝑁𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎 Θ𝜃𝜃2 + 𝑁𝑁𝜃𝜃,𝑡𝑡𝑡𝑡𝑡𝑡

𝑎𝑎 Θ𝑦𝑦2 + �𝑁𝑁𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎 + 𝑁𝑁𝜃𝜃,𝑡𝑡𝑡𝑡𝑡𝑡

𝑎𝑎 �Θ𝑛𝑛2�𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
2𝜋𝜋
0

𝑦𝑦2
𝑦𝑦1  . (33) 

 
Here the strain rotation vectors are: 

 

Θ𝜃𝜃 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Θ𝑦𝑦 =
𝑣𝑣

𝑦𝑦tan𝛽𝛽
−

1
𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Θ𝑛𝑛 =
𝑣𝑣

2𝑦𝑦
+

1
𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
1

2𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

(34) 

 
The applied in-plane forces are related to the static pressure and tension by the relation 

 

𝑁𝑁𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎 = −

𝑦𝑦 tan𝛽𝛽𝑝𝑝𝑠𝑠
2

−𝑁𝑁𝑦𝑦𝑎𝑎  

𝑁𝑁𝜃𝜃,𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎 = −𝑦𝑦 tan𝛽𝛽𝛽𝛽𝑠𝑠 

(35) 

 
  The total kinetic energy, neglecting rotatory inertia, is: 

 

𝑇𝑇 =
𝑚𝑚
2
� � ��

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

� 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
2𝜋𝜋

0

𝑦𝑦2

𝑦𝑦1
 (36) 

 
The three shell displacements are expanded using modal series with summations over both the axial 

and circumferential modes. A double summation is necessary since the structural nonlinearities introduce 
coupling among the circumferential modes (usually sinusoidal functions that satisfy the periodicity 
conditions around the circumference). The axial modes may be any functions that satisfy the geometric 
boundary conditions. Sine functions can be used for simply-supported boundaries, where all three 
displacements vanish at the shell edges. The modal expansions are: 

 

𝑢𝑢(𝑦𝑦,𝜃𝜃, 𝑡𝑡) = ��𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡) cos𝑛𝑛𝑛𝑛 𝜓𝜓𝑚𝑚(𝑦𝑦)
𝑛𝑛𝑚𝑚

 

𝑣𝑣(𝑦𝑦,𝜃𝜃, 𝑡𝑡) = ��𝑏𝑏𝑚𝑚𝑚𝑚(𝑡𝑡) sin𝑛𝑛𝑛𝑛 𝜓𝜓𝑚𝑚(𝑦𝑦)
𝑛𝑛𝑚𝑚

 

𝑤𝑤(𝑦𝑦,𝜃𝜃, 𝑡𝑡) = ��𝑐𝑐𝑚𝑚𝑚𝑚(𝑡𝑡) cos𝑛𝑛𝑛𝑛 𝜓𝜓𝑚𝑚(𝑦𝑦)
𝑛𝑛𝑚𝑚

 

(37) 

 
After substituting Eq. 37 into Eqs. 32 - 36, constructing the Lagrangian, and applying the Lagrange 

equation for each modal coordinate, a system of differential-algebraic equations in the form of Eqs. 15-19 
is obtained. 
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3.3 Determining the Modal Basis and Nonlinear Stiffness Coefficients 

using Finite Element Analysis and Reduced Order Models 
 

While semi-analytical methods like Galerkin and Rayleigh-Ritz are relatively easy to use, they can 
only be applied to certain structures with relatively simple geometry and boundary conditions. For more 
complex structures, it may be necessary to use some form of finite element analysis to extract the modal 
basis and nonlinear stiffness coefficients. In this section, a brief summary of previous investigations on 
this topic will be presented. 
 

Rizzi and Przekop [16] developed a reduced order method using system identification to calculate 
the nonlinear modal basis for arbitrary structures. By using proper orthogonal decomposition (POD) to 
capture the nonlinear dynamic response, and then matching the proper orthogonal modes to the natural 
(normal modes), a sufficient basis can be determined. 
 

Muravyov and Rizzi [17,18] evaluated the second and third order nonlinear stiffness coefficients in 
MSC NASTRAN. This was accomplished by prescribing a set of particular displacement fields, resulting 
in a set of inverse linear and nonlinear static problems. The nonlinear forces and unknown nonlinear 
coefficients can then be determined. For a set of test cases, it was found that static deformations using this 
method were in agreement with the NASTRAN direct nonlinear static solution 106. 
 

Radu et al. [19] used similar methods to determine the nonlinear modes and stiffnesses for a plate 
subject to thermo-acoustic loading. While a quasi-analytical method could be used in this case, they 
validated their reduced order model with a direct solution in NASTRAN. Philpot et al. [20] considered a 
joined-wing configuration, and also found good agreement with the direct NASTRAN result. 
 
 
 
4 Input Files 

 

The nonlinear aeroelastic solver requires two input files: moving_body.input and 
 nonlinear_structure.input. The moving_body.input file is the same namelist input file used for linear 
aeroelasticity, though some modifications are required for the nonlinear solver. The following changes 
have been implemented in the &aeroelastic_modal_data namelist section (only): 

 
1. structure_type = 0 

This new variable defaults to 0 for the linear solver, and must be set to 1 to use the nonlinear solver. 
In the latter case, the nonlinear_structure.input file must be provided in the run directory. 
 

2.  freq(:, 1) = 0 
While the modal frequencies in this case are not used to construct the stiffness matrix, they are 

required if modal damping is to be applied. Since frequencies are not normally known in nonlinear 
analyses, they can be set to any arbitrary value here. The damping ratio will then scale the total modal 
damping (see Eq. 12). 
 

3.  gmass(:, 1) = 0 
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The generalized mass is not used in the nonlinear solver. 
 

4. damp(:, 1) = 0 
The damping ratio is used to construct the modal damping matrix (see Eq. 12). 

 
5. gvel0(:, 1) = 0, gdisp0(:, 1) = 0 

The initial velocities and displacements are used to specify the initial conditions in the non- linear 
solver. The initial conditions must be commensurate with the DLSODE tolerance parameters set in the 
nonlinear_structure.input file. 

 
The nonlinear_structure.input file is a standard space delimited text file that contains 

parameters for the nonlinear solver as well as the matrix and tensor coefficients. It must be 
formatted    exactly as indicated below, in the exact same order, or else an error will be returned. 
Listing array values requires that each value be entered on a separate line along with the 
corresponding indices. If a coefficient matrix is not required for a particular analysis, it should still 
be entered in the input  file with zero values. The format of the input files are different for each of 
the equation types, and are given below.  Parameter and variable definitions are provided in Table 1. 
  

For the deflection equation only (case 1): 
1 %nonlinear equation type (1, 2, or 3) 
2 1 
3 %In-plane forces n1, n2 
4 n1 n2 
5 % ODE parameters itol rtol atoll itask istate iopt lrw liw mf 
6 itol rtol atoll itask istate iopt lrw liw mf 
7 !matrix coefficients: indx1 indx2…indxN value 
8 i j   mass (i, j) %i = 1:nmodes, j = 1:nmodes 
9 i  j   Kl (i, j) %i = 1:nmodes, j = 1:nmodes 
10 i  j k  Anl (i, j, k) %i = 1:nmodes, j=1:nmodes k = 1:nmodes 
11 i  j k l Bnl (i, j, k, l) %i = 1:nmodes, j=1:nmodes k = 1:nmodes, l =1:nmodes 
12 i  j   Kln1 (i, j) %i = 1:nmodes, j = 1:nmodes 
13 i  j   Kln2 (i, j) %i = 1:nmodes, j = 1:nmodes 

 
 

For deflection and two in-plane coordinates (case 2): 
 

1 % nonlinear equation type (1, 2, 3) 
2 2 
3 % number of modes for in–plane coords. a & b, in–plane forcesn1, n2 
4 nmodes_a nmodes_b n1 n2 
5 % initial conditions in the in–plane coordinates a and b 
6 i a(i)       %i=1:nmodes _a 
7 i b(i)       %i=1:nmodes _b 
8 % itol rtol atoll itask istate iopt lrw liw mf 
9 itol rtol atoll itask istate iopt lrw liw mf 
10 !matrix coefficients: indx1 indx2…indxN value 
11 i  j  mass (i,j)  %i = 1:nmodes,  j = 1:nmodes 
12 i      j        Kl (i,j)        %i = 1:nmodes, j = 1:nmodes 
13 i  j k  Anl (i,j,z)  %i = 1:nmodes,  j = 1:nmodes,  k = 1:nmodes 
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14 i  j k l Bnl (i,j,k,l)  %i = 1:nmodes,  j = 1:nmodes, k = 1:nmodes, l = 1:nmodes 
15 i  j    Kln1 (i,j)  %i = 1:nmodes,  j = 1:nmodes 
16 i  j    Kln2 (i,j)  %i = 1:nmodes,  j = 1:nmodes 
17 i  j    Kla (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes_a 
18 i  j    Klb (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes_b 
19 i  j    Fl (i,j)  %i = 1:nmodes_a, j = 1:nmodes 
20 i  j    Hl (i,j)  %i = 1:nmodes_b, j = 1:nmodes 
21 i  j   lhsab (i,j)  %i = 1:nmodes_a + nmodes_b,  j = 1:nmodes_a + nmodes_b 
22 i  j k  Dnl (i,j,k)  %i = 1:nmodes,  j = 1:nmodes,  k = 1:nmodes_a 
23 i  j k  Enl (i,j,k)  %i = 1:nmodes,  j = 1:nmodes,  k = 1:nmodes_b 
24 i  j k  Gnl (i,j,k)  %i = 1:nmodes_a, j = 1:nmodes,  k = 1:nmodes 
25 i  j k  Lnl (i,j,k)  %i = 1:nmodes_b, j = 1:nmodes,  k = 1:nmodes 
26 i  j    Klan1 (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes_a 
27 i  j    Klan2 (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes_a 
28 i  j    Klbn1 (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes_b 
29 i  j    Klbn2 (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes_b 
30 i  j    Fln1 (i,j)  %i = 1:nmodes_a, j = 1:nmodes 
31 i  j    Fln2 (i,j)  %i = 1:nmodes_a, j = 1:nmodes 
32 i  j    Hln1 (i,j)  %i = 1:nmodes_b, j = 1:nmodes 
33 i  j    Hln1 (i,j)  %i = 1:nmodes_b, j = 1:nmodes 
34 i  j   lhsabn1 (i,j)  %i = 1:nmodes_a + nmodes_b,  j = 1:nmodes_a + nmodes_b 
35 i  j   lhsabn2 (i,j)  %i = 1:nmodes_a + nmodes_b,  j = 1:nmodes_a + nmodes_b 

 
For deflection and one in-plane coordinate (case 3): 
 

1 Nonlinear equation type (1, 2 or 3) 
2 3 
3 % number of modes for in–plane coords a, in–plane forcesn1, n2 
4 nmodes_a n1 n2 
5 % initial conditions in the in–plane coordinate a 
6 i a(i)      %i=1:nmodes_a 
7 % itol rtol atoll itask istate iopt lrw liw mf 
8 itol rtol atoll itask istate iopt lrw liw mf 
9 ! matrix coefficients: indx1 indx2…indxN value 
10 i  j   mass (i,j)  %i = 1:nmodes,  j = 1:nmodes 
11 i  j    Kl (i,j)  %i = 1:nmodes,  j = 1:nmodes 
12 i  j k  Anl (i,j,z)  %i = 1:nmodes,  j = 1:nmodes,  k = 1:nmodes 
13 i  j k l Bnl (i,j,k,l)  %i = 1:nmodes,  j = 1:nmodes, k = 1:nmodes, k = 1:nmodes 
14 i  j    Kln1 (i,j)  %i = 1:nmodes,  j = 1:nmodes 
15 i  j    Kln2 (i,j)  %i = 1:nmodes,  j = 1:nmodes 
16 i  j    Kla (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes_a 
17 i  j    Fl (i,j)  %i = 1:nmodes_a, j = 1:nmodes 
18 i  j   lhsab (i,j)  %i = 1:nmodes_a, j = 1:nmodes_a 
19 i  j k  Dnl (i,j,k)  %i = 1:nmodes,  j = 1:nmodes,  k = 1:nmodes_a 
20 i  j k  Gnl (i,j,k)  %i = 1:nmodes_a, j = 1:nmodes,  k = 1:nmodes 
21 i  j    Klan1 (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes a_ 
22 i  j    Klan2 (i,j)  %i = 1:nmodes,  j = 1:nmodes nmodes a_ 
23 i  j    Fln1 (i,j)  %i = 1:nmodes_a, j = 1:nmodes 
24 i  j    Fln2 (i,j)  %i = 1:nmodes_a, j = 1:nmodes 
25 i  j   lhsabn1 (i,j)  %i = 1:nmodes_a, j = 1:nmodes_a  
26 i  j   lhsabn2 (i,j)  %i = 1:nmodes_a, j = 1:nmodes_a  
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Table 1: Parameter definitions for the nonlinear_structure.input file. 

Variable Description 
nonlin_eq_type Nonlinear equation type, = 1, 2, or 3 (refers to cases in sc. 2.2) 
nmodes Total number of deflection modes (provided in moving_body.input) 
nmodes_a Total number of in-plane modes for coordinate a 
nmodes_b Total number of in-plane modes for coordinate b 
n1 In-pane force coefficient 1  
n2 In-pane force coefficient 2 
itol See appendix or ODEPACK documentation 
rtol See appendix or ODEPACK documentation 
atol See appendix or ODEPACK documentation 
itask See appendix or ODEPACK documentation 
istate See appendix or ODEPACK documentation 
iopt See appendix or ODEPACK documentation 
lrw See appendix or ODEPACK documentation 
mf See appendix or ODEPACK documentation 
mass Mass matrix (not generalized mass) 
Kl Linear stiffness matrix (third term in Eqs. 10 and 15) 
Anl Nonlinear stiffness tensor (first term in Eqs. 14 and 17) 
Bnl Nonlinear stiffness tensor (first term in Eqs. 14 and 17) 
Kln1 Stiffness matrix multiplied by n1 (Eq. 13) 
Kln2 Stiffness matrix multiplied by n2 (Eq. 13) 
Kla Linear stiffness matrix for the in-plane coord. a (fourth term in Eq. 17) 
Klb Linear stiffness matrix for the in-plane coord. b (fourth term in Eq. 17) 

Fl Linear stiffness matrix in the RHS of the in-plane system (first term in Eq. 
18) 

Hl Linear stiffness matrix in the RHS of the in-plane system (first term in Eq. 
19) 

lhsab Left hand side of the in-pane system (Eq. 16) 
Dnl Nonlinear coupling stiffness tensor (Third term in Eq. 17) 
Enl Nonlinear coupling stiffness tensor (Fourth term in Eq. 17) 
Gnl Nonlinear stiffness tensor (Second term in Eq. 18) 
Lnl Nonlinear stiffness tensor (Second term in Eq. 19) 
Klan1 Stiffness matrix multiplied by n1 (Klatot = Kla + n1 * Klan1 + n2 * Klan2) 
Klan2 Stiffness matrix multiplied by n2 (Klatot = Kla + n1 * Klan1 + n2 * Klan2) 
Klbn1 Stiffness matrix multiplied by n1 (Klbtot = Klb + n1 * Klbn1 + n2 * Klbn2) 
Klbn2 Stiffness matrix multiplied by n2 (Klbtot = Klb + n1 * Klbn1 + n2 * Klbn2) 
Fln1 Stiffness matrix multiplied by n1 (Ftot = F + n1 * Fn1 + n2 * Fn2) 
Fln2 Stiffness matrix multiplied by n2 (Ftot = F + n1 * Fn1 + n2 * Fn2) 
Hln1 Stiffness matrix multiplied by n1 (Htot = H + n1 * Hn1 + n2 * Hn2) 
Hln2 Stiffness matrix multiplied by n2 (Htot = H + n1 * Hn1 + n2 * Hn2) 
lhsabn1 LHS multiplied by n1 (lhsabtot = lhsab + n1 * lhsabn1 + n2 * lhsabn2) 
lhsabn2 LHS multiplied by n2 (lhsabtot = lhsab + n1 * lhsabn1 + n2 * lhsabn2) 
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To demonstrate more clearly the construction of a nonlinear_structure.input file, consider the 
following unrealistic 2-mode example for Case 1. The coefficients have no physical significance, rather, 
they are composed of unique digits that will assist in identifying the correct entries in the input file. The 
coefficients are: 

  
 

M11 = 1 M12 = 2 M21 = 3 M22 = 4 

𝐾𝐾11𝐿𝐿  = 5 𝐾𝐾12𝐿𝐿  = 6 𝐾𝐾21𝐿𝐿  = 7 𝐾𝐾22𝐿𝐿  = 8 

A111 = 9 A212 = 10 A121 = 11 A122 = 12 

A211 = 13 A212 = 14  A221 = 15  A222 = 16 

 n1 = 100 

 n2 = 200 

B1111 = 17 B1112 = 18 B1121 = 19 B1122 = 20 

B1211 = 21 B1212 = 22 B1221 = 23  B1122 = 24 

B2111 = 25 B2112 = 26 B2121 = 27 B2122 = 28 

B2211 = 29  B2212 = 30  B2221 = 31 B2222 = 32 

𝐾𝐾11
𝐿𝐿,𝑛𝑛1 = 33 𝐾𝐾12

𝐿𝐿,𝑛𝑛1 = 34 𝐾𝐾21
𝐿𝐿,𝑛𝑛1 = 35 𝐾𝐾22

𝐿𝐿,𝑛𝑛1 = 36 

𝐾𝐾11
𝐿𝐿,𝑛𝑛2 = 37 𝐾𝐾12

𝐿𝐿,𝑛𝑛2 = 38 𝐾𝐾21
𝐿𝐿,𝑛𝑛2 = 39 𝐾𝐾22

𝐿𝐿,𝑛𝑛2 = 40 
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The corresponding nonlinear_structure.input file is shown: 
 

 %nonlinear equation type  ( 1 ,  2  or  3 )  

 1 

 %In-plane forces n1 n 2 

 100 200 

 % ODE  p a r a m e t e r s :  i t o l  r t o l  a t o l l  i t a s k  i s t a t e  i o p t  l r w  l i w  m f                                                                

 1 1E-6 1E-6 1 1 0 52 20 10  

 ! matrix coeff ic ients:   indx 1   indx 2 . . . indxN va lue   

 1 1                       1 %M  

 1 2                       2  

 2 1                       3  

 2 2                       4  

 1 1                       5 %Kl  

 1 2                       6  

 2 1                       7  

 2 2                       8  

 1 1 1            9 %Anl  

 1 1 2           10  

 1 2 1           11  

 1 2 2           12  

 2 1 1           13  

 2 1 2           14  

 2 2 1           15  

 2 2 2           16  

 1 1 1 1 17 %Bnl  

 1 1 1 2 18  

 1 1 2 1 19  

 1 1 2 2 20  

 1 2 1 1 21  

 1 2 1 2 22  

 1 2 2 1 23  

 1 2 2 2 24  

 2 1 1 1 25  

 2 1 1 2 26  

 2 1 2 1 27  

 2 1 2 2 28  

 2 2 1 1 29  

 2 2 1 2 30  

 2 2 2 1 31  

 2 2 2 2 32  

 1 1   33 %Kln1  

 1 2   34  

 2 1   35  

 2 2   36  

 1 1   37 %Kln2  

 1 2   38  

 2 1   39  

 2 2   40 
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5 New Compiling and Linking Procedures 
 

To compile FUN3D with the nonlinear solver routines, it is necessary to include the ODEPACK 
and LAPACK libraries. Several modifications to the configuration scripts are also required. The detailed 
procedure to build the libraries can be obtained on request. 
 

6 Test Case: A Conical Shell Model of the NASA Hypersonic 
Inflatable Aerodynamic Decelerator 

 
In this section, an elastically-supported conical shell structural model of the flexible thermal 

protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is 
considered in FUN3D. The HIAD structure is given in Fig. 1, showing the inflated toroid substructure and 
outer TPS shell. Aeroelastic solutions of the TPS are computed using both the linear and nonlinear solvers, 
and results are compared. 
 

 

Figure 1:  HIAD vehicle used in the Inflatable Re-Entry Vehicle Experiment [23]. 
 
The CFD volume mesh for this configuration is shown in Fig 2. This mesh contains the complete 

geometry for the 6-meter 60 degree vehicle with centerbody. The boundary condition on the HIAD surface 
is the typical no-slip condition, while the edges of the computational domain have inflow/outflow 
Riemann Invariant boundary conditions. The surface mesh of the HIAD is composed of several patches, 
but only a small subset of these patches is of interest for the present aeroelastic analysis. The HIAD nose 
cap, underside surface, and centerbody are assumed to be rigid, while the aeroshell surface is allowed to 
deform. The shape of this surface is a perfect conical shell, therefore, its structural dynamics can be 
modeled using conical shell theory.  The surface mesh for this region of interest is given in Fig. 3, and the 
corresponding elastically-supported conical shell structural model is given in Fig. 4. The elastic supports 
approximate the toroids in a linear sense, and the model does not account for the static deformation of the 
substructure.   
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Figure 2:  HIAD volume mesh (cross section at domain center). 

 
 
 
 

6.1 Mathematical Formulation 
 

This configuration may be analyzed using either linear or nonlinear structural dynamics. Results 
from both analyses will be discussed and compared. In the linear case, Donnell shell theory and the 
Rayleigh-Ritz method are used to derive a system of linear equations for the structural dynamics, which 
have been solved previously. The natural modes and natural frequencies of the shell were calculated and 
provided to FUN3D for aeroelastic analysis using the state transition matrix scheme. In this case, the shell 
is not pre-stressed, so membrane effects due to mean flow static pressure are neglected in the natural mode 
calculation. In the nonlinear case, the Rayleigh- Ritz method was used along with (geometrically 
nonlinear) Donnell shell theory to derive a nonlinear differential-algebraic system in the form of Eqs. 15 
and 16. Sinusoidal axial modes have been used, satisfying the simply-supported boundary conditions. A 
plot of the first sinusoidal mode is shown in Fig. 5. 
 

The first 30 symmetric natural modes were included for the linear analysis, and 40 assumed 
sinusoidal modes, (20 axial and 2 circumferential) were used for the nonlinear analysis.  Both the 
symmetric modes and the asymmetric buckling modes have been included. It is necessary to include the 
buckling mode because a previous investigation [12] with piston theory indicated that the buckling mode 
couples with the flutter mode after the onset of nonlinear flutter at large deformations. For the 6-meter, 60 
degree elastically-supported shell used in this analysis, kbuckling = 47. 
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Figure 3:  Deformable subsection of the HIAD surface mesh. 
 
 
 
 

 

 

Figure 4:  Elastically-supported conical shell model of the HIAD TPS. 
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Figure 5:  Assumed sinusoidal mode shape (n=1, k=0). 
 
 
6.2 Results 

 
Static and dynamic aeroelastic solutions were calculated at three points in a proposed HIAD re-

entry trajectory. Initial re-entry at the edge of the atmosphere is characterized by hypersonic Mach 
numbers and almost no dynamic pressure, so it is highly unlikely that aeroelastic issues would be of 
concern in this portion of the trajectory. The final phase of re-entry near the Earth’s surface is characterized 
by low subsonic Mach numbers and low dynamic pressures. If flutter were to occur here (also unlikely), 
it would not be of concern since most atmospheric deceleration has already occurred earlier in the 
trajectory. A peak in the dynamic pressure is seen at Mach 11, so this point will be examined for aeroelastic 
stability. In addition, trajectory points at Mach 1 and 2 will be considered since low supersonic and 
transonic flow regimes are often susceptible to limit cycle behavior. The trajectory point flow parameters 
are given in Table 2. 
 

Table 2: Flow parameters for selected trajectory points. 
Trajectory point M∞ q∞ (PA) V∞ (m/s) T∞ (K) 

1 1 350 317 242 
2 2 575 640 256 
3 11 1875 (peak q) 3470 238 

 
6.2.1 Static Aeroelastic Solutions 

 
Static aeroelastic solutions were computed using both linear and nonlinear structural solvers. The 

surface pressure coefficients, dimensional static pressures, and maximum deflections, sampled between 
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the last two elastic supports, are given in Table 3.  Surface static pressure is greatest for trajectory point 
3, at the peak free-stream dynamic pressure condition. The static deflection is greatest at this point as well. 
The maximum deflections calculated using the linear structural solver are similar to those calculated using 
the nonlinear solver at Mach 1 and 2, indicating that these conditions are within the (structurally) linear 
regime. At the Mach 11 peak dynamic pressure condition, the maximum nonlinear deflection is 
approximately 60 percent less than the linear result, indicating that the nonlinear structural effects are 
significant in this case. Comparisons of linear and nonlinear axial static deflection shapes are given in 
Figs. 6, 7, and 8. The slight differences in the deformation patterns can be attributed to the pressure-
imposed membrane forces, which are only included in the nonlinear solutions. 

 
Table 3: Static aeroelastic surface pressures and deflections, sampled between the last two (5th and 6th) 
elastic supports. 

Trajectory 
Point M∞ CPmax, 5–6 Ps,max, 5–6 

(Pa) 

Wmax, 5–6 
(Linear) 

(m) 

Wmax, 5–6 
(Nonlinear) 

(m) 
1 1 0.6 660 8.66E–4 1.00E–3 
2 2 1.125 827 2.51E–3 2.41E–3 
3 11 1.45 2737 1.19E–2 6.31E–3 

 

 
Figure 6: Comparison of the axial deflection shape calculated using the linear and nonlinear structural 
solvers, Mach 1 solution. 
 

For the linear solver, steady state convergence of the static aeroelastic solutions is not time accurate, 
so a large time step can be selected, leading to convergence in relatively few iterations. The nonlinear 
solver is always time accurate, in that the time step must be commensurate with the rtol and atol tolerance 
parameters for the DLSODE solver. If these parameters are large enough, then the time step size can be 
increased, however, very large time steps generally result in numerical integration errors. A comparison 
of the linear and nonlinear static aeroelastic generalized displacements for the shell is given in Figs. 9 and 
10. While these two cases have the same modal damping ratios the smaller time step in the nonlinear case 
allows the initial transients to be resolved. Additionally, though the characteristic dimensionless times for 
convergence for these cases are significantly different, the run time is nearly the same.   
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Figure 7: Comparison of the axial deflection shape calculated using the linear and nonlinear 
structural solvers, Mach 2 solution. 

 
Figure 8: Comparison of the axial deflection shape calculated using the linear and nonlinear 
structural solvers, Mach 11 solution. 
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Figure 9: Static aeroelastic generalized displacements for the first 5 natural modes using the linear 
structural solver, Mach 2 solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Static aeroelastic generalized displacements for the first 5 assumed sinusoidal modes 
using the nonlinear structural solver, Mach 2 solution. 
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6.2.2 Dynamic Aeroelastic Solutions 
 

Linear dynamic aeroelastic  solutions  were  computed  at  each  of  the  three  trajectory points in 
Table 2, and no flutter was observed, though sustained low amplitude oscillations are present at Mach 1, 
on the order of the shell thickness. The source of these oscillations are unlikely to be aeroelastic instability, 
but rather, excitations from noise in the flow. The time histories at each of the trajectory points are given 
in Fig. 11. Perturbation of the static aeroelastic solution results in (initially) large deflections with respect 
to the shell thickness, though these deflections are still orders of magnitude smaller than the shell radius. 
These time histories generally required at least three restarts and about two weeks to compute when using 
156 CPU cores. It has been demonstrated previously that dynamic solutions can appear to decay initially 
and then grow to flutter or LCO, so enough time history must be computed to conclude that no flutter is 
present. 
 

The free-stream dynamic pressure at each trajectory point was then increased incrementally, though 
not in intervals small enough to calculate accurately a flutter dynamic pressure. Values of approximately 
10 times the trajectory dynamic pressures were used, and solutions remained stable. Based on these data, 
it is unlikely that a flutter condition can be achieved with the linear structural model and purely symmetric 
modes, though further investigation is needed. 
 

Nonlinear dynamic aeroelastic solutions were also calculated at each of the three trajectory points, 
and the time histories are given in Fig. 12. Perturbation of the nonlinear static aeroelastic solutions results 
in smaller initial amplitudes than the linear solutions in Fig. 11, and response from higher structural modes 
is evident. This is because the structural equations are now coupled via the nonlinear terms that have been 
included. While the solutions at Mach 2 and 11 appear to decay, the Mach 1 solution exhibits some 
possible unstable behavior. While this is consistent with the fact that 𝑞𝑞∞/�(𝑀𝑀∞

2 − 1) increases rapidly at 
low supersonic and transonic Mach numbers, the instabilities seen here may not necessarily be physical. 
Non-physical explanations for this behavior include noise in the flow due to the turbulence model or flux 
limiter and possible insufficient spatial convergence. However, the nonlinear structural effects may also 
play a role. Recall that the nonlinear formulation includes the circumferential buckling 
(buckling/wrinkling) modes and membrane forces due to the mean flow static pressure, while the linear 
case that only includes the symmetric natural modes neglects the membrane forces. These components, in 
conjunction with the nonlinear structural terms, may be a factor in the unstable behavior in the transonic 
regime. We must also consider the nonlinear shock-structure interaction that could give rise to oscillatory 
motion. 
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(a) Mach 1. 

 
(b) Mach 2. 

 
(c) Mach 11. 

Figure 11: Deflection time histories at the three selected trajectory points using the linear 
structural solver.  
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(a) Mach 1. 

 
(b) Mach 2. 

 
(c) Mach 11. 

 
Figure 12: Deflection time histories at the three selected trajectory points using the nonlinear structural 
solver. 
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7 Concluding Remarks 
 

A nonlinear modal structural solver has been integrated into FUN3D, allowing for aeroelastic 
analysis of structures with geometric nonlinearities. Three types of modal equations have been 
implemented, including those governing structures with in-plane displacements. A new input file is 
required to provide the structural solver parameters and nonlinear matrix and tensor coefficients. The 
ODEPACK DLSODE and the LAPACK DGESV functions are used to time-integrate the structural 
equations and invert linear systems where necessary. To incorporate these routines into FUN3D, a number 
of modifications to the compilation procedure are required and a step-by-step procedure has been 
provided. 
 

A test case has also been included, demonstrating the functionality and capability of the nonlinear 
solver. We considered an elastically-supported conical shell model of the thermal protection system on 
the NASA Hypersonic Inflatable Aerodynamic Decelerator. Linear structural theory was used initially to 
determine the natural modes and frequencies for the unloaded shell, which were provided to the FUN3D 
linear structural solver. Nonlinear structural theory, the Rayleigh-Ritz method, and assumed sinusoidal 
modes were then used to derive a differential-algebraic system that could be solved using the new 
nonlinear solver. An analysis of the static aeroelastic solutions indicated that nonlinear structural effects 
were only significant at relatively high dynamic pressures where static deformations were large compared 
with the shell thickness. Both linear and nonlinear dynamic aeroelastic solutions generally decayed, 
though some possible instable behavior was observed in the transonic regime. 
 

Finally, we also emphasize that the modifications to FUN3D discussed in this memorandum allow 
for expanded capabilities beyond that of just geometrically nonlinear structures. While a specific set of 
equations have been implemented in the source code, this new architecture actually allows for any modal 
structural equations of the form in Eq. 23. For example, external mechanical excitation, frictional forces, 
or other non-conservative forces could be added easily. In addition, other ODE solving capabilities are 
built into ODEPACK, including BDF methods for stiff problems and solvers for implicit systems. 
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is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with 
linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures,but structural nonlinearities limit 
deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO 
may be possible in the transonic regime. 
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