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Introduction

. 1 . , . .
. In an earlier paper , the expression for the partial derivative

of an eigenvalue &, with respect to a parameter p. was given as

my k

o = ol A BI o

for the eigen-problem

N . : 12

AM+B(PM=0’
% A4 (2)

_where A and B need not be Hermitian, but distinct eigenvalues are required.
When the flutter analysis is formulated as an eigen-problem, the
exprgssion for the derivétive is applicable. Both modal and collocation
flutter analysis methods are accommodated. However, in the case of modal
analy31s, it happens that some of the required quantities are not dlrectly
available and must be developed. The development is relatively straight—-
forward, and is based on the concept of completeness in én engineering
sense. With the partials of the eigenvalué; the gradient of the flutter
stability cons;raint'surface in parameter space may‘be developed, thereby
.making possible automated optimized design which accommodates the flutter

constraint.

Modal Analysis Method

In order to provide easy reference and to establish notation, some
eiementéry results will be given. The system is represented by the matrix

equation




and the assumed homogeneous solution

iat

x=Ye )
leads to the eigen-problem

AMA + Ky = o,

(5)

Making the coordinate transformation
L Ql? C1 (6)
in equation (3) and premultiplying gives

[ymlg - (WKW - V-2, .

where'ﬂ?is a matrix whose columns are the eigenvectors1y. It is noted that
the coordinate transformation (6) assumes what is called here completeness

'in an engineering sense. Under restriction of sinusoidal motion

q: CPSinUU-t ’ ' ' (8)

-

the generalized forces are written

R}- s PMat, o

where the matrix P is a function of reduced frequency as well as other

aerodynamic variables.

The usual procedure is to write the problem

(o) [gKyle-[remed Fle 0.,

where the g reﬁresents the amount of structural damping required to maintain
sinusoidal motion. Equation (10) is in the form of (2). In practice the

aerodynamic coefficients are evaluated at several reduced frequencies, the




Corresponding:eigenvalues found, and a plot made of the 'damping required
versus speed; The critical flutter speed is found by the required damping
being zero. It is assumed that this has been done, and that the aerodynamic’
matrix P is evaluatéd at the critical speed or reduced frequency. >Obviously,

the'pértial of .the eigenvalue of (10) is

_ 2 : (_l, - & w ) :
= - & W + 0 g 3 I~ k
Uk = 7 g3 Wimyk i Tk W T (11)

Proceeding with the development leads to

/&k N qj; KW + ‘qlf'k;kfgyv * QLF‘<'thk ’

(12)

and

(13)

-5, = TuM¥~ PM Y TMY, + P,

The expression for the derivative of an eigenvector is given by Fox and

Kapoor2 as

.lqu = 2 Iagf rqj

where
T _ X _ .
kal = q‘l’! [K,k m ,\/],k],q/m » I#m, (15)
Aénd .
' T
= -1 M
N Dkwsw\ -2 (LPM ’k(w‘“i ’ (16)

- provided the eigenvectors have been normalized such that

YyemMa, =L an

Use of equation (14) assumes completeness in an engineering sense in

i

the same way as equation (6). The nth element of ?I/J is '? Therefore, it
. m
. : J

follows that - :

= Z l)kjg /w , | (18)
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or in matrix form

p, - V.

Now consider an element E% of the aerodynamic matrix P contained in

(19)

the expression .

= ap; JdA
and take the partlal derivative
2, Wy P_) +U:P ﬂ(’%k AP + Q,b.,,, APJ,k)a/A (215

The pressure difference ap caused by unit sinusoidal amplitude in the
generalized coordinate corresponding to the eigenvector @g is found by

solving the equation relating « to the down wash magnitude
wre Y Y [[Hop dA
r= kY n 05 ri ’ (22)

where K is the known kernel function. Implicit in the development here is

the usual assumption that the pressure due to a general downwash may be

written as a linear combination of op;. Taking the partial of (22) gives

w s e Uper tdu W » v Yr = (K, wd ome Kappdda,  (23)
or, by using (14) and (22)

e = 3 D ML b | (28)

Assuming an expression in the convenient form

apwt & (D + 2, Ekj‘>A’° ! )

(justified again by assumed engineering completeness) and writing

c F K o4 C
then substituting into (23) yields_ |
A ur.bk = w'“) * 'rf *( Z< kil * u)m)k EILJP)AP‘ dA ‘9 (27)
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. which, by using (22), reduces to

' = . Ny E
. Wik Wi &, *; ij, Wy + W, %: k2 Y2 .

J
Equating (24) and (28) and simplifying leads to _
3 ’ . : ‘
(Y -3 - ‘%r Eéa Y2 3 ek T 0

from which the E&, may be.found by equating at specific pointé, and

solving in matrix form. Expression (21) becomes

* - - z |
2ay, w,, B +wl Bk '%T'kan“’m' T %: (D".i’ ¥ E"i‘)?“’ >

" ik ™ i -
J ’

froﬁ which, in matrix form,
P, = 'D'P*'PDTJ—wk—P[_E:-‘sz_,;I],
,k | L] ™ -

Collecting the above results, equation (1) becomes
Kk = "9:[53. (o, [0k + @TKk(w*[wkijkT]
(DM + I « D, P+ P 1] @mn

""Dm,k = PEE:' %MI] "P\M ’

where . Gt CEKUIAL QL] L

[}

Numerical evaluation of (31) may be expressed as
Oy = Gt i + W (by+t b ).

Equating real parts of (11) and (33), and solving gives

g

(78] = - —
™My k 4-’-—3—5 2

and similarily, the imaginary parts (withg,= 0) lead to
; \ :

. 2
o = n (Olz * Wy Az).

(28)

(29)

(30)

(31)
(32)

(33)

(34)

(35)




Collocation Analysis Method

The eigen—problem for the collocation flutter analysis method is
'written3

. Ji;—':;j'—k = C[M+R1h, -
. v e .

where G is the structurél influence coefficienﬁ matrix, and}? is a
complgx matrix of aerddynamic influence coefficients, which are functions
of reduced frequency. Again, it is assumed that the aerodynamic matrix is

: /
evaluated at the critical condition.

Proceeding directly to evaluation of equation (1), the derivative of

the eigenvalue is

8.,/( = emr [C;k [M*R]-"CM"‘]LM s (37)

»”,

~ where .
. - .
- T T :
e” = W [h.hl]
(e . m el . v (38)
It may be easier to find q: directly from the eigen-problem

1+ig - [M+«®]C e
19 o - [MeRIC €, 9

rather than to perform the inversion of the large matrix in (38). Expressions

‘analogous to (33), (34), and (35) may. be developed.

Implemenfation of Freqﬁency Ratio Limit
It is commonly known.that fluttef speed is sensitive to the ratio of
the two struct;ral natural frequencies which couple to produce flutter.
Johnson and Warren4.have suggested‘that a limit be placed on‘the‘ratio to

approximate the flutter constraint. Flutter analyses during preliminary-

design establish the frequency ratio limit, Q.. When the eigen-problem of

\
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the structure using the structural influence coefficient is written

»'."XCMQP-"’LV:O’ : . .(40)

the frequency ratio limit approximation to the \flutter constraint may be

expressed as

A :
, jﬁ = p £ Pe .
J . .

(41)
It follows that
o = Dt = At
’ Aj > (42)
where
), = (WErerdthe - 4w Lo M MpW,

and where %&k may be computed using the Fox and Kapoor2 expressions with

- -1 =
K=c , K,=-¢ G s - (44)

or perhaps the @Zk may be taken equal to zero as suggested by Johnson and
)

Warren. A gradient may be developed from (42) and used in an automated

design procedure.

Discussion

From the physical meaning of the éymbo].g, it is clear that, at the

- ecritical airspeed, a qualitative improvement is indicated by the quantity

9;* being negative. This iﬁdicates that, in effect, structural damping

is added to the system by a positivé increment in thé design variable under
consideration.' Comparison of the derivatives of the damﬁing with respect
to the various/pafameters will give some indication of their relative

effects. It remains to place matters on a quantitive basis.




The eigenvalue of interest is a function of the reduced frequency and
of the design variables, or alternatively, of the airspeed and de51gn
variable& Then the increment in the elgenvalue due to increments in- the

design variables and in airspeed is approx1mated by
~ s ] G,k 2 Oy W,
—Z(-Q”m,k+°(z—,§—~ 290 2k) ) api
O gm \Y4
v))A '

+( (w e -

To maintain the critical condition, the increment in the imaginary

(45)

Y

part must be zero (also q.,= 0)

9 - = '
2 Goi 4P ¥ 3o 2V T (46)
from which | |
PN AL
2P« P 3% 2 O (47)

where the variation of damping required as a function of airspeed is obtained”
from the flutter analyses. Equation (47) may be used to develop the gradienf—
to the constraint and to select a design variable increment size.

In practice, it may be more efficient to use an approximate constraint
(guided by previous flutter analyses) guch as the frequency ratio of
Johnson and Warren4 to approach the optimum point,’then to use the present
meéhod to finélize the design. |

In the development 6f equation‘(lj,Athe assumption of distinct eigenvalues
is made. Since there is often a coalescence of frequencies as the critical

. .

flutter point is approached, there may be a practical numerical problem
caused by close eigenvalues.

Because of the appeal to engineering intuition in the development, there

is a need to verify the results of this paper by analyzing typical problems.
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Summary

Expressions developed for the derivative of the eigenvalue in the
flutter analysis problem offer potential both for automated optimum

design and for less sophisticatéd design iteration.
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