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SECTION 1
INTRODUCTION

In the past, tne effect of structural flexibility of an airplane has been
accounted for by modifying the rigid-body stability derivatives. However,
modern highly maneuverable fighters like F-15, F-16, F-18, and high
performance large transport airplanes, operating at subsonic, transonic, and
supersonic Mach number, have the frequencies of their structural motion
sufficiently reduced by increase in both airplane flexibility and dynamic
pressure. This has caused an ever increasing interaction between
aerodynamics, structural dynamics, flight dynamics, and control disciplines.
This necessitates the development of a theoretical foundation for synthesizing
an aeroservoelastic (ASE) model to be used in the stability ard control (S&C)

analysis.
The objectives of this study are:
* To develop a theoretical foundation for synthesizing an ASE model to
be used in the stability and control analysis of a flexible airplane.
- To provide a better understanding of the equations, underlying

assumptions and interactions among different disciplines from first
principles.

The report is divided into six sections including a summary for the
reader to gain an overall understanding of the subject. The report has

achieved these objectives by accomplLishing the following tasks:
+ Formulation of the equations used in each discipline from first
principles whenever convenient.
+ Integration of the equations into a set of governing nonlinear
equations and definition of bounds for the assumptions and
linearization effects associated with each step.

- Linearization of the nonlinear equations.

»+ Provision for time domain and frequency domain representation of the
flexible aircraft.
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Provision for model order reduction methods that are compatible with
control synthesis.

Approach for computing the quasi-static and higher order static and
dynamic stability and control (S&C) derivatives of flexible aircraft.

Method of state space formulation for the design of active controls.

Adequate documentation for the theoretical formulation and analysis.

Completion of these tasks resulted in:

Enhancement of the analytical capability to deal with the active
aeroservoelastic (AASE) problem by means of improved models and
computer programs.

Development of a method for obtaining stability derivatives of a
flexible airplane, such that "rigid-body" techniques can be applied.

Inclusion of the complete six degrees of freedom motion, the flexible
modes and the actuator dynamics to account for coupling effects.

Provision for the effect of simplification on the accuracy of the
results.

Accommodation of different levels of detail and definition of the
structure, aerodynamics and servos, especially during the preliminary
design.

Provision for means of grid and coordinate transformations used in
different disciplines.

Provision for different levels of frequency content in calculating the
S&C derivatives (e.g., flexibility effects derived from steady or
unsteady aerodynamics).

Provision for obtaining ASE modeling data suitable for designing
flight control systems.

The scope of the investigation included consideration of flexible

airplanes operating in the low subsonic to high supersonic flight conditions.

Only "clean" configurations are studied; landing, takeoff, ground effects,

stability augmentation are not included. The dynamic equations are developed

for a flexible airplane having arbitrary configuration and undergoing

arbitrary maneuvers, utilizing a hybrid coordinate system to describe the
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motion of the aicrplane. The development of the equations of motion follows
the approach suggested by P. W. Likins in his paper entitled, "Dynamics and

Control of Flexible Space Vehicles" (Reference 1).

Two mathematical models of an elastic airplane are considered; "rigid
model” and "three lumped mass one dimensional model." The "rigid model"
admits no structural deflections from the shape in the reference motion. The
"three lumped mass model"” idealizes the aircraft as a collection of linear-

elastically, interconnected, and discrete rigid subbodies.

The notations employed for stability derivatives in Section 3 follow the
standard pattern. A list of airplane stability derivatives with their
meanings is given in Appendix A. Appendix B covers the definition of the
axis systems used in the derivation of equations of motion. Appendix C deals
vith the aerodynamic equations in the three degree-of-freedom longitudinal
" maneuver. Appendix D contains the listing of computer programs P-107, P-137
and DRSD F-72 for the fixed longitudinal stability derivatives, free
longitudinal stability derivatives, and the fixed and free lateral-

directional flexible stability derivatives, respectively.

Matrix notations and methods have been used in developing and presenting

many equations. A glossary of the terminology used is provided on Page G-1.

1.1 SUMMARY OF DISCIPLINES
The task of the flight control system has been traditionally to provide

control for the vehicle motion with improved stability and handling qualities.
In the past, it was proper to design the system using rigid-body equations of
motion with the stability derivatives adjusted for the effects of structural
flexibility. Lower airframe weight is now made possible by the application of
active control technology to compensate for more structural flexibility.
Because the simply adjusted stability derivitives are no longer adequate, it
is necessary to analyze much larger systems of equations to accomplish that
traditional role. Furthermore, with the advent of new technologies aimed at

controlling the structural modes of large flexible airframes, a synergism of
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integrated disciplines is needed to expand the control theory domain to

combine rigid body and flexible body modes.

Vhen control engineers first recognized the need for an expanded control
theory domain, they adopted a more extensive use of linear algebra - vectors
and matrices - the basic analytical tools for structural dynamics. Adoption
of these methods in control theory led naturally to the development of multi-
loop optimization processes which utilize state-space models and which are
covered under the broad discipline known as "modern control theory."” Powerful
digital computers are essential tools for this work because of the large

matrix sizes.

The state-space approach is little more than a method of accounting. It
is equally applicable to time-domain (differential equation) or frequency
domain (Fourier/Laplace transform) models of dynamic systems. Some advantages

of state-space models approach are:

* A large number of scalar equations can be expressed as a small number
of vector-matrix equations.

+ First-order differential equations, for which mathematical techniques
are highly developed, represent the entire system.

+ The linearization of aircraft equations, which are inherently
nonlinear, is straight forward via computation of Jacobians.

+ Appropriate reduced-order models can be generated easily.

In order to benefit from the above advantages, in addition to those of
the classical methods, control theory applied to the design of airplanes is
based primarily on linear analyses. Traditionally, rigid-body data in the
form of stability derivatives from the wind-tunnel curves are used to compute
response to small perturbations, the related output data characterizing the
flight dynamics. A set of these linear models, each representing a particular
flight condition, is used to study airplane control in the total flight
envelope. The rigid body input data may also include stability derivative

corrections to represent airframe flexure influences upon the aerodynamic
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forces. This is, however, not sufficient when the dynamics of the lowest
structural mode couple with the short period of the rigid body model.
Similarly, the lowest structural mode will couple with the next higher mode,
ad infinitum; so that the correct model for some handling quality studies must

include the dynamics of rigid body and several structural modes.

In case :he model (designed for flutter analysis) does not include
accurate rigid-body characteristics, a good representation can usually be
obtained by inserting rigid-body coefficients in the appropriate aerodynamic
matrix locations. This approach "estimates" the coupling between the short-
period and the lowest structural mode. If this is not acceptable, then the

original model must include accurate representation of the rigid-body modes.

A large aaroelastic model of the type commonly used for loads or flutter
analyses must be reduced to relatively low order before it can be used in a
practical setting for control system studies; e.g., a real-time flight
simulator. Since structural dynamics models are practically time invariant,
the required simplifications can be done conveniently by exploiting the
fundamental attributes of linear algebra: eigenvalues, eigenvectors, and
superposition. After the aeroelastic model has been reduced to an appropriate
order, it can then be superimposed upon a rigid-body total-force model if
desired. An alternative to the total-force model, sometimes used for "take-
off" or "landing", is one which utilizes time-variable interpolation of
stability derivative increments between sets of stability derivatives. 1In
most cases, however, linear models with constant coefficients are adequate for
the study of stability and control characteristics, including handling

qualities.

The methods required to develop and evaluate an aeroservoelastic (ASE)
modeling capability necessitate the integration of many disciplines that are
difficult to tie together and hence have been neglected in the early design of
an aircraft. The difficulty of implementation is usually attributable to
technical and organizational reasons. Another obstacle lies in the nature of

the organization including the different disciplines which employ rigid
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compartmentalized boundaries. As a result of these difficulties, there has

been no universally accepted approach to develop a comprehensive ASE

methodology.

Thus, ASE itself must now become a new discipline. It involves nonlinear

partial differential and integral equations which require a great deal of

computer power to solve even simple cases.

The aeroservoelastic equations can be divided into four categories:

Flexible Airplane Equation: This is a matrix equation in terms of
degrees of freedom that describe the overall motion of the airplane
and its deformation due to flexibility.

Actuator Equation: This equation relates control command input to a
control surface deflection; i.e., it provides the relation between
control command, actuator force and actuator extension.

Control System Equation: This is the equation that generates control
commands from the stick force and sensor outputs. The task of the
control system designer is to synthesize physically realizable
equations such that the airplane has the desired characteristics.

OQutput Equation (Sensor Equation): This equation relates detected
motions (e.g., acceleration, rate of rotation, angle-of-attack) to the
degrees of freedom in the airplane equation.

f

The chairman of a typical ASE project might assign a sequence of tasks in

terms of the required equations:

Flexible Airplane and Actuator Equations

Represent the structure of the model in sufficient detail to obtain
the desired objectives.

Write the set of differential equations defining the structural
dynamics of the system.

Modalize the set of equations, thus reducing its number to selected
dynamic modes.

Write the expressions for the forcing functions, including the

aerodynamics and actuator dynamics, and convert them to generalized
loads corresponding to the modalized structural model.
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- Convert the model to a state-space format for application of digitally
computed optimal control techniques.

+ Reduce the order of the state-space model to one that is sufficiently
accurate and amenable for control-law synthesis and laboratory
simulation.

Actuator and Control System Equation

- Define the control system actuator models and interfaces.
+ Define the criteria for an optimal control law.
+ Compute the control law.

» Reduce the complexity of the control law to one that is sufficient and
compatible with the original model.

Qutput Equation

+ Transform the output state back to the original coordinate system,
thus locating the sensor positions.

+ Evaluate and iterate the improvement obtained (as indicated by the
simplified synthesis model) on more detailed loads and flutter
analysis models.

An overviewv of the interfaces between the technical disciplines is
presented in Section 1.2. Amplification of detail follows in the subsequent
sections. Topics concerning the control-law equations are omitted, because

the scope of this program is limited to open-loop systems.

1.2 INTEGRATION OF THE TECHNICAL DISCIPLINES

Figure 1-1 is a flowchart of various theoretical topics included in the

documents resulting from this study. The legend points to topics that
comprise the interfaces among the technical disciplines. The development and
flow of information leading to the ASE model is described in the following

paragraphs.

1.2.1 Structural Dynamics

Translation and rotation of each sub-body is described relative to a
hybrid-coordinate system. This set of sub-bodies are defined as discrete

representation conforming to the stiffness and mass distribution of the
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flexible body. Mathematical operators allow translational and rotational
displacements, velocities, and accelerations of the set of the force and

moment equations to be represented in matrix form.

The orientations of the coordinate references are selected to minimize
resulting products of inertia; nevertheless, some do exist even in fixed
coordinate systems. These, along with the gyroscopic effects resulting from

rotating coordinate systems, introduce significant nonlinearities.

The aerodynamic forces are generated by the airflow over the deformed
structure which in turn affects the deformation of the structure. This closed
loop is represented by an Arrow 2 from the structural dynamics discipline
into ike aerodynamics discipline indicating that each individual panel
influences the airflow, and Arrow 1 from the aerodynamics discipline into the
structural discipline representing the aerodynamic force that drives the

~ deformation activity among the discrete elements of the structural model.

Small perturbations are universally accepted in structural dynamics, thus
permitting linear approximations at an appropriate stage in the procedure.
The corresponding arrow from the structural dynamics discipline into the
aeroelastic modeling discipline represents the structural and aerodynamic
influence coefficients that are used to formulate the basic equation of the

aeroelastic model.

Arrov 4 from the structural dynamics discipline into the flight dynamics
discipline indicates the effects of dynamic pressure, downwash, and others
that produce the flexible-airplane stability derivatives. Under the
traditional approach, this arrow would represent only those influences which

add flexibility increments to the rigid-body stability derivatives.

1.2.2 Aerodynamics

The physical characteristics of the atmosphere and the airflow relative

to the aerodynamic surfaces results in the aerodynamic forces and moments
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applied to the airplane. Conservation principles are applied to determine the

equations of the motion of the fluid particles comprising the airstream.

Various approaches to the formulation of these equations are described in
Section 1.4. The Laplace equations which describe the kinematics of incom-
pressible flow and the Bernoulli’s equation, which converts the kinematies in
to pressure distribution over the aerodynamic surfaces yield the resultant

surface loads.
These loads act on the corresponding individual elements in the discrete
system (structural dynamics model) or at the center of lift and drag on the

airplane surfaces (rigid-body model).

1.2.3 Flight Dynamics

The rigid-body equations of motion are written traditionally in the
stability coordinate system (moments defined relative to body axes and forces
defined relative to wind axes). These axis systems are defined on page 1-17,
Section 1.3.2. The motion of the airframe is defined in terms of body axes:
translational velocities u, v, and w in the directions of x, y, and z
respectively; and angular velocities p, q, and r about the x, y, and z axes
respectively. Although the reference coordinate system is instantaneously
aligned with the body axes with its origin at the airframe center of gravity,

it does not move with the airframe.

The body axes fixed to the body are related to an inertial coordinate
system fixed to the earth by a sequence of body axis rotations. This
sequence, called the Euler coordinate system, is first in yaw (rotation about
the z axis), then in pitch (rotation about the y axis), and finally in roll
(rotation about the x axis). The corresponding product of the three
transformation matrices defines the Euler coordinate system in terms of
trigonometric functions of the three rotation angles: Y (psi). @ (theta), and
¢ (phi). ‘
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The wind axes are obtained from the body axes by a sequence of two
rotations: first in pitch with angle "o" about the y axis, and then in yaw
with angle "B" about the z axis. The corresponding product of the two
transformation matrices defines the wind coordinate system relative to body

axes in terms of trigonometric functions of « and 8.

Even though the trigonometric functions are nonlinear, small perturbation
angles in sine-cosine products permit linear approximations at an appropriate
stage in the procedure. Flexibility increments due to steady loads have an
influence on the static angle-of-attack and on the static moments, which in '
turn influence the stability derivatives. The arrovw from the structural
dynamics discipline into the flight dynamics discipline in Figure 1-1
represents these influences. The corresponding stability derivatives and
state-space formulations are used in the linear analysis and synthesis of the
flight control systems. This interface is represented by Arrow 6 from the

flight dynamics discipline into the control system discipline.

Obviously the stability and control requirements determine the control
system design; and, in control-configured vehicles, the control system
capability influences the airframe design. This loop is represented by Arrovs
7 and 8 from the flight dynamics discipline into the control system discipline

and visa versa.

The dashed Arrow 5 from the aerodynamics discipline into the flight
dynamics discipline represents the aerodynamic forces which are generated by
the air flowing over the surfaces of the rigid-body model of the airplane.
This interface does not exist under the ASE approach to modeling. Typically,
it would indicate the aerodynamic effects on the rigid-body: dynamic
pressure, downwash, stability derivatives, etc. The stabilitv derivatives are

usually derived from the wind-tunnel data fitted-polynomials.

Arrow 9 from the control system discipline into the flight Jdvnamics

discipline represents the effect of the control surfaces on air-iaft dynamics.
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Arrow 10 from the flight dynamics discipline into the aeroelastic
modeling discipline is dashed because it does not exist under the ASE approach
to modeling. Under the traditional approach it would represent rigid-body
coefficients in the state-space model where the structural dynamics model does
not contain accurate rigid-body mode representation (short period, phugoid,

etc.).

Arrowv 7 (control system requirements) from the flight dynamics discipline
into the control system discipline includes the loads on the actuators.
Usually these loads are small compared with the actuator capability, thus
permitting the actuators to be represented by linear models. There are,
however, designs (e.g., spoiler blowback) where, under heavy load, the
actuator operates in its nonlinear region. Furthermore, with large control
surfaces, the surface dynamics might be reflected back into the control valve,

thus creating a dynamic instability.

1.2.4 Aercelastic Modeling

The development of a reduced-order aeroelastic model begins with an
intermediate sized model having more modes than those intended for the actual
analysis; then it is reduced in such a manner as to preserve certain residual
effects of the eliminated modes. The intermediate model results from

modalizing and truncating a larger model.

The initial equations define the larger system in terms of the structural
composition and the aerodynamic forces which act upon it. The structural part
of the model represents all main airframe components (wing, fuselage, tail, et
cetera). Discrete elements of these airframe parts are represented by Arrow 3
from the structural dynamics discipline into the aeroelastic modeling

discipline.
Standard procedures, using small perturbation dynamics lead to the linear

style space equation. Its state includes the rigid body variahles, control

surface deflections, cr gust variables as well as structural made =hapes.
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As indicated by Arrows 3 and 11 in Figure 1-1, elements in the equations
of dynamics are obtained mainly from two of the technical disciplines:
Mathematical models representing structural deflections and total airframe
motions are from the structural dynamics discipline, and models representing
actuator elongations and forces are from the control systems discipline. 1If
the traditional approach is used, then rigid-body elements of the state vector
(e.g., the six degrees of freedom of the c.g. - incremental pitch angle, pitch
rate, angle-of-attack, air speed) might be obtained from the flight dynamics
disciplines. The influence coefficient matrices, Aerodynamic Influence
Coefficient (AIC) and Structural Influence Coefficient (SIC), are from the
aero and structural dynamics disciplines. Likewvise the mass and stiffness
matrices and the modalization matrices are from the structural dynamics

discipline.

Arrov 11 from the control system discipline to the aeroelastic modeling
discipline represents either or both of two types of interface: actuator
displacements and actuator forces. Where the actuator loading is negligible
as compared to its capability, the displacement transfer function is used; but
vhere the surface dynamics significantly load the actuator, the actuator-force

interface is used.

1.3 SUMMARY OF COORDINATE SYSTEM METHODS

The motion of a body is described by considering the trans ation of its

center of mass under the sum of the forces acting on the body and the rotation
about its center of mass under the sum of the moments. Traditionally, the
motion of a flexible airplane, under suitable assumptions, can be defined as
the translation and rotation of an axis system for inertial reference, and the
deformations relative to that inertial reference. Current assumptions are:
the deformations must be relatively small and, if the overall motinns of the
airplane are large, they must be relatively slow compared to the first natural

structural frequency.

The airframe, in an inertial reference system, moves under the influence

of total aerodynamic force and moment, and the force of gravity, as if it were
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rigidized in its zero external load shape (no elastic deformation). For the
deformations relative to the inertial reference, the small perturbation theory

equations for stability and flutter apply.

Thus, the equations of motion can be categorized as follows:

+ Maneuvering equations

These equations relate the total aerodynamic force and moment on the
flexible airplane, and the force of gravity, to the overall motion of
the airplane, defined by the inertial reference. The flexibility
effects will include that of a maneuver load alleviation system, if
present.

- Stability equations

These equations describe the small deflections of the airplane
relative to the inertial reference. They cover stability in the
flight mechanics sense and flutter. The effects of stability
augmentation, flutter suppression, gust load alleviation. and ride
control are included.

1.3.1 Hybrid Coordinates

The complete dynamic equations of motion for flexible aircrafr (of
arbitrary configuration undergoing arbitrary motion and experiencing an
arbitrary load) using hybrid-coordinate system are derived in Section 2. The
approach utilizes two reference frames: one inertial and one vehicle fixed.
This permits the assumption of small elastic deformation while allowing large
vehicle motion. Thus, the total and fiexible body dynamics are linear in
structural deformation variables, but nonlinear in rotational parameters,

e.g., 9 and w.

1.3.1.1 The Hybrid-Coordinate Assumptions

The use of hybrid coordinates begins with the following assumptions

relative to Figure 2-3.

- The aircraft, Body A, is composed of finite rigid sub-bodies. Ay, that
are interconnected by linearly elastic members. Therefore. the
deflection of any of these elastic members yields a restoring force
that is proportional only to the corresponding deflection (K is
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constant). Thus, g is limited to deflections which do not produce any
cross-coupling stiffness effects due to the geometry changes.

«+ The aircraft, Body A, is attached to a massless Body B for all six
degrees of freedom at one Point Q. The sum of the loads at 0 is zero.
This auxiliary relationship is used to define the stiffness matrix of
the flexible aircraft. Prior to deformation, when ug ard B5 are zero,
and origin of Body B, Point 0, is coincident with the vehicle mass
center. h

- The overall matrix equations of motion are written in terms of the
sub-body deformations. However, the coefficients of these equations
are in terms of the overall vehicle motion and the direction cosine
matrices all of which are also unknown. Thus, 3n +9 additional
auxiliary equations are required to uniquely describe the matrix
equations of motion.

1.3.1.2 Review of Hybrid-Coordinate Dynamic Equations Development

The work by P. W. Likins for flexible spacecraft was rederived for an

aircraft of arbitrary configuration undergoing an arbitrary maneuver using a
hybrid-coordinate system. Vector bases are defined relative to an inertially
fixed reference frame, the vehicle, and each rigid subbody. Direction cosine
matrices are defined describing the rotation of the vector bases to each
other. Vehicle deformation is defined by the motion of the rigid subbodies
relative to the vehicle center of mass. The motion of each subbody is
described as a series of vectors which are resolved relative to the

appropriate vector bases.

Special operators are defined to facilitate the matrix algebra necessary
in using a hybrid-coordinate system. Translational vehicle deformation is
considered first. The motion of the vehicle mass center relative fto the
massless body reference point is described in terms of the rigid subbody
translational deformations. Separate Newton-Euler equations of motion are
written for translation and rotation for each rigid subbody in teims of the
hybrid-coordinates. The resulting equations are combined into twn sets of 3n
equations, which are then written as one matrix equation of order An. The
Newton-Euler equations are then developed for the vehicle, which vields two

sets of three equations each; for translation and rotation.
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These 6n+6 equations have 9n+15 unknowns. Auxiliary equations are
developed to uniquely specify the problem. 6n equations describe the n
subbody direction cosines matrices as a function of the subbody’s rotational
deformation. Six more equations result from the vehicle’s rotation: three
associated vith defining the direction cosine matrix and three defining
rotational as a function of rotational velocity. For a free-free vehicle, the
vehicle stiffness matrix allows the motion of the massless Body B tn be
described in terms of the deformation variables. This allows the deformation
variables to be reduced to 6n-6. The remaining three degrees-of-freedom
result from the choice of hybrid-coordinates: The vector base associated with
the massless body is defined to always be coincident with the vehicle vector

base.

1.3.1.3 Linearization of Hybrid-Coordinate Dynamic Equations

All time dependent variables are assumed to be composed of fquasi-static
and perturbation components. The quasi-static component allows for large
amplitude, but slowly time varying deformations. The perturbation component

allows for small amplitude rapid fluctuations about the quasi-static solution.

All variables are expressed in terms of their quasi-static and
perturbation components. The resulting equations are expanded. All purely
quasi-static terms are collected into a set of quasi-static equations. All
first order perturbation terms are collected into a set of perturbation
equations. All higher order perturbation terms are assumed negligible. The
resulting quasi-static equations are non-linear zero order (with respect to
time). The resulting perturbation equation is linear second order (with

respect to the perturbation variables).

1.3.1.4 Inclusion of Aerodynamic and Gravitational Loads

For the aerodynamic loads, a deformable panel method is assumed that
allows for large vehicle deformation. The deformation of the panels is a
function of the deformation of rigid subbodies. Aerodynamic loads are assumed
to act normal to the panel surface at the panel load points and are functions

of the angle-of-attack at the panel normal wash points. The specific

i-16




relationship between load and angle-of-attack is discussed in Section 4. A
vector base is defined at each load point and each normal wash point. The
orientation of these vector bases relative to the vehicle’s vector base is
derived as a function of the vehicle deformation. The angle-nf-attack is
defined as the angle between the relative velocity and the plane of the panel

at the normal wash point.

The results are linearized using the above described procedute. The
perturbation components are highly non-linear. To facilitate the description
of the perturbation angle-of-attack, an additional vector base is defined that
has one base coincident with the quasi-static relative velocity, and one base
remaining in the plane of the panel. Perturbation aerodynamic loads become
linear functions of the perturbation angle-of-attack, which become a linear
function of the perturbation relative velocity, which become a linear function

of the structural deformations.
Since gravitational acceleration acts in a constant direction with
respect to the inertial vector base, gravitational loads are directly

implemented into the hybrid-coordinate dynamic equations.

1.3.2 Stability Coordinates

The equations of motion commonly used for analysis of transient maneuvers
involving all six degrees of freedom of the rigid airplane, employ four
different axes systems; these axes systems are designated ground axes, body
axes, stability axes and wind axes. The definition of these axes and their

functions are as follows:

* Ground Axes - Ground axes are a set of orthogonal axes fived with
respect to the ground. The z axis is coincident with the weight
vector. The x and y axes are arbitrary but the equations arve
simplified if either the x and y axis is chosen to coincide with the
horizontal component of the wind relative to the ground. «round axes
are required to define components of weight and ground winds in the
other axes systems.
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* Body Axes - Body axes are a set of orthogonal axes through the
airplane c.g. which remain fixed relative to the body. The y axis is
chosen normal to the plane of symmetry (for most airplanes there is a
plane of symmetry and this plane is designated the xz plane). The x
axis is usually the horizontal reference axis. The moment equations
are in the btody axes system because inertia properties remain fixed
with respect to these axes.

+ Stability Axes System - Stability axes system is nothing but a special
case of a body fixed system where the orientation with respect to the
body has been selected with respect to a steady state flight condi-
tion. With origin at the center of gravity, x-axis points in to the
direction of the relative wind. y-axis is orthogonal to the x-axis
and z axis is defined in such a manner that right hand rule holds.

* Wind Axes - Wind axes are a set of orthogonal axes through the
airplane c.g., the z axis of which is coincident with the z axis of
the stability axis system. The x axis is coincident with the airplane
velocity vector. Again, the velocity is the airplane velocity
relative to the air. The force equations are simplest when written in
the wind axes system.

The relationships between ground, body, stability, and wind axes, are

shown in Figure 1-2.

In each set of axes, the x, y, z axes are orthogonal; i.e, mutually
perpendicular. One set of axes can be made to coincide with another set of
axes by rotating through Euler angles. Since the axes about which Euler
rotations take place are not orthogonal, the order in which the rotations take
place must be specified. The Euler angles and their order for transferring

from one axis system to another are specified in Table 1-1.

Vector components in one axis system can be related to vector components
in another system through the use of transformation matrices which are
functions of the Euler angles. Transformation matrices applicable to the four

axes systems used in transient maneuver loads analysis are presented below:
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TABLE 1-1. RELATION BETWEEN EULER ANGLES AND AXES SYSTEMS
Rotating
Order of Rotation
From To Rotation | Euler Angle Axis

Vind Axes Stability Axes 1 -8 z Wind = z Stab
Stability Axes | Vind Axes 1 8 z Wind = z Stab
Stability Axes | Body Axes 1 - y Stab = y Body
Body Axes Stability Axes 1 a y Stab = y Body
Wind Axes Body Axes 1 -8 2 Vind = z Stab

2 - y Stab = y Body
Body Axes Vind Axes 1 o y Stab = y Body

2 8 z Vind = z Stab
Ground Axes Body Axes 1 Y 2;

2 2] y'a

3 ¢ X"G = XB
Body Axes Ground Axes 1 -9 X" = Xp

2 -¢ y’G

3 ~-Y Zg

Transformation Matrices

»+ Wind Axes to Stability Axes

) |

+ Stability Axes to Wind Axes

cos B
sin 8

cos B 0

-sin B 0}
0 1

G- |

cos B sinp 0
sin B

cos B 0]
0 1

)
b
Is
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Stability Axes to Body Axes

Xp cos o« O -sin « Xg
'BP = 0 1 0 Vs
2g sin e O cos « 2g

Body Axes to Stability Axes

Xg cos « 0 sin « XB
YsP = 0 1 0 YB
Zg -sin @« 0 cos « 2p

Vind Axes to Body Axes

XB cos acos B -~cos a sin B -sin « Xy

sin a cos B -sin « sin B8 cos « zy

Body Axes to Wind Axes

Xy cos B cos « sin B cos B sin «a Xp
Yub = |-sin Bcos @« cos B -sin B sin « YB

-sin « 0 COoS « zp

Zw

Ground Axes to Body Axes

< cos Y cos 8 sin Y cos © sin ©
B _ cos Y sin © sin ¢ cos Y cos ¢
{ZB} = |-sin ¥ cos © +sin Y sin © sin ¢
B sin Y sin ¢ sin ¥ sin © cos ¢ cos © cos ¢
+cos Y sin © cos ¢ -cos Y sin ¢

Euler Axes (zg, y'Gs» x"g) to Body Axes

p 1 0 -sin @ ¢
= {0 cos ¢ cos O sin ¢ )
r 0 -sin ¢ cos © cos ¢ \7

Body Axes to Euler Axes (x"g, y'g:» 2g)

& 1 tan © sin ¢ tan © cos ¢ P
e} = |0 cos ¢ -sin ¢ q
¥ 0 sec O sin ¢ sec © cos ¢ r
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1.4 CONTRIBUTIONS FROM THE TECHNICAL DISCIPLINES

In the following, development of each discipline is discussed as it

evolved from first principles. The goal is to state clearly the simplifying
assumptions required to resolve the complete nonlinear system into a set of
equations that satisfy a predefined level of accuracy in the computation of

flexible airplane characteristics.

The formulation of equations for each discipline leads to a statement of
the complete nonlinear equations. Nonlinear terms are resolved without
explicit line, surface or volume integrals. After linearization, the unsteady
aerodynamics is converted from frequency to time domain representation. The
quasi-static flexible aircraft stability and control derivatives, with the
option of including higher order terms, are obtained from the linearized

equations.

Equations from First Principles

The basic principles governing the dynamics equations of a flexible
airplane, the equations that lead to a formulation of the flexibility

characteristics, and the forcing functions are discussed.

Analyses concerning the motion of a continuous system begin with the
statement of four basic physical laws: conservation of matter, Newton’s second

law of motion, first lav of thermodynamics, and second law of thermodynamics.

Additional equations such as =quation of state, etc., are necessary to
form a complete set upon which the complete analysis of airplane dynamics in

particular, and dynamics in general, may be constructed.

The formalism of describing a dynamic system in the lumped parameter
representation is most demanding when the system contains body and inertially
fixed reference coordinates. It is identified as the hybrid cootdinate
approach. The key to describing dynamic systems is the retention of the full

nonlinear terms during the development of the equations. Thi- .appminach
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permits the complete accounting of the second order terms during the

linearizing process.

Nonlinear terms are retained in the equations for those disciplines that
successfully resolve the volume and surface integrals from first principles
vithout the need to linearize. There are closed-form solutions of some force
terms, such as unsteady aerodynamics, which require the dropping of the

nonlinear terms early in the development from first principles.

The following sections outline the procedures that were followed in
developing the aeroservoelastic equations for synthesizing the ASE model. The
presentation is based on the assumption that the external forces in Newton’s
second law of motion are only functions of the state variables, their
derivatives and history. This assumption permits the independent derivation
of the internal structural forces, the aerodynamic forces, the thrust and drag

forces, and the control surface actuator forces.

The governing equations for a flexible vehicle can be formulated by
Newtonian methods using a framework advanced by Likins. A feature of the
approach which sets it apart from many approaches in current use is the
introduction of two reference frames: one inertial and one vehicle fixed.

This permits the assumption of small elastic deformations while allowing large
vehicle motions. The resulting equations are nonlinear. Several of the
coefficient matrices multiplying the displacement q and its derivatives in the
rotational equation are functions of rigid body rotation w and ®. Also since
the direction cosine matrix H is nonlinear, the translational equations are
nonlinear, as are the kinematical equations. The equations are, however,
linear in the deformation variables. This permits modal descriptions of q

wvhich will be important for subsequent coordinate reductions.

The nonlinearities in the structural dynamics are mainly due to the
interaction of flexible dynamics and the rotational motion. Tf 10otational
rates are small, these nonlinearities can be neglected. Fnr 1 then
development (i.e., flutter, stability derivatives, state space =qualions)

these nonlinear terms are neglected.
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Grid and Coordinate Transformations

Several coordinate systems are generated as a matter of convenience and
expediency. In unsteady aerodynamics, the downwash is measured at an aft
collocation point on the aerodynamic panel chord while the aerodynamic force
is placed at the quarter chord or centroid of the panel. The stiffness grid
is usually different from these and the mass grid. To compound the problem,
different disciplines view the analysis grid and the number and type of
degrees of freedom differently. The solution to the problem of different

grids is called grid transformations.

There are two types of grid transformation procedures commonly used. The
first is based on a simple interpolation procedure. This procedure is based
on a rigid plate of 3 or 4 points for surface interpolations. The 3 point
plate is a unique solution while the four point plate (washed) is really a

sequence of two point interpolations.

The second type is a multi-interpolation where a beam, plate. etc., is
used to interpolate for points once the deflection of the plate (here it is a
continuous plate) is known at all the known grid points. This is called the
spline technique and there are many numerical procedures which do this type of

interpolation.

The primary difference between the first and second type of grid

transformation is the number of nonzero elements of the transformation matrix.

When applied to an actual vehicle, the developed dynamic equations would
result in hundreds of second-order scalar differential equations which are
nonlinear and highly coupled. If these equations are to be of any practical
value to synthesizing the aeroservoelastic model for use in the ~nntrols
analysis, transformations must be generated that will provide some relief by

uncoupling the equations and reducing the number of differential «quations.
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There are two distinct and different objectives that will drive the
resolution of the equations of motion into manageable sets. The first is the
reduction of the equations of motion into a set of linear, constant
coefficient differential equations that may be used in the flight control

synthesis and linear analysis.

The second is the reduction of the full set of nonlinear equations to a
form that is suitable for time domain solutions. Within this set are two
other objectives, time solutions in real time (like motion simulators), and

time solutions in non-real time.

The practical mechanization constraints associated with the final use of
the set of equations will force the analyst to estimate the most significant
terms. Currently there is no one transformation that will address the best
solution of all possible numerical forms that the full nonlinear equations

vill assume.

The objective of the full nonlinear system of equations, then, is not so
much to include all nonlinear terms in the equations for analysis and time
domain solutions, but to offer a reference to the analyst for numerically
evaluating the consequences of one transformation over another, or to
establish the domain of application for a transformation or linearizing

procedure.

1.4.1 Structural Modeling

The step from a rigid airplane to a flexible airplane is made by the
introduction of the flexibility of the structure depicted symbolically in
Figure 1-3. The flexibility of a given structure is defined by means of

structural influence coefficient (SIC) or a stiffness matrix.

1.4.1.1 Simplified Structural Model
The Simplified Structural Modeling Program (SSMP) developed under Task 2

of this contract is an interactive program with the sole purpo-~ «f helping

the user create a simplified finite element model of an aitcraf!
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Simplified FEM Model

Figure 1-3.




configuration. The model will be analyzed using the ASTROS program. All
interactive input is entered in an "input steering file" that can be re-run in
a batch mode enabling the user to edit the FEM model while rerunning the
program. When used under the Modeling Flexible Aircraft Program operating

system, the SSM program will usually be operated in the batch mode.

Figure 1-4 shows a flowchart of program interaction. Aircraft
configurations are described by several components (i.e., wing. fuselage,
engine, etc.). The planform geometry and cross-sectional shape are defined in
either the SSMP or the CDMS program. The grid points for each component are
also defined in either one of these programs. The user must then define how
each component is connected to the others. He must also define the structural
and mass properties of each component. Information for running CADS is
entered and the output of CADS is processed to get the data into the correct
format for ASTROS. The executive control deck for ASTRCS is then defined and
ASTROS is run. ASTROS input and output may be plotted using CADS, but the

documentation for doing this is not described under this contract.

1.4.1.2 Structural Static Analysis

In the case of the flexibility matrix the basic equation is:

(u} = [E] (P}

wvhere:
{u} = structural degrees of freedom: discrete structural deflection,
translations and rotations
{P} = concentrated external forces and moments corresponding to the
structural degrees of freedom
[E] = a symmetric matrix of structural influence coefficient-.
Although there are ways to define an "effective" flexibilitv matrix for a
free structure, when the flexibility matrix is used, it i: mnt pra<ticable to

define it for a structure that is supported in a statically determinate way.
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The deflections are then measured relative to a structural reference defined

by the support.

In the case of the stiffness matrix the basic equation is:
(K] {u} = (P}

The stiffness matrix, [K], can be defined for either a supported structure or
an unsupported structure. In the case of the unsupported structure. the rank
of [K] is its size minus the number of rigid body degrees of freedom. In
contrast, for a supported structure, [E] and [K] are positive definite, in

which case [K] is the inverse of [E], and K has full rank.

Two main approaches to modeling the structure for computing [E] or [K]
are recognized: finite element theory and simple beam theory. In the finite
element approach the structure is divided into many small structural elements,
that interact with each other at the nodes of a structural grid where internal
and external forces are defined, and where deflections are continuous. 1In the
simple beam approach a lifting surface, or a fuselage, is represented by a
simple beam with bending flexibility in two perpendicular planes, and

torsional flexibility.

With the advent of powerful finite element programs (e.g.. NASTRAN),
finite element models have become commonplace. They are needed for accurate
prediction of the internal stresses. The finite element model is also used
for the calculation of [E] or [K]. Typically, a finite element model for a
complete airplane contains a thousand or more finite elements and associated
degrees of freedom; usualiy more degrees of freedom than are practical from a
dynamics analysis point of view. Reduction of the number of <trurtural
degrees of freedom number is the first model reduction the airplane dynamicist
must apply. It should be noted that in the case of a finite element model,
the dynamicist chooses as his reduced set of degrees of freedom mostly
translational deflections along the major axes of the struetwre: 4., on a

wing, perpeadicular to the wing suirface.
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In the early design stages, a finite element model may not be available.
In that case major airplane components are idealized as beams with a bending
stiffness defined by EI and a torsion stiffness defined by GJ. The resulting
degrees of freedom are translational and rotational deflections at selected
nodes on the beams. Typically, on a wing, a structural axis is defined and
the degrees of freedom are: translations perpendicular to the wing surface and
in the plane of the wing perpendicular to the structural axis, and rotations
about the structural axis. The number of degrees of freedom associated with a
simple beam model is usually small enough to be acceptable for dynamic

analyses.

Both approaches to structural modeling assume a linear stress strain
relation vhen the airplane is represented in a normal flying condition. 1In
addition, deformations are assumed to be sufficiently small, such that one
geometry defines the structural characteristics under all load conditions.
This means that in the above equation, [E] and [K] are independent of {u}.
(Nonlinear force-deflection relations are considered only for crash

conditions).

The structural analysis consists of obtaining internal loads, internal
stresses and displacements for a set of external loads. To obtain these in a
finite element model, which consists of many discrete finite element members
representing the load carrying structure, the principle of minimum value of
the total potential energy is used to obtain basic displacement equations.

This principle may be stated as follows:

0f all the sets of displacements, that satisfy prescribed constraint
conditions, the correct set is that which makes the total potential
energy a minimum.

The total potential energy consists of external work and internal strain

energy.

PI = Ujnternal - VYexternal
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For any linear system the total potential energy for one clement(i) can
be expressed in tecrms of displacement degrees of freedom associated with that

element as:
PI; = 5 (T (k] () + (7T (q) (1.1)

Where {u} displacement matrix,{K] is the stiffness matrix and q is the

external load. PI; is expressed in a convenient local coordinate system.

The strain energy comprises potential due to thermal effects and

distributed loads applied to the elements.
The following assumptions are made to obtain Equation (1.1).
- The material properties are assumed to produce linear and elastic
stress-strain behavior.

+ The "small" displacement theory is applied.

- The external loads do not change directions while undergoing
displacements.

« The superposition principle is valid throughout the analysis.

The adequacy of these assumptions have been tested by deflection analyses

of typical military aircraft to limit load.

Equation (1.1) can be transformed into a reference coordinate system

using transformation matrix [t].
{u} = [t] fur)} (1.2)

wvhere {ur} is matrix of displacements at the reference coordinate svstem.
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Substituting Equation (1.2) into (1.1) yields:
Pr, = 7 ()" (e1" (k) (o) ey« oot )

The total potential energy of the complete system of M elements and N

degrees of freedoms can be written as follows:

M
PL =5 I {ur) (e]7 (K] (2] (ur)
i=1
M N
O L £ R C I U S R € (1.3)
i=1 j=1

Vhere {P} is a vector of concentrated applied loads and moments.

Equation (1.3) can be reduced to the following form:
pr -2 T (K] - 7 Q)

Variations of PI with respect to the reference degrees of freedom will

yield:
1 T
PI = 7 {(U}" {[K] (U} - {Q}} =0 (1.4)

From Equation (1.4), the following well known finite element equation is

obtained for the unconstrained structure.
(K] (U} = {Q}
After application of prescribed displacement boundary condit!ions, the

.constrained stiffness matrix is inverted and post-multiplied by the external

load vector to obtain unknown displacements as follows.
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(Ua} = [Kaa]-! {Qa - Kab (Ub}} (1.5)
Where

{Ua} is a vector of unknown displacements.

[Kaa]l 1is a constrained stiffness matrix.
Element internal stresses and forces can be obtained from {Ua}.

1.4.1.3 Mass Distribution

In the classical analysis of beams and plates, the mass is considered to
be a continuous quantity, expressable in term of pounds per unit length or
pounds per unit area. In the early analyses of practical airplane structures
the mass was still considered a continuous quantity. In the typical
Lagrange’s equations/Rayleigh-Ritz approach to vibration analysis the product
>f assumed deflection shapes and the mass was integrated along the span of a
ving. With the advent of the digital computer around 1950, new computational
techniques emerged, based on matrix notation and matrix algebra. The
description of airplane structures became discretized: the deformation is
defined only at discrete points. The flexibility of the structure is defined
by force-deflection relations only at discrete points. A natural step was to
define the mass at the same discrete points. Although there is a mathematical
approach to replacing a continuous mass distribution by discrete (lumped)
masses at these points, usually a heuristic approach is followed. The
heuristic approach is justified, because the accuracy implied by the

mathematical approach exceeds the accuracy of the data available.

Although for the vibration analysis it is necessary that the mass
characteristics of the structure are described by a matrix based on the same
degrees of freedom as the structural model, it is often convenient 1o do the
basic mass discretization in a different grid syétem. This is especially the
case when a finite element model is used. To avoid the need of having to carry
along moments of inertia of the discrete masses, the mass grid i~ 1ather

dense. To avoid computational singularities, there must be a! l«as!l as many
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mass points as there are structural grid points. By expressing the deflection
of the mass points in terms of the deflections at the structural grid points,
a transformation is obtained that generates a mass matrix consistenf with the

structural grid.

In the case of a simple beam model, the same mass discretization may be
used as for a finite element model. In early design stages, however, it may
be more expedient to define the mass, chordwise center of mass position, and
radius of gyration of strips of the wing, in a direction perpendicular to the

beam.

In addition to the distributed masses, discussed so far, large masses of
"rigid" bodies are recognized. A rigid body, in this context, is a body, such
as an engine, or a store, of which its own lowest natural frequency is
considerably higher than the highest frequency of interest in the flight
dynamics analysis to be performed. Such rigid bodies are represented by their
total mass, center of mass position and radii of gyration about three axes.
Correspondingly, in the structural degrees of freedom, such masses are given

three translational and three rotational degrees of freedom.
Vith the subset of displacement equations established in its particular
reference frame in accordance with Equation (1.5), it can be related to other

subsets, which might be rotating, by use of the hybrid coordinate approach.

1.4.1.4 Dynamic Degrees-of-Freedom

The usual approach to a flutter analysis is that the dynamics equations
are formulated in dynamics degrees of freedom. The dynamics degrees of
freedom are discrete displacements in which the flexibility of the airplane
can be expressed by a suitable reduction of the stiffness matri- derived for
all structural degrees of freedom. Typically the number of dvnamic: degrees
of freedom for half an airplane is 100 to 500. The structural rdegrees of
freedom may number several thousand. The dynamics degrees of fieedom are used
in a vibration analysis to determine the lowest 10 to 50 natwm .l frequencies

and natural modes. The natural modes are used to "modalize" the (]ntter
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equation, i.e., the number of degrees of freedom is reduced from the original
170 to SON discrerte disrlacements to 10 to 50 modal coefficients. Th=2
solution of the flutter equation at a selected speed consists of damping and
frequency of in-flight vibration modes and associated eigenvectors of modal
coefficients. The modal coefficients determine how much of each vibration

mode participates in the flutter solution.

Because flutter may occur at frequencies considerably above the lowest
one or two vibration modes, the modalized flutter equation must include
several modes above the lowest structural modes. For control system
synthesis, however, a reduced order model may be sufficient. Obviously, the
control system designer would like to reduce the number of degrees of freedom;
he must include to a minimum and include only those modes that affect his

design.

1.4.2 Aerodynamics

The emphasis in this study is on low angle-of-attack, high dynamic
pressure flight, the region of greatest aeroelastic effect. The scope of the
work includes methodology applicable to Mach numbers from low subsonic to high

supersonic, and dynamic pressures up to the "never exceed" speed.

Fighter aircraft have experienced stability and control problems in the
high dynamic pressure range due to the fading of controls effectiveness as
aeroelastic reversal approached with increasing equivalent airspeed. This
phenomenon can be accompanied by an opposite effect: increased sensitivity to
disturbances, measured by lift curve slope amplification as surface divergence
simultaneously approaches. So severe can problems associated with these
phenomena become that even robust controls techniques may be ineffective.

This situation has been exacerbated by the use of aerodynamic methods that did

not correctly model the physical flow.
Section 4 discusses currently employed aerodynamic methodnlngy. This

should make the effect of aerodynamics on static aeroelastirit: .l stability

derivatives clearer. Improved understanding should permit conttal =ystem
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designers and aeroelasticians to jointly make more efficient solufions to
control system-structural design problems and eftect these earlier in the

aircraft design cycle.

1.4.3 Control Systems

Except for the use of nonlinear equations in simulations, mnst control
theory applications (modern and classical) are restricted to linear systems.
This is justified, because a linearized representation of system dynamics can
be considered to be a superimposed small amplitude part of a more accurate
model which would include the important nonlinearities of the system. For
example, an airplane flying through changing flight conditions is described
mathematically by a set of nonlinear aerodynamic curves from which linear
stability derivatives are normally derived. A simulation of the exaét
equations would not include the stability derivatives per se; nevertheless,
the derivatives would be represented in the simulation by the slopes of the
" aerodynamic curves. The resultant dynamics of the simulation would closely

approximate those of a linear model, for small motions.

The nonlinear equations of motion can be written as a single vector

differential equation

x = £(x(t), u(t))

vhere x(t) is the state vector, and u(t) is the control vector. The aircraft

is trimmed in unaccelerated flight if the state is unchanging, such that:
0 = £(xp(t), up(t))
Perturbations from this trimmed condition are characterized by a linear model

which is obtained by a Taylor series expansion of the original nenlinear

equation about the trimmed state values. The linearized dynamic equation is:

dx(t) = A(t) dx(t) + B(t) du(t)
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vhere A(t) and B(t) are Jacobian matrices of derivatives evaluated at the trin

condition. Al) elements nf these Jacobian matrices are real scalar variables.

In general, the matrices are time varying; but, in keeping with the
assumption that the aircraft is trimmed, the matrices are usually assumed to
be constant (over the time scale of the dynamics). Any incremental equations
of the above form will hereafter be written with the increment indicator d

deleted.

The desired input from the aerodynamic and structural disciplines to the
control system engineer are the A and B matrices for all trim conditions
representative of the entire flight envelope. If relaxed static stability
(RSS) applications are intended, then variations in speed/altitude/weight
conditions are expanded to include variations in center-of-gravity conditions

to be used in the control law synthesis process.

The elements of the state vector x include all of the variables of the
flexible model and of the control system, including the actuators and sensors.
Those of the control vector u contain all of the control commands. If the
model is reduced from a larger one, then the extraneous variables of the state

vector are removed and the A and B matrices are modified accordingly.

Control Law Synthesis

Although the feedback system, per se, is not a part of the basic
airplane, the nature of the control laws in a modern airplane has an important

impact on the airframe configuration design.

For example, an airplane with extreme relaxed static stability and an
automatic control system can fly successfully with the center nf gravity as
far aft as 60 percent mean aerodynamic chord (mac), thus permitting a very
small tail. The specifications require that the longitudinal control
characteristics fall within certain demanding specified boundaiie= on the

appropriate plots: (1) short-period and phugoid frequency and damping, (2)
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column-force gradients, and (3) blended normal-acceleration/pitch-rate

response histories.

The math model is the state-space equation of the system, including servo
and sensor dynamics. A reference eigenstructure (prescribed eigenvalues and
eigenvectors) is used for each flight condition to specify the control law by
application of the modern control technique called eigenstructure placement.

A reference-model for each baseline flight condi.ion (the one with the c.g. at
25 percent ) is used to define the desired eigenstructure for each of the

other corresponding c.g. conditions.,

The control math model in state-space form is shown in Figure 5-1. With
the feedback loop closed, the control synthesis method produces the set of

feedback gains. The closed-loop state-space equation becomes:

X = (A + BFC) x

The eigenstructure placement procedure produces the feedback matrix F for
each c.g. condition, such that the eigenstructure of the matrix (A4 + BFC)

approximates that of the corresponding A for each baseline condition.

The feedback gains are adjusted to compensate for the nonlinearities in
the mechanical part of the control system which is designed to match feel

characteristics to the flight condition.

After obtaining the feedback control laws, the synthesis procedure closes
the feed-forward paths (Figure 5-1) to obtain a force-gradient transfer
function. This is combined with the feel-spring characteristics to obtain the

resulting set of feed-forward gains.

Servo and Sensor Dynamics

The behavior of a typical single-stage hydraulic servo nperating within
its linear range'(lightly loaded) ran he represented as having 1+ first-order-

lag response characteristic. Although the transfer function of a power servo
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and its corresponding input series servo should be expected to have real
poles, they are sometimes coupled such as to yield a complex pair of poles
(damping Jess than critical). Representation of the higher frequency
characteristics (second-order) of electro-hydraulic valves are typically

neglected, but might be required when used to control structural modes.

The frequency characteristic of an accelerometer is typically first-order
because of a first-order filter inside a high-bandpass force-balancing servo
loop which attenuates the response of the seismic element. The servo loop
constrains the seismic element within a very small range of displacement. The
seismic natural frequency can be neglected because it is well above any of the

control modes, including those for controlling structural vibrations.
Rate gyros are second-order at frequencies that can be neglected when
controlling the lower structural modes, but must be included for the higher

ones.

Actuator Force Equations

The structural dynamics of a control surface couples into the main
structure as a function of the applied actuator forces. If the surface is
comparatively flexible, then special equations which reflect the servo load

must be represented as:

Fo, = Ho(s) x. - Hy (s) x4

where F, is the actuator force; xa is the elongation of the actuator; and x.
is the commanded elongation. The above expression takes into account all
static and dynamic loads applied by the actuator to the connecting points
between the airframe and the control surface. These points ave included in

the state vector of the structural model.

The computation of the above force includes effects due to the hydraulic
flow and pressure characteristics of the control valve and ~f 1w Inad
stability compensating device. For example, the linearized ac«tnatom model

used for the analysis of the L-1011 horizontal stabilizer was:
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2
F ~ (als + bl) xC ~ (S + azs + b2) Xa

a

2
(dZS + dls + do)

where the coefficients (a’'s, b’s, and d’s) are computed from the servo

characteristics.

Servo Nonlinearities

As mentioned previously, the hydraulic servos can usually be represented
with linear models. 1In order for this assumption to be acceptable, however,
care must. be taken that excessive flow rates not be commanded such as to
exceed the saturation level corresponding to the maximum valve stroke. If
rate saturation does occur, it sharply lowers the rolloff frequency of the

linearized first-order model.

Other nonlinear valve effects are due to the parabolic characteristic
(flov versus pressure) of an orifice. A trim condition with the quiescent
design load near stall is unusual. It occurs only in cases where load
limiting is required, such as for spoiler or rudder blowback, or in cases
vhere parallel systems have failed. If operation requires high inertial loads
at high frequencies, then the valve’s parabolic characteristic becomes very
significant; and the model must include some linearized representation, such
as a describing function, whereby frequency and phase characteristics are

functions of actuator displacement amplitudes.

1.4.4 Aerocelastic Modeling

In this section, a summary of the derivation of a simplified aeroelastic
model will illustrate how the equations (structural, aerodynamic, and
actuator) are interfaced. Simplifying assumptions are stated as nerded; e.g.,

a particular lumped parameter representation of the structure iz as:rumed.
The development of a reduced-order aeroelastic model begin~ with an

intermediate sized model having more modes than those finall. inicnded: then

it is reduced in such a manner as to preserve certain residual «fifeects of the
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eliminated modes. The intermediate model results from modalizing and

truncating a larger model.

The initial equations define the larger system in terms of the structural
composition and the aerodynamic forces which act upon it. The structural part
of the model represents all of the main airframe components (wing, fuselage,

tail, etc.).

1.4.4.1 The Modalized Equation

Standard procedures, in which the small perturbation dynamics of the

airplane are defined in terms of rigid body displacements and natural

vibration modes, lead to equations of the following type:

2
[T7) (M)s” + [K) - B [a]) [T] () -

2 2
(T'1 (C-(M1s® + B (aD) (D] (4} + B~ [B] (a]) (1.6)

The mass matrix [M], the stiffness matrix (K], and the aerodynamic
matrices [A] and [B] are coefficients of displacements of discrete structural

nodes.

By means of the modalization matrix [T]) and its transpose [TT}. the
rigid-body degrees of freedom and the natural vibration modes are accounted
for by the modal coefficients of {z}. Control surface deflections are shown
separately as {d} and each column of [D] defines a shape corresponding to the

associated element of (d}.

1.4.4.2 Modalization
In anticipation of modalizing the system equations, the differential

equation of the structural model with n degrees of freedom are w1itten in the

matrix form:

1-41




(Ml {Z} = -[K] {2z} + T (2} (1.7)
k

vhere I {Zy} includes all forces, except the inertial and stiffness forces,

vhich are shown separately.

Modalization begins by finding the n eigenvalues of [M‘1] [K], which are
all real and positive. The the m eigenvectors corresponding to those m
frequencies which are considered essential to the intermediate model are
computed, and an nxm modal transformation matrix [T] is formed from the set of
eigenvectbrs. The equations are then transformed to modalized form, having m
generalized coordinates of mode shapes {q}, which are the new variables. The

transformation is:
{z) = [T] (q) (1.8)

Substituting Equation (1.8) into Equation (1.7) and premultiplying by the
transpose of [T}:

(TT] (M) IT) (§) = -ITT) (K] (T) (q)} + (TT} T (24} (1.9)
k

In a passive flexible system, the inertia and stiffness matrices each are
symmetrical; so, with appropriate scaling of its columns, [T] is scaled such
that [TT] [M] (T] = {I]. Then [TT] [K] [T] = [A]} is a diagonal matrix of

eigenvalues. This reduces Equation (1.9) to:

{q} + [(A] (g} = {Q} (1.10)
where:
(Q) = [TT) T {2y} (1.11)
k

is the generalized force.
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1.4.4.3 Forcing Functions

The expression for the forcing functions I {Zy} includes steady and

unsteady forces dve to mode dynamics in smooth air, aerodynamic forces in
turbulent air, aerodynamic and inertial forces due to the control surface
dynamics, and mechanical forces due to the actuator coupling between the

control surface and airframe structure.

Aerodynamic Forces

Steady and unsteady aerodynamic forces due to node dyna..ics are:

sz
(2.} = 5 (4] {2} (1.12)
where:
(4l = (arciiv] (5 + £ 5

[AIC(ik)] is a matrix of aerodynamic influence coefficients, functions of the

reduced frequency k = wc/V.

The derivatives represent the set of element angles at each mode and the

set of angle-of-attack increments due to the vertical velocities at each mode.

The operator [A] is sometimes denoted as [A(p)], where p (= sc/V) is the

nondimensional equivalent of the Laplace operator, s = ¢ + iw.

Gust Induced Forces

Frrces in turbulent air are:

2
(2,) = & [B] (&)

where:

(@ = 5] (et P (1.13)
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and, [B] , sometimes denoted as [AIC (ik)], is a matrix of aerodynamic

influence coefficients, functions of the reduced frequency k = wc/V.

Control Forces

Forces due to control surface deflections include both inertial and

aerodynamic forces. The revised set of aerodynamic forces is denoted as:

2 2
2 (Al (2) + (29) = E- [A] (zy) (1.14)

? (zg) + IR} [d)

vhere {z4q} is the subvector of state variables in {z}, at whose locations the
control surfaces {d} are located. The set of deflections [R] {d} are
superimposed on the motions corresponding to (24). [R] is a diagonal matrix
of radii from the surface hinge lines to the nodes on the surfaces. In the
above equation, if the aerodynamic matrix [A] is partitioned, the equation
leads to an expression which separates {z3}, the control surface aerodynamic

forces, from those of the main body:

(8,71 (8,3 [{z4} + (R} (d}| T (a] {z} + (A] [D] (d}
vhere:
o - (7]
Therefore,
on
{23} = 'E_ (A] {D] (d} (1.15)

Similarly, the inertial forces due to the control surface arcelerations
are separated from those due to other accelerations by partiti-ning the mass

matrix.
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. (z,) . B
(M] {2} - (2} = [M] (2g) + }R] (| = M1 (2} + 1) D] (d)

{z,) = - [M] [D] {d) (1.16)

Collecting the forces in the summation from Equations (1.12) through
(1.16), and transposing such that the terms which are functions of {z} are on
the left hand side; then modalizing in accordance with Equation (1.9), yields

Equation (1.6).

1.4.4.4 Actuator Interface

The control surface interface in Equation (1.6) is based upon the

assumption that loading effects do not delay any actuator, i.e., actuators
provide whatever force is required to generate {d}. If this assumption does
not hold for any actuator, then that particular actuator is excluded from {d}
and an additional force expression instead is added to the right-hand side of

Equation (1.6).

A lightly loaded hydraulic actuator can usually be represented by one
pole (first-order transfer function) per servo stage. This is not so in the
case of a heavily loaded actuator. Both interface types are explained in the

following subsections.

Actuator Position Coupling

A particular control surface angle d;i (an element of {d} in Equation
(1.12)) usually is related to the corresponding command signal d.; as a first-

order transfer function:

, 1 <i <k (1.17)

With the load force on the hydraulic actuater negligible. the mntion of

the piston is simply the integral of the servo eirror; so the tranziet function
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is a first-order lag with its time constant equal to the loop gain of the

servo.

Actuator Force Coupling

The actuator force driving a control surface is computed from a hydraulic
servo model vhich includes the dynamic loading from the aeroelast!ic model of
the surface. The actuator force Fa is related to the actuator dicplacement Xj

and the actuator command x. by:
Fy = Ho(s) x. - Hy(s) x5 (1.18)

Equation (1.18) makes it possible to account for the statir and dynamic
loads on the control surface due to its own motion and also due tn the motion
of the main surface to which it is attached. The transfer funcrions H.(s) and
Hy(s) are computed from the servo characteristics. The force F, i~ applied by
the actuator to the connecting points zg and zg on the fuselage and control
surface respectively. The points are included in the degrees of freedom {z)
of the structural model and are related to Equation (1.18) through rhe

actuator displacement:
Xy = 2g - 2f (1.19)

Figure 1-5 illustrates the meaning of the above equation. The figure
shows interface between one of four activators and the dynamic inertial load

model of a symmetric flexible control surface.

The vector {zq} is partitioned further, such that:

{z,} z
[zl} = 2 where [za} = t

[Za} Zs

(1.20)
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Figure 1-5. Simplified Load Dynamics Model - Actuator Interface
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1.4.4.5 Equations in Stgte—Space Form

When Equation (1.6)\is changed to the state space format, it is necessary
that [A(p)] and [AIC(ik)] {e'ik FS/¢y pe approximated by algebraic functions
of p. A third-degree polynomial approximation might be adequate for the lower
part of the frequency range of interest. The usual approximation, however,

recognizes the presence of aerodynamic lag by the inclusion of p/(p+b) terms.

Real and imaginary values at discrete frequencies of all terms which
include [AIC(ik)] are used to determine the coefficients of each third-order

polynomial approximation.

Applying the third-order polynomial approximation, the aerodynamic force

and gust force in Equations (1.12) and (1.13) reduce respectively to:

oV’ A A A.)s? 3 1.21

7~ (Al {2} = ([Ag] + [A[]s + [A,]s™ + [Aq)s™) (2} (1.21)
and

o -~ 2 3, -

5~ [B] (a} = (IBy) + [By)s + [B,ls™ + [Byls™) (a} (1.22)

‘The [Aj]'s and [B;]’s are computed least-square fits to the desired functions.

Dryden Gust Representation

In this illustration a 2-D gust is assumed. It has a Dryden pover
spectral density. Then the expression for the gust angle {&} is obtained by
considering white noise n(t) with a unit power spectral density to pass
through a second-order filter whose transfer function corresponds tn the

Dryden powver spectral density for vertical gusts.

In Equation (1.13), {a} is defined as [31 (e-ik FS/¢c} . gere the

definition is changed to:
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(&) = (e~1k FS/cy gy
vhere ¥ is the scalar RMS intensity of the gust.

The transfer function of the second-order filter is converted to state-
space form by the same method that will be shown to convert that of the
heavily-loaded actuator. The resulting state-space equation is:

s{9} = [V] {9} + {N} n (1.23)

The vector {w} is included in the force expression Equation (1.22) as

oy [B] (s} = ([B,] + [B,]s + [B,]s% + [B,]s°) (6] (¥) (1.24)
? - 0 1 2 3 *

" where [G] is an nx2 matrix whose first column is all 1’s and whose second

column is all 0’s, because the two elements of {?} are & and a dummy variable.

Lightly-Loaded Actuator Displacements

The state-space equation for the set of control-surface transfer
functions, Equation (1.17), is obtained by cross multiplying each individual

transfer function and forming the k-vector.
s{d) = [1q71] (- {d} + {dc}) (1.25)
vhere [T14] is the diagonal matrix of time constants.

Heavily Loaded Actuator Forces

The expression for the actuator force coupling is expressed in state-
space form using the coefficients of the expande! versions of the transfer

functions in Equation (1.18).
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2
(als + bl) X, - (s™ + a, s + bZ) Xa

F =
a d.s +d.s + d

Cross multiplying and separating out the zero-derivative terms, let:

dgFy = ~dF + byxo - boxy

After integrating the remaining terms,

dZ?a = lea + a1Xe -~ ia - agxy, + doFy

Recalling from Equations (1.19) and (1.20) that x; = [-1 1] {z,}, then the

actuator force is represented by the state-space equation:

(£} = [F1] (£) + [Fal (Za) + (F3] (2a) + (F4) xc (1.26)
where:
[Fa -4, d, A 1 -1
(£} = lr-‘b AR o [ 20 ol = o o /%
- a -a a
R 2 2 1
(F3l = |p b, | 7y 0 ond (B} = |y | /4y

The matrices in Equation (1.26) are made compatible with the rest of the
system by fitting them into matrix coefficients of the n vector {z}) as

follows:

(£} = [F1] (£} + [Fa] (2} + [F3] (2} + (F4) x, (1.27)

vhere:
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[01 [F,] [0}]

[[01 [F,) (01]

(z)] 17,
{z} = {2z 3| ,» [F4]

%)
|
((zz}
’f
The force acting on points {z,} in {2z} = z is [Fa] (f}.
s
{z4}
vhere:
(0} (0) )
F1= |1 S| 5 so (F1 (8 - e
0} (0 0]

This force is added into Equation (1.6) which then becomes:

2
(171 (M) (T (@) + (TT) (K] (7] (@} - [T7] & (A] (7] {q} -

2 ]
[T7) (2= (IB) (&) + [A) [D) {d)) - [M] [D) (d)) + (1T} [F,) (f)

Control Surface Deflection in Expanded State-Space Form

(1.28)

(1.29) -

In a form similar to that of Equations (1.21) and (1.22), the polynomial

representation of the actuator forces due to the surface deflections is:

2
R%— (A] [D] {d} = (ICo] + [Cyls + [Cols + [Calsd) (d

(1.30)

Then from Equations (1.29), (1.9), (1.11), 1.21), (1.24). (1.28), and

. (1.30), the generalized force is:
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(Q) = (TT] ([ag) + [A1)s + [Ag]s? + [A3]s3) [T] (q)
+ [TT] (IBg) + [Byls + [Byls? + [B3isd) (6] (®
+ ITT) (ICg) + [C1)s + [Cp)s? + [C3)s3) (d) - [TT) [M] (D]s? {(d}
+ (TT] [Fa] (£}
vhere from Equation (1.27), with [TT] [M] [T] = I, (1.31)

(£} = [F1] (£} + [F3] [T]} {a} + [F3] [T] (q)} + (F4} %

The notation is simplified by:

(TT] [Ag] [T] = [Agl, [TT} (Bl = (Bgl, [Fyl [T] = (Fp}, etc.

Substituting Equation (1.31) into Equation (1.10), then transposing and

collecting some of the coefficients of {q} yields:
(-1A31s3 + (I11] - [AgD)s? - [Ay)s + [A] - [Ag]) {q} = [Fa] (£}
+ ([B3]s3 + [By1s? + [By]s + [Bgl) (G] (v)
+ ([C31s3 + [Cy1s? + [D)s? + [Cq]s + [Col) (d} (1.32)
and
s(f} = [Fy] s{a) + [F3] {q} + iFy) (£} + (F4) xc (1.33)

The complete set of equations describing the system in state-space form
comprises Equations (1.32), (1.33), (1.25), and (1.33).
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Vith each of the above equations written with only the highest order of

s, along with its coefficient, on the left hand side, the set is expressed as:

Cix} = [A]{x) + [B]{u) (1.34)

vhere {x} is the vector of state variables and {u} is the vector of control

variables.

Since the matrix coefficient on the left-hand side must be inverted, it
is necessary that it be nonsingular. Therefore, an expression must be found
to define higher derivatives of {w} and {&}. This is accomplished by adding
additional lag terms in the transfer function for &/n. Additional lag terms
need not be physically justified but can be chosen easily if it is desired to

renresent any known characteristics in the higher frequency ranges.

The third-order polynomial representation of unsteady aerodynamic
influences permits good accuracy only through a certain frequency band; but at
higher frequencies, the model is not correct. Indeed, some of the extraneous
poles resulting from the polynomial might be on the right-hand-side of the s
plan (unstable). These must be removed from the transfer functions in a
manner that will retain their residual influences in the lower frequency range

where the model is considered to be accurate.

1.4.4.6 The Output System
Any control law which is based upon a modalized system must be reflected

back to the original coordinate system. Assuming that "sensors" of the
dynamic modes (q) are the only signal sources in the control law, then the
vector of feedback signals [F] (q} would be computed as follows. Let [H] be
an mxn matrix of 1’s and 0’s used to select the [z} elements at which the

sensors will be placed.

Now since:

(B] {z} = [H] [T] {a}
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then,
[F1 (q} = (F] C([H] (TDH~-}{H] (2)

In the matrix of feedback gains, ([F]) ([H] [T])‘I[H]) all the elements
are zdro excepl from the selected sensors. The best locations of the sensors

is determined by observation of the mode shapes.

1.4.4.7 Model Order Reduction
It is common practice to reduce the order of Equation (1.6) by excluding

the high frequency modes from {q}. ‘Usually the required accuracy of flutter
related analyses dictates the number of modal degrees of freedom to be

retained.

The state~space model, if obtained directly from a structural dynamics
equation of sufficiently large order to properly represent flutter modes,
usually is of very large order, say 100 or more. Once the large-order model
is available, it can be reduced to a significantly smaller order by one of

several available methods.

Two entirely different approaches to model reduction of linear time-
invariant systems are summarized here. They are: 1) balanced approximation,
and 2) spectral decomposition. The balanced approximation approach is better
known, having been thoroughly developed and discussed in the technical
literature since about 1979, at which time the importance of model reduction,
as applied to multi-input/multi-output systems, had barely been recognized
[{10j. The spectral decomposition approach was developed and used by Lockheed,
beginning in 1974, during studies that led to the development of the L-1011
Active Control System [5], [6].

More recently, Lockheed has been examining two forms of frequency
compensation vhich supplement the balanced approximation approach: but these
topics are beyond the scope of this report. The first of the frequer-y
compensation methods, developed by Honeywell, applies a balancing algorithm to
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a full model which includes frequency-dependent weighting. The second method,
developed by the University of Southern California, truncates the model using
approximate balancing; then applies the balancing algorithm to the truncated
after bilinear frequency weighting.
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SECTION 2
LINEARIZATION OF FLEXIBLE AIRCRAFT HYBRID-COORDINATE
DYNAMIC EQUATIONS AND INCLUSION OF AERODYNAMIC
AND GRAVITATION LOADS

2.1 INTRODUCTION

2.1.1 Scope
The complete dynamic equations of motion for a flexible aircraft (of

arbitrary configuration undergoing arbitrary motion and experiencing an
arbitrary load) using a hybrid-coordinate system has been derived by this
author. The effort here is to examine these results in light of practical

applications.

Specifically, the complete hybrid-dynamic coordinate equations will be
linearized and expanded to include the effects of aerodynamic and
gravitational forces. The former is done by keeping track of a judicious
choice of assumptions. The latter is not a detailed aerodynamic development,
but rather a relatively general method in which aerodynamic forces (which are
functions of the structural motion) may be directly accounted for.
Gravitational forces are accounted for directly and completely. 1In addition,

several examples are investigated to test the validity of these results.

2.1.2 Development Qverview

Since the development herein is a continuation of that of Reference 1 the
variable notation used is followed as closely as possible. Figure 2-1
summarizes the notation used in this report. Specific variables and operators
unique to this report are defined as needed in the text (mostly in Paragraph
2.1.4). A summary of the basic symbol notation used is listed in Fignre 2-1;
and sunmary of the vectors and vector bases used is listed in Figme ?-2. For

a complete list of symbols see "List of Symbols" at the end of this veport.

This section will present a summary of the development «f the amplete

hybrid-coordinate dynamic equations. The first part is a detailed de:cription
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Capital or lower case: scalar quantity, or identifies a
point or bedy.

Subscripted: matrix element, or identifies a point or sub-

body .

Underlined: vector.

Underlined and subscripted: vector component.
Double underlined: dyatic.

Underlined and braced: wnit orthogonal vector base.
Bold: column or square matrix.

Braces: column matrix, or additiocnal parentheses.
Brackets: square matrix, or additional parentheses.
Superscript T: matrix tzanspose.

Superscript -l: matrix inverse,

Prime: Matrix expanded to j partitions of 3 (j=n,n-1).
Over-bar: Matrix associated with reduced variable.

Double subscript: Matrix representing cesult on j due to
input at k.

Subscript o: quasi-static component of variable.
Leading 4: perturbation czmponent of variable.

Pre-superscript a: variable associated with aerodynamic
model.

Any operator superscripting a closing pacenthesis acts on
the contents of the parentheses as a whole.

Figure 2-1. Et ic Symbol Notation Used

[ ]
|
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FOR THE STRUCTURAL MODEL:

{i} 1inertial reference frame.

{B} rceference frame fixed to body B.

{a} reference frame fixed to body A.

{ag]} reference frame fixed to rigid sub-body Ag.

- direction cosine relating (b} relative to {i}.

C  direction cosine relating (a} relative to (B}.

Cg direction cosine relating {ag} relative to Tg}.

T rotaticn of (b} relative to {i}: defined in (b}.

By rotation of {a} relative to (B}: defined in {a}.

Bg rotation of (3ag)} relative to Ta): defined.
in {ag}.

X cdefined in

< defined in

R defined in

Ty defined in
Ug defined in

Iwpioolr

FOR THE AERCOYNAMIC MODEL:

3lagg)} reference frame fixed to panel load point.
3(ag)) reference frame fixed to panel normal wash point.

3Cgp direction cosine matrix relating 3{agg} to {b}.

3Cg1  direction cosine matrix relating 3(3g)} to (Bj}.

3Ceao direction cosine matrix relating relative
velocity to 2(agg}.

defined in 3({ag

3gs; rotation of 3{ag)} relative to (bj:
defined in 3(aq}. -

28 o rotation of relative velocity relative to
3lagg): defined relative to relative velocity.

3gyg rotation of a(as?} relative to (b}:
0 -

3y,  defined in (b}.
g defined in (b}.

Figure 2-2. Vectors and Bases Summary
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of the vehicle model. The second part is a list of the important steps in the

developed of the equations.

Linearization of the general dynamic equations of motion is considered
first. This will be done in two steps: First, the coordinate transfermations
are examined more closely and approximated (Paragraph 2.2.1). Then, the
independent variables are broken down into two parts: quasi-static and

perturbation components (Paragraphs 2.2.2 and 2.2.3 respectively).

In Paragraph 2.3 tvo external loads are investigated. The aerodynamic
forces are considered in Paragraph 2.3.1. First, a generic aerodynamic
element model is conceived. Then, this model is set up so as to be
incorporated into the dynamic equations of motion. A similar procedure is
used in Paragraph 2.3.2 for the incorporation of the gravitational forces into

the dynamic equations of motion.

In the first part of Paragraph 2.4.2 the hybrid-coordinate equations are
evaluated under rigid body assumptions. The simplified results are then
compared to classical developments for the rigid body stability derivatives.
In the second part of Paragraph 2.4.2 a simple test case is evaluated. Each
variable is tracked so as to bring a better understanding of how they affect
the hybrid-coordinate equations. Dynamic equations are also developed
relative to a Newtonian reference frame for the same model using classical

techniques and these results are compared with the hybrid-coordinate results.

2.1.3 Hybrid-Coordinate Definition

Consider a flexible aircraft, Body A, attached to a massless rigid Body B
at a Point Q (See Figure 2-3). The aircraft is idealized as a collection of
linear-elastically inter-connected (such that the component inteinal restoring
force, stress, is proportional to the component structural deformation,
strain), discrete rigid sub-bodies, Ag, s=1,...,n. Body B, being mas=less,

can be any arbitrary shape - internal and/or external to Body A.
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SUB-B00Y A,
(UNDEFORMED)

[Slay (BOOYS

\b}

SUB-BODY A,
(DEFORMED)

Fi - isc i
gure 2-3. Discrete-Parameter Aircraft Element Coonrdinates«
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It is convenient to describe the motion of each rigid sub-body, element,
Ag, relative to a set of dextral orthogonal unit vectors aj, ap, and a3 fixed
in reference to Body A prior to deformation. Likevise by, bp, and by are
fixed to Body B and iy, iy, and i3 are fixed to the inertial reference frame.

These unit vectors are written as:

a i
{y:{_;_;} (9}={§§_} {1}={i§} (2.1)
b i

3 3 3
These arrays are related to each other by direction cosine matrices C and
© such that:

(b)=6{i} or (1)T=(b}7e
(2.2)

(al=C{b} or (b}T={a)Tc and (1)7-(a)Tce

where

T
ckl = (ékyl) / |3kl|21| k,1=1,2,3

and,
= (bYiy) / by []i] k,1=1,2,3
81 = (&dy b iy »1=1,2,

The inertial position vector, Pg, of element Ay (the translation from
Point Qg to Point Pg) can be described as a summation of the deflection from
the undeformed state, ug; the undeformed position relative to the constraint
Point Q, rg (See Figure 2-4); Point Q’'s position relative to the 1eference
Point O of Body B, R; Body B’s position relative to the center of mas: (CM) of
the vehicle, ¢; and the vehicle’s CM inertial position, X (See Fignre 2-5),

As shown in Figure 2-4 the inertial position vector, Pg, may be viritten as:

Pg=X+c+Bsrg+ug (2.3)

2-6




SUB-BODY Ag Qg
(UNDEFORMED) —___ —

Ug
Ps

SUB-BODY A/
(DEFORMED) /<

{as}

Figure 2-4. Rigid Sub-Body Local Coordinates
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Figure 2-5. Aircrafr Inertial Coordinatcs
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where it is obvious to describe X in terms of {i}, ¢ and R in terms of (b},
and rg and ug in terms of {a}. This series of position vectors can now be
represented as column matrices premultiplied by the transpose of the

appropriate vector base:

§=(;1,12,13)§§}={1}Tx (2.42)
3
‘1 T

c=[91,92,b3}{c2}={9} ¢ (2.4b)
€3
1 T

R={91,92,§3}{§2}={p} R (2.4c)
3
s T

£S=(§1,§2,§3}{§S;}=(3} rg (2.4d)
S3
s T

Es={31’32’33} us;}=[§] ug (2.4e)

S3

In addition, a set of dextral orthogonal unit vectors agj, ag), and ag3
are defined fixed relative to its corresponding rigid sub-body, Ag. As wvas
done for {a}, {b}, and {i} in Equation (2.1), write this new vector base is

written as:

a
tgs}={§:;} (2.5)

This new vector base, {ag}, is related to the {a} vector base via
direction cosine matrices, Cg; as are {a} to {b} and {b} to {i} via C and

caVeon

——am s
LtespelaViLye

{ag)=C. fa) (2.6)

34
|
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The rotational deformation of each element, B;, can be defined relative
to {ag) and be represented as a column matrix of By component magnitudes
premultiplied by the transpose of {ag}; as was done for the vectors defined in

Equations (2.4):

Bs1 T
Bs={as)135,5354) {Bs; 1={as]) Bs (2.7)
Bs3

The position of any differential mass element, dm, relative to the

vehicle center of mass, p, is expanded as (See Figure 2-6):

=c+R+r +u +
P=CHi+ls ST 8s

=E+E (2.8)
wvhere ¢, R, rg, and ug are as before and pg is the vector from the center of

mass of sub-body Ag to the differential mass, dm, in Ag.

Likewise, the inertial rotational velocity of each sub-body. Wg, is

expanded as:
95=Ss+33+9 (2.9)

vhere gs={§s}TQs is the angular velocity of the {ag} reference frame with
respect to the {a} reference frame, ga={§}TQa is the angular velocity of the
{a} reference frame with respect to the {b} reference frame, and gg{Q]Tw is
the inertial angular velocity of the (b} reference frame. The angular sub-
body deformation, By, and the angular element velocity are defined relative to

the same vector base, {ag}. Thus:

P T-
5=7¢8s={as) Bg (2.10)

vhere the superscript on the derivative operator implies diffetentintion with

respect to the {(ag} reference frame (See Paragraph 2.1.4)
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Figure 2-6. Differential Element Coordinates
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2.1.4 Operators

Before summarizing the development of the dynamic equations it is
necessary to define the operators and operations that were used. The most
common fundamental identity used is that of the vector/dyadic differential

calculus identity:

f1, f£2

d, ““d, f1 f2
V=gV @ XV (2.11)
£1, f2
d. ‘4. f1 f2 £1 £2
—qeD=—giD+ @ XD-DX @ (2.12)

vhere V is any vector, D is any dyadic, flgfz is the angular velocity of any
reference frame f2 rela;ive to any other reference frame f1, and the
superscript preceding the derivative operator indicates the reference frame of
differentiation. Equations (2.11) and (2.12) require the cross product of two

arbitrary vectors, V and W, be expressed in matrix terms:

Vxv={e) Tvx (e} TW=(e) TOW (2.13)
where:
0 -V, V
vadvl v=dwl i=l v. 03 -vi| (2.14)
ve vl v v, ot
3 3 2

vhere the tilde operator (~) over a three by one matrix represents the
corresponding skew-symmetric three by three matrix, as expanded in Equation
(2.14). A tilde operator over a closing parenthesis implies the tilde

operation on the contents of the parenthesis as a whole.

Next, a set of Boolean operator matrices are defined to facijlitate
combining all the degrees-of-freedom into a single matrix equatirn. These are
the carrot operator (°n), the sigma operator (L,), and the pi apcravar (M)

defined as:
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40 ... 0 AO ... 0
cn (0787 ... 0 ‘nh [0A...0
(as)"=]; - | mote (&)=, : (2.15)
ixi 00 ... a4, iXi (00 ... A
i-nXi-n i-nXi-n
and,
(i) g(i) |, g(i)
(i) g(i) ., (i)
(E(i)THE : : :
g(1) g(i) ... p(D)
i‘nXi'n
E(1)
g(i) lT
£ L s L sy o o] (2.16)
: iXi-
g(1)
i-nXi
vhere
1 0
(i) [ . ]
0 ‘1],

is an iXi unit matrix.

Finally, vector components (including that of the independent variables)
may be combined in a manner similar to the Boolean operator matrices. These

column matrices are denoted by a superscript ’:

1 LA
9,
9 qlz
a} 9
q! = 2 =ﬁ '3? (2.17)
3nX1 : 92,
q’ : 1, 1is the ith
n R ki
n component
qpis 3X1 )2 of q
n3)
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2.1.5 Development of Hybrid-Coordinate Dynamic Equations

The development of the dynamic equations is in four parts: First, the

flexible vehicle equations; Next, the total yehicle vehicle equations; Then,

the auxiliary equations; And finally, the complete dynamic equations. 1In the

first two parts the development begins from first principles - the Newton-

Euler equations:

vhere mg is the mass of the s rigid sub-body, My is the vehicle mass,Ig

are the s rigid sub-body and the vehicle moments of inertia matrices

(2.18)

and I

respectively; §s=[§}TFs and Is=[E}TTs are the resultant external force and

torque applied to the s subbody; §={§)TF and I:{Q)TT are the resultant
external force and torque applied to the vehicle; and Pg, V, a, Hg, and
the inertial sub-body location, total vehicle velocity, total vehicle
acceleration, and angular momentum of the s sub-body and total vehicle,

respectively; all with respect to the corresponding body’'s center of mas

By allowing the origin of Body B to coincide with the vehicle cente

H are

S.

r of

mass prior to deformation, (c is initially zero) c may be expressed as a’

function of u:

vhere
[JS:mS/MA

is the sub-body mass ratio.
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It is desirable to express time derivatives of c such that the direction
cosine matrix C does not need to be differentiated with respect fo time. It

can be shown that:

. n T - T~ n
c=- Y.C ugug-C & ) ugug (2.20)
s=1 s=1
and:
n . n .
[2 s+932usus+29a2u 5+ @@Zusus] (2.21)
= 5_1 =1 S=1

2.1.5.1 Flexible Vehicle Equations

For any rigid sub-body the translational and rotational equatiors of

motion are developed independently. From Equations (2.3) and (2.18), the

translational vector equation becomes:

d2
Fg=m ;——2(X+C+R+rs+us) (2.22)

or, expressing all variables with respect to the {a) vector base yields the

following matrix form:

Fg=mg {Gs—kzzl{ki;k}+ms{2 (93+ij [Caﬂ +Qa) zgukuk}

+ms{[(93+Cw)+(Cu)(C(»)+2(Cw 3. 23 |ug

(Cuc + 034 2CaC 92, 929 Coa T) fukuk}

k=1

+ms{[ceii-ci&»c'&£ﬁ)+[(ci.»s'zaj»,(CmS(Cwﬁz(CwTs'za&aZza}rs‘I o (2.23)
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From Equations (2.9), and (2.18), the rotational vector equation becomes:

faf'

(w+22+05)+ (e P4 25)XL 5" (e 22+95) (2.24)

|3
7]
[
"
7]
al

t

where gs=id(§3)/dt. Or, in matrix form relative to the {a} vector base:

TS=C§ISBS+{F§ISCS((Cw+935)+((Cw+Qa+C§éSS)C§ISCS—(CglsCS(Cw+Qa))}Cgé'

+CeI¢Cq (c&» 3, (Cw) Qa]+ (c«.» ga]chscs (c«» Qa] (2.25)

Using the Boolean operator matrices defined in Equations (2.15) and (2.16),
the n sets of Equations (2.23) and (2.25) are combined into a single matrix

equation of motion for the flexible aircraft.

Mq+Dq+Gq+Kq+Aq=L (2.26)
where:
u!
q= (2.26a)
6'
5 1] [erom- o] 1o
M= = A . (2.26b)
T
[0] My [0) (c5) "R
D! D!
TR , T
D= note: DRT=DTR (2.26¢)
D’.. D!
“RT "R
Gr. (0]
G-| T (2.26d)
L[O] Gé
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-2u.r [[ 93, Cu [3(3")- M_i{g(”f"nf] [0] 1

)"

| 101 (cﬁ]"nR (cs(car Qaicgj"+ (ccar ga+c'§'ssic§]"HR- (1csTsCs(Cane®) Tcg"

K= Ké KéR note: KﬁT=Kf§ (2.26e)
Ker Xr

Az 10]

A (2.26f)
101 &
[ T . $n
(o7 (T (a2 (cayEnsaada) [p3m) . L (a3 "
My (23+(Co) + (CuY (Cu] +2(Cuj 22 200" [ (3 MA(E( e (0]
(0] 101
)T (2.26g)
L

('"T [(cej"ii'+ (C:”CZ';’]"R’+ [('365+33+(Cw5(0u5+2(c4.5§a+§a§aj"rr]+f
(e [ ] |

() G e[ [ ]

In the above equations, note:

D and K are the free-free structural damping and stiffness matrices for
the flexible vehicle.

f and t are column matrices of load components applied exteinallw to the

sub-bodies, resolved relative to the {a) reference frame.

Subscripts T and R refer to translation and rotation, respertively.
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'llllo...Ow

Omg ... O my 0 0

s e : and  my= 0" my 0 (2.27)
N ’ 0 0 my

00 ... m ) J

11 0 _ 5,. 00 .
0I...0 11

. and  I4=10 Ij22 0 (2.28)
-00...]:“‘ 001j3

2.1.5.2 Total Vehicle Equations

In the previous

for convenience):

and:

The final form

{b} reference frame.

the motion of all the rigid subbodies to each other.

equations of motion for the total vehicle are presented.

section, equations of motion were presen.ed that relate
In this section,

As was done for the

flexible vehicle equations, the total vehicle equations were derived from

first principles, the Newton-Euler equations (Equation (2.18), rewritten here

i
d
=gt (MaY)
=MX (2.29)
i
d
T=37H
-[bdx-wwxr-mx-&))m 'c'xc+idjbd Xpdm (2.30)
= \ge= @il iaCi e gy [qt PR :

of the total vehicle equations is written in terms of the

Also, use is made of the sigma and pi operators.

Equation (2.16), to obtain:

F=M, 08X (2.31)
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and:

(E(”j)nT {[Hv'r HVR]£{+ [GVT GVR]{;+ [AVT AVR]q}=T— (E(B)T“T{LV’I‘+LVR}

where:

Myp= HT{[[R+C (usus]]] - Wl- 8(3)?’)1,1. c’ us }(chn

T .T

Myg= (cc]nR

| GVT=HT{[2w(RT+r£C+u'£C)-2@T(R+C rg+C us) (3)+[ [ ( )D

+[R+CT (us +rs]](u+20 Qa)] 3(3)5“&[. Tug ) @c]"}(c'rj"

Gyg- {- ([cTestscse (wrc™ <) IE (cTcE]"uR [esc [“*CTQE‘*‘CTCEEJ]“

[(wcTem T ) el HR(cscjn} (¢t
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(2.32)

(2.32a)

(2.32b)

(2.32¢)

(2.32d)




Ayy HT{[ZN(RT 2rgCrugc) (] Qa) [ (ReCTrgecTug) ] (cha) " ga] cTe ol

oo T (670 [T (€T -t goTug T
[T ) o 2T T ey
(R s ] (€70 [ s ] [ (T

) (oo [ [ i)

€] focTan] e SR ] ]

. (£ ([c" (o 5na) }

LVf"'t{‘

{4 )] 7T (o) [ ()

HT{Zw(RT Tc) (c 93) [ (R c’r ]](T@j- (R+CTrS]wT[CTQaj

Lyg- {(c'f

+[u(R+c rs)] (c 93)+( +CTrS) [(cTéa+ZcTQaj+ [chaj (o»CTQaH

. [[CTQajCTrs] (c"gaj}n (cT]"r'
ARG S

{ [l o)™ () e (0 o+ (6]

{

") o)} €7
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(2.32e)

(2.32£)

(2.32g)

(2.32h)




These dynamic equations ,Equations (2.26), (2.31), and (2.32), parallel
the work of P. W. Likins in his treatment of flexible spacecraft (Reterence
1). However, this in not sufficient to be used for practical applications as

will be discussed in more detail in the next section.

2.1.5.3 AuRiliary Equations

The overall matrix equations of motion, (Equations (2.26), (2.31), and
(2.32), of dimension 6n, 3, and 3 respectively), are written in terms of the
sub-body deformations, q. However, the coefficients of these equations are in
terms of the overall vehicle motion (w, @3, and X; 3 unknowns each) and the
direction cosine matrices (®, C, and Cg; 3, 3, and 3n unknowns, respectively);
also q represents 6n unknowns. Thus, there are 9n+15 unknowns with only 6n+6
equations. Hence, 3n+9 auxiliary equations are required to uniquely describe

the system.

There are three auxiliary equations associated with each Cg, which is a
function of Bg. This is best be shown by expanding Cg into its component

Euler angles:

{as)=Cs4Cs,Cs, (a) (2.33)

These Euler angle components are expressed in terms of the rotational

deformation components of fg:

cBsy SBs,q 0][cBsy O -sBs,] (1 0 0
0 0 1 sBs2 0 cBS2 0 —5651 ch1

ch3c652 cBSBSBSZSBSI+sﬁs3CBS1 —cBS3sBszc651+sﬁs3sBs1
= -sBs3c652 -SBsySBgySBs +CBs Chgy -SBgySPg,CBs +CBsySBg (2.34)
sﬁsz —Caszsssl CBSZCBSI
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where c(*) and s(*) are abbreviations for the cosine(*) and sine(*),
respectively. Thus, Cg is now resolved in terms of the desired 6n+6 unknown:

specifically, Bg.

There are six auxiliary equations associated with ©® and C, vhich are
functions of w and @3, respectively. New angular vectors are defined: fg
which relates the rotation of reference frame {b} relative to reference frame
{a}, and T which relates the rotation of the inertial reference frame (i}
relative to reference frame {b}. pp is resolved relative to the {a} reference
frame and T is resolved relative to the {b) reference frame. C and 8 are
expressed in terms of fg and [, respectively, by expanding the Euler angle

components as was done for Cg in Equation (2.33):

[ cBpycPp, cPpySPp,SPR; -CcPpySAR,Chpy ]
+55336331 +sBB35631

C=[-sBp,cBp, -SPBySPB,SPR, -sPp,SPp,Cchp, (2.35)
+c631c633 +cﬁB3sBB1
sBB2 -cBBZSBBI CBBZCBBl |
and:
cel,el, el sT, sT,+sT el el sT, el +sT,sT

3772 3772771 773701 377277177370

2 S -sr3cr2 —sr3srzsrl+cr1cr3 -sr3sr2cr1+cr3sr1

sl‘2 -crzsl'1 crzcrl

(2.36)

C and O have been accounted for, but there are six new unknowns: @g and T.

The composite internal force applied at all nodes, Lp, due tn the
st.uctural stiffness, Ky (Note: this is not the same K as in the tlexible

vehicle equations), Equation (2.26) is written as:

(W)

K K
L l—-'q bqd Lo KL"BB K (2.37)
= = u = .
=A ;B “Fpa Ppup “Fgeg | [-B|7AdA

-B pa "Tgug “Tphg' OB
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vhere Eq represents all é6n loads acting on all n rigid sub-bodies due to the
vehicle’s structural stiffness, Fg and Tg are the forces and torques acting on
Body B due to the vehicle’s structural stiffness, and Ky has been pactitioned

relative to these three variables.

Since Body B is massless, the sum of the loads acting at Point O must be zero.
Vith Fg and Tg zero up and Bg are extracted from the lower two rows of

Equation (2.37), resolved relative to the {a} reference frame:

-1
g3 gl ; -

J '
Fra88 Taup -E) [KTBSB_KI‘B“BKFB“BKFB%] “Tpq

Thus, ug and Bg are nov functions of q. Equation (2.38) is substituted back

" into Equation (2.37), solved for L,=Kq, and extracting K (this is the K in

Equation (2.26) yields:

-1

K=K1,,q-&qu,,[[&BUB-KFB%&;;%MB“B] Kea

-1 [ i 1 ]‘1 ]
KFB“BKFBﬁB KTBSB KTB“BKPB“BKFBﬁﬂ KTBQ
-1

Frqen [K;lla Bs Tpup [KPB“B—KFB%K;IIBGBKTB“B] “Pha

-1
) [KrBan—KTB“BK;ll!“BKFBﬁB] Kqu] (2.39)

Now @@ (the first time derivative of Bg) can also be expressed as a
function of q by taking the first time derivative of the lower pemition of
Equation (2.38) (note: Bg was chosen to be resolved into the {a)} reterence

frame):
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a
{§}T93=—(§}Ta%53
-1

=f3}T[‘K;;ﬁBKTBuB[kFBuB—KPBﬁBK;;ﬁaxTBuB] KFBQ
-1 .
+[KI'BSB-KTBuBKI—?;uBKFBaB] KTBq]q (2.40)

The vehicle is not attached to ground. By definition, w is the time
derivative of . However, it is preferable to express I in terms of w (note:

T and w are resolved relative to the {b} reference frame):
t
r=_[ wdtsT* (2.41)
0

vhere I'’* is the initial rotational orientation of the {b)} reference frame

relative to the inertial reference frame, (i}

In summary: Cg has been expressed in terms of Bg; C and 93 have been
expressed in terms of Bg; ug and Bg has been expressed in terms of q; and ©
has been expressed in terms of I, which has been expressed in terms of «w.
Thus, the 3n+9 additional auxiliary equations required to describe the system

have been produced.

There are only n nodes (6n degrees-of-freedom) with mass being described
by én+6 equations. PBpg describes the rotation of the {b} reference frame
relative to the {a) reference frame. All the undeformed sub-body position
vectors, Ig, are time invariant with respect to the {a) reference frame and
must rotate as a rigid body relative to the {b} reference frrme. With £g as a
reference for the sub-bodies it is apparent that this "rigid body" roration,

Bg, can be arbitrarily defined.
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As the vehicle deforms, for a finite Bg, rg rotates about Point 0 from
its initial position, r§ (See Figure 2-7). Subsequently, the rigid sub-bodies
deform from this new position ug. Therefore, ug is a function of rg. If By
is set to zero, then rj is alvays coincident with rg, the reference for ug
(Shown as ug in Figure 2-7). This also implies that {a}={b} and that c=g(3).
Point Q is treated as a node that can deform up relative to the fa} reference
frame. For this point rg is zero. Since all rg traverse with Point 0,
including rp, up is always zero. These observations are substituted into

Equation (2.38), which defines ug and Bg (now set to zero) as a function of gq:

0}=K
{0} quq
=[x _ K ]q (2.42)
9dpd  49B4n q
n
or:
a=-K > K -3 (2.43)
1~ “qpq, 9gq )

wvhere g, can be any six deformation degrees-of-freedom associated with Point Q
through the stiffness matrix, and q is the remaining 6n-6 deformations.
This leaves only 6n unknowns for 6n rigid sub-bodies (the other six being X

and ).

2.1.5.4 Complete Dynamic Equations

In the previous section auxiliary equations were developed which reduced
the total number of independent unknowns to the number of inertially possible
degrees-of-freedom. In this section these auxiliary equations are
incorporated into the dynamic equations. Specifically, the incln=ion of two

sets of auxiliary equations will be presented:
First, the dynamic equations will be simplified using the observation that ug

and Bg are zero. And then, the resultant dynamic equations will he rewritten

in terms of the reduced deformation variable, q.
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Figure 2-7.

Relative coordinate Mo
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It was shown in the previous section that {a} being unique from {b} wvas
unnecessary. The development is equally general under this observation.
Fortunately, this greatly simplifies the results: 98={0} and c=E(3). This is

substituted into the flexible vehicle equations, Equation (2.26), to yield:

Mq+Dq+Gq+Kq+Aq=L (7.44)
where:
“lorg/ [ B el (u»c it
) ! ([CSI c m)icgjn
(0] Ag| | (0] (0] |
L L.i. _ -H'f[(ejn.x.:+ [:»Z)Z)jn‘(R'«tt']1+f 2. 440
L) |- (cg]"nk [cs)"&v - (Zc'g) Mg (cs)"m' t

and q, M, D, and K are as defined in Equations (2.26a), (2.26b), (2.26c), and
(2.26e), respectively.

Similarly, the total vehicle equations, Equations (2.31}, and (2.32),

become:

P=M,6X (2.45)




and:

(13(3)}1“'r {[Hv-r MVR]2{+ [GVT GVR]&+ [AVT AVR]q}zT— (1;(3)51“T {LVT+LVR}

vhere:

8

T.

g (C5) M

- ~ 3\n
GVT=HT{20)(RT+IZ+U'£)—2(OT (R+rs+us)E(3)+ [;)[R+us+rs)]+ (R+us+rsJ .(;)}

oo - [t (] el
w2 o o)} )"

Av-r:HT{‘;’(R*rs*“s) wT—w[uT (R+ rs) ]4-0) (ZRT+2r§+u:) - (R+ rs*“s) «'»T

[ p)
Ayp=10]
LVT=..T{-;,[(RT“:),.,]+:.,[RT+,_.§)_(R+rs)aT}“ e

T in

g (03] g 0] "+ (5] e )"
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(2.46)

(2.46a)

(2.46b)

(2.46c¢)

(2.46d)

(2.46e)

(2.46f)

(2.46g)

(2.46h)

_




From Equation (2.43), six deformation variables, qp, can be determined in
terms of the remaining 6n-6 deformation variavles, q. For purposes of
discussion, it will be assumed that these six variables are the last three ug

and Bg (s=n). Specifically, Equation (2.43) becomes:
Un =qn=_K_1 K -a l(u“u Kunﬁ u (2.47)
B, 4pdn 49p4 B
Bnu Bnﬁ

where the overbar is used to denote a concatenation of (n-1) 3x1 columns.

The variables and coefficients of Equation (2.44) are partitioned
accordingly and the notation of Equation (2.47) is employed; for example, the

second derivative coefficient becomes:

M Mo, M e, | )
M - M - M K -u+K_ B
"E= upu upu,  upB oupBy J unuu; unBB? (2.48)
"B "mu, "B& "gs, s
- M M, . M _u+K, =B
Hens Manu, 6,8 Meue, ! Reat e,
where, from Equation (2.26b):
o Mou, |
) u_ MuuIrl J_HT [E(3n)_ —,{ 3(3)5"‘,4T
uju upug
[ _ 1 -1_ 1- -1
v L ] - e
= I, 1 T A . (2.48a)
3 3
[ —HT(E‘ ’J m) e (B ]
W ug, }--HE *Bun }-(01 (2.48b)
M - M “IM_ - M = 2.
upB upfnl L Bhu Bhup
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T
55 550] c ]HR= ()" s 10) (2.48c)
T
"80B "Bntn 0 ¢
and:
mp O . 0
0 mp . 0 my 0 0O
Mp=1. . . and m4= |0 ms O (2.484d)
N ’ 0 0" m
00 o, 1 J
0...0
oy ... 0 in?% o
Mp=1{. . and I3=1(0 Ij,, 0 (2.48e)
00 ... In 1 0 0 Ij33
The same procedure is repeated for the remaining coefficients.
Partitioning accordingly and using the same subscript notation yields:
from Equaticn (2.44a):
uu \ 1
o oo [ om- 2]
upu “n“n
w2 (11 e(3n-3). _1(p(3 '1— 3
2 [ ) [B( n-3)_ = g ) HT - __HT g( )
= (2.49a)
25 (£(3) ‘1~ a[E(3)
'- ﬁ_ E lena)[E - ﬁ;ﬂln]
[G— G-, 1 [Gx G
u uB, |_| B By, | 0 2.49b
G -G G. -G {0] (2.49b)
L 'upf “upfy Bnhu “Bhup
Goz Gzp ] . . . .
B8 T\n ~ . T\h T: <. .T\M T = TP
o P | (c5) g [csacg) s (cancapsics) e (Ics1sCsw Tcs )
L BnP  Bnhp
Tin-1_ ~ T\n-1 Te ~ Tyn-1_ ~ _T\n-
(c3)" g [csics) "+ ((wcoBsiCs) " Ry (testsesmTcg)" 10l 2. 450)
.49¢

(0]
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from Equation (2.44b):

[:uu 2uun ]-HT(;H-NJ [(Bn)_ 1 (B)T"HT

upu upup

ﬁT m&&)n I[E(3n—3)— — 3(3)?1 HT E—HT 3(3)fn (:wm mp,

i (2.50a)
(3)fn (;*““ mn m, u+wm)[g(3)- ﬁ;m“]
}-F"‘ ] o )
[Au,,B Au gl P80 Aﬂn::n “l4a.8 Y66, =10] (2.50b)
and, from Equation (2.44c)
5 ) | -ﬁw[(e)n_ O [Z»m " (ﬁui']]J
||l EE )
R
Lg,) | —CaTnCn - GCn I Crt ty )

The first and third rows of these coefficients are multiplied through and

combined into one matrix equation, the complete flexible vehicle equations:

i&+§&+éﬁ+i&+ﬁ L (2.52)
where:
M_— +M- K - M- K =
§.| uu uu, uju uuy, unﬂ} (2.52a)
i {0] Mag
D +D K = +D-o K D— +D- K - +D-, K, o
B- uup upu * uf, Bnu ug “uvu, uyB8  ub, BB (2.52b)
- K - &
Pa Pau Runa s Ke BB *Pau,Nu,B DB, N6,B
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G— +6- K - G- K =
G- uu uu, uju uup, unﬁ]

i (0} Cag
R= -Km +KaunKUn— +K-‘—l anﬁnﬁ KU—B +Kﬁu“KUn— +KE ﬁnx%—s

_KE +K—&anUnﬁ +K_BBDK%G K_B—ﬁ +K&jnxun—6 +K—BBnK Bn-B
K=FAGG +Aﬁunxun— AﬁunKunB]

! (0] [0]

and q is as d

It is important to note that through this variable reduction the

efined before.

(2.52¢)

(2.52d)

(2.52e)

(2.52f€)

resulting flexible vehicle equations, Equation (2.52), does not contain any

rigid body modes.

For the total vehicle equations the variables and coefficients of

Equation (2.44) are partitioned accordingly and the notation of Equation

(2.47) is employed; for example, the second derivative coefficient becomes:

.. My— My My=z= Myz K -u+k =
[uv-r Hvk]q= [:V““ uu, YA TRRy ]4 Upu U

upu Hvun“n HVghB Hvanah ;B
&BIIGU+K

wvhere, from Equation (2.46a):

Vuu Hvﬁun

My, u M u,

}=HT{[[R+rs+usj]n— ﬁ [E'.J)T"HT (ﬁs

j — ]
3
~———r
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M uu:ﬁ-r{[(mrswsj]"'l- ﬁ(ao)f"'lﬁr (st“'l} (2.54a)

Mgy, = AT (6s) ([ my (2.54b)

1__ - -n—l (3 Y‘]-l T ~
Myy 5 [_ WP (us] (p. ) mn] (2.543)
Myy y = [R*Ts+Us- foinin (2.54d)
v“n“n n s™Us” M, n°n

and, from Equation (2.42b):

M . Tyn-1_
H:B_B— H:Bﬂh ]=(c-£)nuk= (€5)" e to (2.55)
8B "V g, o

The same procedure is repeated for the remaining coefficients.

Partitioning accordingly and using the same subscript notation yields:

from Equation (2.46c):
= T T T T
Gmle{Zm(R +rs+us]-20) (R+ts+us]3(3)
~ ~ in-1
+ [-u') (R+us+rs)]+ (R"’“s+rs];‘} (2.56a)

Gy, =Ovy, 510! (2.56b)

GVu,,u,f'n{z“‘ [RT+ rLuE) 20" (R+ rs+us)E(3)

+lw Riug+rg ~+ R+ug+rg tn\l (2.56¢)
[o(Reug+vs) ]+ (Revgere )3y
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from Equation (2.46d):

S (%00 o N s OO 9

' [[WC:.BSJC:]H_IER (csjn’l} [cgj“*‘ (2.57a)
“vBg, Va8 0 (2.57b)
G, (BTnas)cRince o) (e .

from Equation (2.46e):

= ~ T~ T . T,.,T T
. AV33=HT{‘“(R+rs+“s)” —w[m [R+rs)]+m(2R +2rs+us]

- (Rergrug)a’- [o" (R+rs)]i‘.(3)}n_1 (2.58a)

Avgy =BV, 5=10] (2.58b)

n

AVu“ul,l:"ll {’;’ (R* 1'n““n) wT-;) [wT (R+ rn) ] ‘o (ZRT+2 r’,1;+ “3)

- [Rergeup e’ [ [R+rn)]E(3)} (2.58¢)
and, from Equation (2.42f):
Ayzz Ayg
[Avm- AVBB" ]=[0] (2.59)
BnB Bnfn
Since qp does not appear on the right hand side of Equation (7.46) this
part of the total vehinle equation will remain ac is. The I«fc Fndt ~ide of

the equation is multiplied through making use of the coefficient pattitioning
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in Equations (2.53), (2.56), (2.57), (2.58), and (2.59) and combined into
matrix coefficients for q. This results in the complete total vehicle

equations:

Fiyq+Gya+Byd-Ly (2.60)

Fo (R l
Fy= (E€ ’j]" Moy Mrgu Ruu | "Ves *”vau,,"u,,a]

— +M
+["Vunu * vunun upu } UpUpn “nB ] (2.60a)
M M
Mg g eu! Ve, 8,78,B

_l
*[GVu,,u,,Kunu *6vg g Ka 5%y u Fu 3 “OVg g an] (2.60b)
-1
3 I _| _
v=[z( )jl“ [Am | [°]]+[A"ununxunUIAVununKuna] (2.60c)
T
Ly=T- (3(3)T" {LVT+LVR} (2.60d)
and, for completeness:
M, 6X=F (2.61)

By substituting I'(w), Equation (2.41), into O(T) in Equation (.!.1}1), and
substituting this and Cg(Bg), Equation (2.30), into Equations (7.57). (2.60),
and (2.61) these complete dynamic equations represent 6n equation. in An
unknowvns (q, X, and w), for 6én rigid sub-bodies. These equation: ar=

nonlinear with respect to the unknowns.
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2.2 LINEARIZATION OF THE DYNAMIC EQUATIONS

2.2.1 Variable Linearization

The resulting dynamic equations presented in Paragraph 2.1.5 are
nonlinear in q. Worse off, the coefficients are also a function of X, w, 6,
and Cg which are also time varying (most being somewhat a function of q). The
dynamic equations have been formulated such that q is to be solved for
assuming that the coefficients are known. With this in mind, the dynamic

equations will be linearized in q.

It is reasonable to assume that there will not be any large amplitude
high frequency deformations. Thus, the motion of the vehicle can be divided
into two components: quasi-static and perturbation. The quasi-static
corresponds to motions that vary relatively slowly. The perturbation
corresponds to small amplitude fluctuations about the quasi-static position.

' Thus, q is approximated as:

qSqo+0q (2.62)

where:
Qp=quasi-static deformation. It is, the part of the
deformation for which time rate of change of the
deformation is negligible, i.e.,

(R+K)‘1ﬁao<<ao and (E+K)’1(ﬁ+§)ao<<ao (2.63)

Aq=perturbation deformation. It is, the part of the
deformation for which amplitudes are small; thus
nonlinear terms are negligible, i.e.,

o1t 21— = - —

(K+A) "MAqaq, (K+A) " (D+G)bqlq, and Aqlq

« (R+K)"'Haq, (R+K)~1(D+G)aq, and &3 (2.64)
Likewise, the coefficients of @ ran also be decomposed int« guai- static

and perturbation components. As was done for q, quasi-static components will
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be denoted with a subscript o and perturbation components will be denoted with
a leading A. These components will be expanded as needed in the following

sections.

The total vehicle variables, X and w, will take exception to the quasi-
static definition; the time derivatives of X, and w, are not zero. The quasi-
static motion of the vehicle is such that at any instant of time the maneuver
is maintained such that the vehicle does not translate or rotate, but has
total vehicle velocity and acceleration; about which only the transient

deformations are allowed to subside.

2.2.2 Quasi-static Equations

For the quasi-static equations all terms that are "highly" time dependant
and of small amplitude (See Paragraph 2.2.1) will be eliminated. Therefore,
the coordinate approximations developed in the previous section will not be
used here. In the following sections the auxiliary equations, Equations
(2.34) and (2.36), flexible vehicle equations ,Equation (2.52), and total
vehicle equations, Equations (2.60) and (2.61), will be approximated, in this

order, with respect to the quasi-static assumptions.

2.2.2.1 Auxiliary Equations

With the full nonlinear nature of the dynamic equations being retained,
the auxiliary equations change very little. The coordinate transformation
matrices, Cg and O, Equations (2.34) and (2.36), respectively, are rewritten
using a subscript o to indicate that they are evaluated under the quasi-static

assumptions (See Equation (2.63)):

CBso3c5s02 CB3035350253501 ‘Cﬁso353502°55011
+sBSO3chol +sBSO3sBSO1
Cs°= -ssso3c6502 -385035630235501 -sBso3sssozc6501 (2.65)
+CBSO3CBSO1 +cho356501
SBSOZ -cssozsss‘_’1 C8502°65n1
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and:
cl T cI’ s sI' +sT T ~-¢T sT ¢l +sT sT
03 03 03 03 03 03 o1 03 02 01 63 01
0y= —sr°3cr02 -sr°3srozsr01+cr03cr01 -sr03sr02cr01+cr033r01 (2.66)
sT -¢T' sT ¢l T
02 02 01 02 01

Likevise, T is expressed as a function of w in Equation (2.41). Under
the quasi-static assumptions I* does not change. Thus, Equation (2.41)

becomes:
t
ro=‘[0«bdc+r* (2.67)

6, is found by substituting Equation (2.67) into Equation (2.66). For many
applications Iy and 8, may be input as a known initial condition: t=0, thus

eliminating the integral in Equation (2.67).

2.2.2.2 Flexible Vehicle Equations

Without the time derivative q@ terms, Equation (2.52) reduces to:

iio+ioio=io (2.68)
where:
'A — +A°— K - AO_ K -
Ay= ouu uup, upu uuy, unﬂ] (2.68a)
[0] (0]
p . -
_ - n_l_'_' ~ ~ 3n-1 — -
L ¢L°“ -"T[(eo) Xé*(’*"‘o%] (R'*"]]*% (2.68b)
o~ h T {n-1_ ‘n—l;’ ~ T jn-1_ .n—l—, - .
DS R N S O R O X
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and:

= ~ ~ yn-1 1 -1_
Aoggg=Por o+ o ) [3(3"’3)' ﬁ;(3(3)fn "T] (2.68c)
1 -1~ . .
A°ﬁun=HX"T(B(3)fn (;b*”b”b)mn (2.68d)
note:

Ey and T, are column matrices of quasi-static load components applied
externally to the n-1 subbodies, resolved relative to the {a} reference
frame.

X, is the quasi-static inertial position of the vehicle center of mass.
o, is the quasi-static angular velocity of {b} relative to ({i}.

By, BR, K, and q, are as before.

2.2.2.3 Total Vehicle Equations

The quasi-static component of the total vehicle equations are also

simplified. The time derivative q terms in Equation (2.60) are neglected as
stipulated by the assumptions imposed in Equation (2.63). 1In keeping with the
quasi-static assumption, the total vehicle acceleration terms are not
neglected: that is, the first time derivative of W, and the second time
derivative of X, are retained. All that remains of the total vehicle

equations ,Equations (2.61) and (2.60), are:

Fo=Ms8,%, (2.69)

and,

Ay do-Ty, (2.70)
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vhere:

T
I
iy - [B(3 ! | _
Avo (E( ) J [Av°uu 101 ] * [Av°ununkunu | Aoy u Fu,, B] (2.70a)
T
I—,v0='l'°- (3(3)fn {Lvo,r-'»LVOR} (2.70b)

and from Equations (2.58a), (2.58c), (2.46g), and (2.46h) respectively:

Av(,ﬁ:ﬁT{..-\, (Rer gy ol [ol (Re) - o 87262l )
B (R”'s“’so) ‘."‘g' [“‘g (R*rS] ]3(3)}"_1 (2.70c)
Av{ R+ g oy [k (Re ) ] (28T 26T )
- [Rernrun, Jag- [ug (R+rn)]8(3)} (2.70d)
vt B [T (7)o () (2. 700
o e (5
note:
F, and T, are column matrices of the quasi-static load compenent: applied

to the vehicle relative the the vehicle center of mass. resnired relative

to the {b} reference frame.
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2.2.3 Perturbation Equations

In the previous section (Paragraph 2.2.2) the quasi-static dynamic
equations were developed. In this section the corresponding perturbation
equations will be developed. Here, the aircraft deformations are assumed
small in amplitude, thus the equations will be linearized (See Equation
(2.64)). As was done for the quasi-static equations in Section 2.63, the
perturbation dynamic equations will be presented in three parts: au: 'liary

equations, flexible vehicle equations, ana total vehicle equations.

2.2.3.1 Auxiliary Equations

In keeping with the perturbation assumptions it is assumed that the
deformation of the structure is limited, that is Bug and ABg are limited.
Specifically, 8Bg will never achieve magnitudes greater than 10 to 15 degrees.

With this assumption some of the auxiliary equations are reduced.

By making the above assumption and assuming that {ag} for the
perturbation analysis coincides with {a)} prior to perturbation deformation,
8B is approximately represented in the {a} reference frame. In so doing,
however, note that Ig (the inertial element dyadic) will not, in general, be

diagonal. With ABg redefined, Awg becomes (See Equation (2.9)):

Bug =B+ 893+ QS
= 0w+ Aga+ A;BS

= 0w+ 893+ (ag ) T BB (2.71)

Likewise, the element mass inertial dyadic, Ig, is now defined as (See
Equation (2.28)):

£s§Isu5§suésB

s11 Ts12 Ts13]f2sy
2{agy a5, 343} |Isyq Isgn Isgg|lass

Is3) Is3p Is3z!lasy

={gs]TIsl§s) (2.72)
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It is desirable to keep Ig time independent.
{ag) to rotate with the rigid sub-body.

{ag} and (a}, is expressed in terms of ABg.

This is done by allowing
The direction cosine ,8Cg, relating

With the small 48 assumption,

this relationship between {ag} and {a} ,Equation (2.33), is approximated as:

Note also:

1 8Bg4 -0Bs,
{ag)=

085y 1 aesl}cﬁoty
0652 -Aﬂsl 1

100 0 -0Bsy 085,]) ¢
= 0 1 O - ABS3 0 “ABSI CSO[E}
001) (885, 8Bs; O

=[3(3)-Aéslcgo{g}=ACSC§°(§}

T
(as) - (1BD-3651c5 (21 )

={3}Tcso[g(3)_A§S]T
- (21 Tcg [B€3)+ 5] = (a) T oCT

(ocs)"<atm>- (s,

(m'g]n;z(%h (I\as)"

(2.73)

(2.73a)

(2.73b)

(2.73c)

Likewise, the perturbation coordinate transformation relating the

vehicle’s inertial orientation, A8, is expressed in terms of AI (5 ee Equation

(2.36)).
40:

8Ty -4Tp) 1 0 © 0 -aly 6T

The same approximation used for ACg in Equation (2.73) i~ nsed for

1 ary|-l0 1 0|-| ary o0 -arp|-E(3)_aT (2.74)

ary -ary 1 001 -0T9  8I4 0
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also:

ae'ze(3), aF (2.74a)
(Aejn;E(3“)~ (Af’j" (2.74b)
(AeTj";E(BnL [Ai-j“ (2.74¢)

Finally, AT is found by substituting &w for the perturbation component in
Equation (2.41):

t
AI‘:I Awdt (2.75)
0

For Al to be expressed as a linear function of Aw, and hence A8 also to
be expressed as a linear function of Aw, then &w as a function of time must be
known, the integration of Equation (2.75) performed, and the result
linearized. The functional form of Aw will not be assumed here. Instead, all
AI' terms will remain on the right-hand side of the dynamic equations as an

apparent forcing term.

2.2.3.2 Flexible Vehicle Equations

All the previous approximations are implemented into the nonlinear
flexible vehicle equations (Equation (2.52)). The following rational is
utilized: any linear terms in ACg, 86, and Bw are retained; any time
derivative quasi-static deformation terms are neglected (See Paragraph 2.2.2).
Using the quasi-static/perturbation notation of Equations (2.63) and (2.64),

the perturbation flexible vehicl: equation is written as:

Mo 8q+D0q+G, 0 +K g+ 8K, 05~ AL- AAq,, (2.76)
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where:

<2

W< Ouu +"°Gunxunﬁ HOGunKuan
o=
(0] Moga
G _'coﬁﬁ +Goﬁunxunﬁ Goﬁunxunﬁw
o=
(0] Gogg
A _[AA°EE +VMOTm,,Kun— AAOﬁunKunB B]
o=
Boge Rg Mogs +Mogg Ka 7
In-1-° n-1 - . ~~' - 3n-1 _
, Li.r[[m]“ 55 (&)" laiu(mm\,mow]“ (Rroxr)+ o
. AL X ) i )
- 7] T yn-1_ n-1 . - T yn-1_ n-1
aL- -ﬁ-(cso] HR(CSO] i - (8ac, ) HR(Csouo] L
Al - -
B ~ T yn-1_ n-1 _
‘ k - (GoCs,) PR (Csptm)  +oF
'AA— +0A- K - BOA- K =
M| W uup, up uu, unB ]
S (0]

and, from Equations (2.48):

[:om :Oﬁun }JT[E(%)_ M_l[g(a)f“u,r]

Ounu  Cuju,

] rﬁT[x;(zn-a). ﬁ%[g(s)f“‘l.—%] - ﬁ%nT (p.(a)f"‘l..,,
B - T

- ﬁiﬁT(ﬂs)]“" 'a]  aa[E- g
M M, }

munﬁ Hunun
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76a)

76b)

716¢)

76d)
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033 My n
r°8n8 °2:n5n] [ So) MR
AR

M
- [”'5 H““n] (2.77b)
(0] cnIn 5&;5 BnBn

from Equations (2.49):

Gogu Sou ~ {n 1
[G uu iy uuy, }=2HT (%) [E(Bn)_ 1 3(3)}:“",1,

Ouju Ouju,

2»[(" ]" 1[3(3"-3)- = 2(3)? uT - -n-r 3(3)Tn P
T (2.77¢)
[— ‘:HT E“’Tﬂ “‘o“‘n Zmnwo [E( )- —Zmn]
i Y RCARRCRE AL PR C AT,
A
. _[[c'goxscs‘)uo)icgojn_l (2.77d)
(o] CF InCngioCnguCnTn~ [ ChoTnCng¥o) TCnq,

from Equations (2.50) and (2.51):

[Mou—u iouu,, ]'"’l‘ (;o,,%%] [g(an)_ 1 E(3)f“,,,r

MO“na o“nun
~ = )“—1[ (3n-3). L 3(3)3:“' ’ﬁ.l. __n-r 3(3))]" (6 B0 mn

e (80
B‘”j‘n (Z’o*"’o“’o my i (s o) [E€Y)- g;mn]

(2.77e)
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’ (c’goj n‘lﬁR (cso:bj ""1_ [ (czolscso:b]] i

NN

(0]

-~ a

LG RENY]

- - )‘n-l n-1

ER(CSO“b

-~ -~

P T e U

upd  ugup

IR e

T . % (I, =Y~ T ~ - (T
(0] CnOInCno‘“b‘[cnoInCno"’b)*’“‘bcnolncno“’b“‘*o(Cnolncno“‘b)~

iy (0 B 8) " oy (23] (e i

(2.77¢)

o) my|

-l 7 e . . T ~— - -
o (000" (e g gt (o i 08) 59 ]
(2.77g)
Remarks:
1. &F and AT are column matrices of perturbation load components applied

externally to the sub-bodies, resolved relative to the {a} reference

frame.

2. My, Mg, Bp, PR, D, and K are as defined before.

2.2.3.3 Total Vehicle Equations

The perturbation total vehicle equations are developed in a manner

similar to the development of the perturbation flexible vehicle in the

previous subsection: The approximations derived in Paragraph 7

implemented into the nonlinear total ~<hicle equations, Equa'icn

.Y are

t'.n0) and

(2.61). Only first order perturbation terms are retained; zero otrder terms
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having been accounted for in the quasi-static total vehicle equations,
Equations (2.69) and (2.70), and higher order terms assumed negligible (See
Equation (2.64)). This yields:

M, 8, AX= AP-M, 86K, (2.78)
and:
EVOAE+§VOAE+AKVOAE=AEV-Azao (2.79)
vhere:

T
[ =(E(3)T"—1 [n Mg~ K =My +My - K -]
Vo Voyu *"Voyu, “uju| VOB " Vouu, u,B

— +K K —|M K -
. rvounu Vounun \ln“l Vounup up B ] (2.79a)

*Mog, 8, gy MVog,6,%8,B

T
) [Svos| Svogg]

l
" [Gvo"‘n“nll“n-‘-l +Gv°5nﬂhxﬂna | Gvoun“nx"n—ﬂ +Gv°5nﬂhxﬁn-5] (2.79b)
IT |
AKVo= (E(B)jlh [MVOEE MVOB_B]
|
* [Mvoununxunﬁ ¥ Mvoﬁnﬂnxﬁnﬁ | AAV°unu“Ku“’B * MVoahgnKBn'B] (2.79¢)
T
tLyy=T- (3(3)3}“ {‘“‘Vo-r*“von} (2.79d)
T
-1
Av- [R(3 I l )
thy- (B¢ )fh [avgg) 101]+ [asvy, o Ky 5128wy 4 %y, 8] (2.79)
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and, from Equations (2.54) and (2.53):

W n-1 1
Hvoﬁﬁ=HT{[OR+rs+us - H’ E(B)T“ }

1= (-~ 3n-1 (3)j‘n-1

MYogu,™" FEHT (“s(,] (E "n

1 (= “—
HVounﬁ=[‘ ﬁ'“T(“s (3)Yﬂ mn

. -
Hvounun=lln [R+ l‘s+us°- Wp:mnuno]

T {n-1_

"\Ioﬁa= (cso] MR

Myo %Ba C;I‘OIn

From Equations (2.56) and (2.57):

n.r{zuo[ Rl +rgrug |-2ug (Rergrug, JB(3)

= ~ jn-1
+ [;\o (R+rs+uso)]+ [R+l‘s+uso) ;)o}n

GVounun='n{2°’o (RT+r5eug, )-20p (Rergrug JEO)

+ [-o)o [R+rs+uso) ]+ [R+ rs*“soj;‘o}

e M CEERN AR N

(ARG (CN
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(2.80a)

(2.80b)

(2.80c)

(2.80d)

(2.80e)

(2.80f)

(2.81a)

(2.81b)

(2.81c)




T Y T ~ ~ T T
Gv%na;{— (ChoInCng ) +CnoInCngio* BoCnoLnCng (Cng

From Equations (2.58a), (2.58c) and (2.77f):

<
(~)
[
=)
e
=]
]
B
3
T
;l

- (ReTpvung ) - [@gung |- [ (R+en) ]Em}

vz [ (CReTsCooto) | - (€ho) " P (Choms)™

[“‘o (CT Iscso“’o) ]n—l‘ [-.“‘oc:o) )" (Cso"'o] n
MVOﬁnﬁ: (czolncnoabj‘cgolncgoz‘o“‘;’o (CzoIncno%j‘;’oczolncnoz’o
From Equations (2.46g) and (2.46h):
e [ N A (R Y

(o8] o)) (o)

T \n \n

u“\’f (C'go]n"'k (csojndy ¥ (&;‘Cso) Hr (Csojn%+ [aoc:ojnnk [Cso] ad
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©(2.81d)

(2.82a)

(2.82b)

(2.82¢)

(2.824)

(2.83a)

(2.83b)




From Equations (2.58):

g -63(8e 5| o5 (v, T3 [a ts- o eo5)
J

+A;’(2RT+2"§+“§°)‘ [R+rs+“so) o'~ [A‘;’T [R*rS) 3(3)}"-1 (2.84a)

AAvunu;-n{—AB(Rnnwno)w'g—aokR+rn+uno)Aw ~Bufug (Rer) -4 [ 8" (Rern) ]

+A(:\(2RT+2rz+ugo) - (R+rn+uno] A:»T— [A(;)T (R+rn] ]3(3)} (2.84b)

2.3 AERODYNAMIC AND GRAVITATIONAL LOADS

2.3.1 Aerodynamic Loads

.3.1.1 1Introduction
In the preceding analysis, all non-structural and non-inertial loads

I\

acting on the structure have been assumed to act as an external forcing
function, independent of structural motion. Aerodynamic loads, however, are
dependant upon the movement of the structure. This interaction of
aerodynamics and structural dynamics - more commonly known as aeroelasticity -

encompasses much more than will be considered here.

Usually, aerodynamicists calculate aerodynamic forces for the rigid body
motion of the aircraft. These forces are then put into the equations of
motion as external loads. The resultant structural motion (time dependant) is
then fed back to the aerodynamicists. They, in turn, calculate a new set of

aerodynamic loads. And the cycle continues (hopefully to convergence).

If the aerodynamic loads can be expressed as functions of the structural
variables, then a more empirical solution is possible. Many assumptions are
needed in order to account for the aerodvnamics directly. The . revlinamic

force acting on a panel is assumed to be a function of the angle ! attack of

2-50




\|

Figure 2-8. Discretized Aircraft
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Figure 2-9. Aerodynamic Panel
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all panels; og, s=1,...,m. The angle-of-attack is a function of the relative
panel velocity, Vg, and the orientation of that panel. The next sections will

detail one possible approach for modeling the aerodynamic forces.

2.3.1.2 Aerodynamic Panel Orientation

For an aerodynamic analysis, it is assumed that the surface of the
aircraft is modeled using a panel method (See Figure 2-8). One such panel is
shown in Figure 2-9. 1In general, this panel is curved. The curvature of the
panel is approximated as a surface which connects all four vertices with
straight lines and linearly varies in both directions. This allows the

modeled surface to remain continuous, even for large vehicle deformations.

The mean span chord line is defined as the straight line which connects
the mid points of the leading and trailing edges. Points 0 and 1 are defined
A along the mean span chord line. These points are chosen anticipating that the
resultant aerodynamic force will be expressed at Point 0, and that the angle-
of-attack is defined, and the downwash boundary condition will be satisfied at
Point 1. Both points are expressed in terms of the vectors which locate the

vertices of the panel by using weighted averages:

aEso+aEso=%[(1-x0)[agsz+agsz+ags3+ags3]+xo(é£54+a954+a£ss+a955)] (2.85)
and:

1
aEsl*aEsl=g[(1-X1)[é{sz+agsz+a£s3+ags3]+xl(agsa+3954+a£ss+agss)] (2.86)

vhere a pre-superscript a indicates that the variable is associated with the
aerodynamic model, and x3 and x; are the percent distances aft of the leading

edge of the panel for Points 0 and 1, respectively.
Associated with each of Points 0 and 1 is a vector base 3[a.,) and

a{ésl}, respectively. The orientation of these dextral orthngonal wrtoyr

bases will follow standard flutter sign convention: the firzt wmit «:tor lies
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along the mean chord line from trailing edge to leading edge (this unit vector
is same for both points), the second unit vector lies in the plane of the

panel "out the right wing,” and the third vector is perpendicular to the other
two "down" or away from the wetted surface. These vector bases are related to

the {b} vector base through direction cosine matrices:
a a a a
{asp)="Csqlb} and (as,}="Cg, (b} (2.87)

Since the orientation of the aerodynamic panels is a function of q these
direction cosine matrices are also functions of q. This functionality will be

discussed in Paragraph 2.3.1.3.

The location of the panel vertices relative to Point Q, ags=agsj+agsj
(j=2,...,9; s=1,...,m), are related to the structural degrees-of-freedom via a

- grid transformation matrix, Dq:

ap'=a£'+ag'=a£'+003’ (2.88)

where 3p’ is a column of all non-redundant panel vertex locations, DQ is

-

dimensioned accordingly (in gencral not square).

Likewise, the resultant aerodynamic loads acting on the rigid sub-bodies
at Points Qg are related to forces acting at the panel vertex points via a

grid transformation matrix, Dg:
f 2D
{-aer°}=Df{‘£v} (2.89)

vhere f,o,0 and t o o, are the resultant aerodynamic forces and momenr:,
respectively, acting on the rigid sub-bodies, 2f, is a column of all non-
redundant forces acting at the panel vertices, and D¢ is dimensicned

accordingly (in general not square).
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The weighted averages in Equations (2.85) and (2.86) are incorporated
into the transformations in Equations (2.88) and (2.89) to yield two nzaw
matrices, Dq and Dy, relating the defoimation of all panels at Point 1 to gq,

and sub-body fiaro and tyero to forces acting at all Points O:

— Tyn-1,_ -1 —
E: Y ’ - = - -
ul-Du(u )+DB[CSJ (51)_qu_[Da anKquanBq]q (2.90)
and:
\m
{faer°}=DL(aC£0) ag (2.91)
taero

where Dq is 3mXén, Da and an are the appropriate extractions of Dq (See
Equation (2.51)), Dy, is 6n-6X3m, and 2f is a column of all m resultant

aerodynamic forces at Point O.

2.3.1.3 Panel Coordinate Transformations

In Paragraph 2.1.5.3 auxiliary equations were developed which expressed
the direction cosine matrices, Cg, as a function of q: specifically, a unique
function of only the corresponding By (See Equation (2.34)). This was
possible because each rigid sub-body has its own Bg which are independent
degrees of freedom. Such is not the case here with 3Cgg and 3Cgy for the
aerodynamic panels. The motion of each panel, and hence the direction cosines
defining the rotation of the related hybrid-coordinates, is a function of all

aus. In this section the direction cosines will be defined.

The direction cosines are order dependant. In Paragraph 2.3.1.2 this
order was defined as: 1 forward, 2 out the right wing, and 3 down (or away
from the wetted surface). The three successive rotations of each and the
intermediate coordinates generated are shown in Figure 2-10. Since the motion
of the panel (in ihree-space) is defined by the translation of the vertices of
the panels, the rotation of the panel at Points 0 and 1 will he «detined by the

relative difference in motion of the.e points. To demonstrate thi- procedure
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additional points are identified which lie on the edges of the panels (See
Figure 2-9). Points 6 and 9 define the leading and trailing edges of the mid-
span of the panel. Points 7 and 11, and 8 and 10 define the xgp and x4
percent-chord lines of the panel, respectively. As was done for Points 2
through 5, the location of Points 6 through 11 may be expressed as weighted

averages of Points 2 through 5:

r56+au56 (ar52+ Ugy+ rs3+aus3) (2.92a)

®r g+ Pus,=(1-x0) (Prey+us, )+ (s, + usy (2.92b)

ar58+ uSB-(l xl)(a S3+ us3)+x0[agsa+ags4) (2.92c)

r59+ u59 1(ar54+ Us,* r55+auss) (2.924)

r510° 8107 (1% (PEsp* sy ) +%0 ("Es5+"uss (2.92e)
aEsn*aEslf(l‘xO) (a.Esz*aEsz)*xo (a£s5+aﬂss) (2.92f)

For the first direction of rotation the deformations are resolved into
the y-z plane (Directions 2 and 3, respectively) as shown in Figure 2-10.
Points 8 and 10 translate to induce rotation of the xj chord line about Point
1. This direction cosine angle, 284), is defined as the arctangent of the
difference in the vertical deformations divided by the initial chord length

plus the difference in the horizontal deformations:

%ug,-"u1p
1 3 3 (2.93)

a -
6811=tan a a a
[gy+ U8y~ 109~ Y10,

The direction cosine matrix, aCél, associated with the angle defined in

Equation (2.93), defines the first rotation with respect to the “{a |} vector

base. The new axis is identified with a superscript '. The serond direction
cosine matrix is found using the sam¢ prnceduve: the deformari-wv oo 1esolved
into the z’-x’' plane (Directions 3 and 1, respectively) as shown in Figure

2-10. Pqgints 6 and 9 translate to induce rotation of the mid-span line about

Point 1:
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- (ugy-2us,) - (Pug;-2ug,)
a851 =tan.1a — ,3 3 - =tan_1 3 3 (2.94)

a’ a a a a
r61+ u61- rgl— qu r61+ u61— rgl— UQl

Since the previous rotation was about the x axis the prime and no-prime
values for the x direction are equal. The new axis defined by this rotation
is identified with a superscript ". The final direction cosine matrix is
found using the.same procedure: the deformations are resolved into the x"-y"
plane (Directions 1 and 2, respectively) as shown in Figure 2-10. Points 6

and 9 translate to induce rotation of the mid-span line about Point 1:

aug _au; aué _au;
B =tan—1 W "2 "2 T =tan—1 ] 1'2 112 v (2°95)
S13 a a a a a a a a
r61+ u61- r91- ugl r61+ u61— rgl— Ug1

a

Since the previous rotation was about the y axis the double prime and
single prime values for the y direction are equal. With all direction cosine
angles defined, the direction cosine matrix for Point 1 is evaluated as:

a a

a a
Cs17 Cs14 Cs1, Os1y
r Caﬁs‘13 538513 O caﬁslz 0 _SaBSIZ 1 0 O
=|-S%Bsyy sy, O O 1 00 c¥Bgy s%6gy
. 0 0 1 536512 0 caBS12 0 —538511 c35511
[ Caﬁsl3caﬁslz caBSIBSaBSIZSaBS11 -caBSIBSaBSIZCaBSIIW
+s3Bg. c38 +s3Bg, s3B
S13° Fs1y s153° Fs1y
=|_g2 a _ga a a _c@ a a
={-8 6513c 6512 s 85135 BSIZS lel s 65135 lezc 6311 (2.96)
a a a a
+C lelc 8513 +C 65135 lel
a _cd a a a
S 6512 Cc lezs 5511 Cc lezc lel
In a similar manner the direction cosine angles are formml.atcd and used

to define the direction cosine matri- frr the @fa.y) vector .
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Figure 2-10.

Aerodvnamic Panel Rotation

2-58




a a
1 U73- Y11j

a —
F79% U7,5- T11y- Y11y
a -1 ‘(3“63‘3“93] -1 '(8“63‘a"93J
BSO =tan ’ T 7 7 =tan (2.98)
2 a a a a a a a
r61+ u61- rgl- Ug1 r61+ U61— r91- U91
a -1 2" 2 -1 2 2
Bso3=tan ’a"—ﬂ W a " a " =tan a®m an i W (2'99)

r61+au61- r91- qu r61+ u61_ar91_au91

Equations (2.98) and (2.99) look identical to Equations (2.94) and
(2.95), hovever the prime and double prime quantities are dependent upon the
first rotation which, in general, is not equal at both points. The
deformation angles described by Equations (2.97) through (2.99) are now used

to formulate the direction cosine matrix for Point O:

a a a a
Csn="Csn. Csn. 2C
0" “S03 7S09 “S0q
Y a a _ed
c 6503 s 6503 017c 6502 0 -s 6502 1 0 0
_l_ca a a a
=|-s 6503 c 6503 0 0 1 0 0 ¢ 8501 s BSOI
- sd a a a a _ea a a ;
¢ 5303° Bso2 c 55035 Bs02s 5501 c B5035 Bso?_C 6so1
+saﬁso3c*ﬁsol +saBSO3SaBSO1
_l_eca a _ed a a _ed a a
=|-s 5303c 8502 s 6503s Bsozs 6501 s 65035 Bsozc 8501 (2.100)
+caﬁsolc38503 +caBso3saBSO1
! sa6502 -cassozsaﬁsol cassozcaﬁsol

For completeness, the following relationships define the loration vectors
for Points 6 through 9 in the intermediate reference frames as a funciion of

their values relative to the initial panel reference frame:
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a a a a" a"
Tsjk* Ysjk” °8j3[ £5 +"us)
a a a '’ a'’
= Csj3 Csjz( rsk + USk)
a a a a_* a*x a a_* a *
=%cs;, s, csjl( Fo * Vs )" CSj( ro +2us) (2.101)

vhere j=0 or 1; k=6,...,11, and the asterisk indicates the initial value
(before transformation) which is the value evaluated with respect to the {b}

vector base.

2.3.1.4 Panel Relative Velocity
Each panel may be subjected to a gust, YgS' Other than the gust velocity

there is no contribution to the panel relative velocity other than the motion
of the panel (See Figure 2-11). Relative velocity of the panel will reduce
the velocity of the panel, Vg. The velocity of the panel at Point 1 is found
by using the vector differential calculus identity in Equation (2.11) on the
inertial position vector of Point 1:

id a a id bd bda a a
a;[§+s+§+ Isy* 251]=371_<+ TSt Jr Usqp X [s+3+ Isy* Esl) (2.102)

If Equation (2.102) and the gust velocity, Ygs' are expressed in terms of
the 3{ag1} vector base then the relative velocity, Vg, of the panel vehicle

becomes:
Vs=Vgs-aC31 [9i+(.:+al.131+;\[c+R+ar31+au31) ] (2.103)

The expressions for ¢ and its time derivative, given by Equatinns: (2.19)

and (2.20), are repeated here for convenience (recalling that C i« (1),

1.8
c=- WAETSUS (2.104)
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and (recalling that 9@ is zero):
- 1 n
c=- ﬁ-{_j sUg (2.105)

Equations (2.104) and (2.105) are substituted into Equation (2.103):

n

Vs=Vgs 81 [GX— —Z Emsus+au51+w(- == ZTS“S*R* r51+au31]] (2.106)
S—

Substituting for aui form Equation (2.90) into Equation (2.106) yields,
a . 12“ . t .0 13 a
Vo=V, -°C [&X— o ). M Ug+d— E+w(— == ) muc+R+“rg. +d- a)] (2.107)
S gs 81 MAs_.._.ls S qs MASZ=IS S Sl qs

where dﬁs is a 3X6n-6 extraction of Dq beginning at row 3s. Using the pi
operator of Equation (2.16) and the auxiliary equation expressing u, as a
function of q ,Equation (2.47), the terms in Equation (2.107) are rearranged

and combined according to the order of the unknown:

-~

. = 14 1y - =
Vs=Vgs-aCSI [6X+m[R+ar31]+m[- F—Emsus+d~s ]- FKSZ_:__TSUSMES(‘]
v, 2 %+ 0(Re2 ol ((3 f"‘l R m I 3
-Vgs— Csl [GX+G(R+ ISI]—U[EZ B( ) "TI[01]+ ﬁﬁ[xunaﬂtun_ﬂ]-das}q
3 m Ik _]-4a- lg
[ g( )f" "'r (0] + ﬁ:[ unEIKunB] dqs]q] (2.108)

2.3.1.5 Panel Angle-of-Attack and Aerodynamic Loads

Angle-of-attack, ag, is defined as the angle between the relative
velocity and the projection of the relative velocity that lies in the plane of

the panel at Point 1 (See Figure 2-12):

VS
ag=tan 3 _ (2.109)

wIV2 +V2

§1°°S2
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Figure 2-11. Aerodynamic Panel Relative Velocity
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Figure 2-12. Aerodynamic Panel Angle-of-Attack
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It is assumed that an aerodynamic force, 2fg,, proportional to the angle-
of-attack of the k panel, o, is induced on the s panel, and acts orthogonal

to the s panel surface at Point 0. This proportionality is expressed as:

£k =CAMgp o (2.110)

vhere GAMg, is the s,k element of a General Aerodynamic Matrix: a function of
the panel areas, panel chord, relative panel position, singularity type and

strength of the k panel, and the local dynamic pressure of the k panel,

00 V-

The total aerodynamic force acting on the s panel, 2fg, is the sum of all
8fsks k=1,...,m. These total panel forces are arranged into a single column:
occupying every third element, the other two being zero, by premultiplying
each row by a 3X1 shuffle matrix, Cghy,£={0 O l]T. This results in 3f (See
Equation (2.91)):

af=[ )'[cAn]a' (2.111)

Cshuf
vhere [GAM] is a mXm matrix of all GAMgy and «’ is a mX1 of all o-

Now the aerodynamic loads, fieoro and tyerqs can be expressed as an
explicit function of the independent structural variables X, w, and q:
Equations (2.97) through (2.101), and Equation (2.111) are substituted into
Equation (2.91) to express 3Cgg as a function of X, @, and g, and af’ as a
function of a’; Equation (2.119) is substituted into Equation (2.111) to
express o’ as a function of Vg (s=1,...,m); Equation (2.108) is substituted
into Equation (2.109) to express Vg as a function of q; and Equaticons (2.93)
through (2.96) and (2.101) are substituted into Equation (2.108) t~ express
3Cgy as a function of X, w, and g.

This form of the aerodynamic loa’'~ ir consi~tent with the o vmptions in

Paragraph 2.1 and is suitable for use in the flexible and total ~«hicle
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equations, provided by Equations (2.52f), (2.60d), and (2.61). For the
reduced flexible vehicle equations, ¥, o, and T, o o are the upper 3n-3X1 sub-
columns of f_oro and tyeros respectively. For the translational total vehicle

equations, Faero is the sum of all faeros; s=1,...,n:

T
Faero’(E(S)fn faero (2.112)

And, for the rotational total vehicle equations, Tyepro is the sum of all
taeros and the matrix components of the cross products of rg+ug vith faeros,

s=1,...,n:

-

T
Taero=(3(3)fn [taero* ((rs+9s7) faero) (2.113)

In the next sections the aerodynamic loads formulated above will be
simplified using the assumptions in Paragraph 2.2 for quasi-static and

perturbation (linear) analysis.

2.3.1.6 Quasi-static Aerodynamic Loads

To formulate the quasi-static aerodynamic loads: first, all rime
dependeht variables ére expanded into the quasi-static and perturbation
approximation of Equation (2.62); then, all terms negligible with respect to
the purely quasi-static terms are dropped (See Equation (2.63)). The
resultant quasi-static aerodynamic loads as functions of the quasi-static

aerodynamic panel forces are extracted from Equation (2.91):

f a.T M,
{ aeroo}=DLo( csoo] fo (2.114)
taerOO
Quasi-static deformations may be large enough to warrant a r« <-aluation
of the grid transformation matrices Py and Dq. For the direr tion cnine
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matrices associated with Points 1 and O, the quasi-static components are
extracted out of Equations (2.93) through (2.96) and Equations (2.97) through
(2.100), respectively:

a a a a
C =C C (o
slo 5130 3120 sllo
cd8 sag 01 [c38 0 -s2g 1 0 0
813o 8130 5120 slzo
= |-s38 cag 0 0 1 0 0 c3p s3B
8130 5130 5110 5110
a a _ed a
0 0 1lls 65120 0 ¢ 83120 0 -s 55110 c 63110
" ~a a a a a —cd a a
Cc le3oc 65120 c 631305 651208 lelo c 631305 BSIZOC lelow
+s3B cag +s3B sag
3130 5110 5130 Sllo
=l_cd a -cd a a _cd a a
= S BSI3OC 85120 S 681305 lezos 63110 S 651303 lezoc lelo (2.115)
+Cass Caﬁs 4_C_ass Sass
110 130 130 110
saﬁs -Caﬂs Saﬁs Caes CaBs
12, 1, Sl 12, 11,
vhere
au8 au10
a -1 30 34
lelo-tan ORI (2.115a)
82* U8y~ T102” Y10y
(a5, ) ugy, 5,
aﬂs12 -tan”’ " a ’3045 '303 ’ =tan_1a a o a 3Qé (2.113b)
(o] r6l+ u61°- rgl— 0910 r61+ u610— rgl— U910
v A SN,
aas13 =tan-1—"-——"‘a zﬂ__a "203 W =tan—1a~W 2 "20 3 "zQa - (2-115C)
o] r61+ u610— rgl— uglo r61+ u6lo— r91— Uqlo
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and:

a a a a

Cen = C C C
S0, 5030 5020 so10
a a a _ca 2
c 6503 s 6503 01 fc 6502 0 -s 6502 1 0 0
o o ) o
= —336303 caBSO3 0 0 1 0 0 caﬁsol saﬁsol
o o 0 o

0 0 1]1s2B8 0 c38 0 -s3g c@g |
5020 5020 5010 5010
[ c28 c2g cag s@g s3g -c@ sag c2g ]
3030 5020 3030 5020 5010 5030 5020 5010

a a a a
+5 Bso3oc Bsolo +S 650305 Bsolo
= —536303 caﬁsoz -535503 saBSO2 saﬁsol -536503 536502 caesol (2.116)

o o ) 0 0 0 0 )

+caBSO1 caBso3 +caBso3 saﬁsol
0 o 0 o

| s28 -c38 s28 c@8 c3g )
3020 5020 so10 so20 so10
vhere:

aU —aU
a 1 73,7 Y113

Bsolo=tan (2.116a)

a a a
70+ u72°- 11y~ u112O

(aué au; )

a -1 7 3, 73 -

8 =tan ; —Q 0L =tan
S0,

7 (2.116b)
a a a a a a
0 r61+ u610- rgl— Uglo r61+ u610- rgl— Ugl

a a.’ a .’
u - u u - u
a -1 62" "92 -1 62,7 92,
Bspy =tan ‘gom g g g Stan o (2.116¢)
F61% Y617 F917 Mo1,

For completeness, the following relationships define the gua=i .static
location vectors for Points 6 through 9 in the intermediate refercnce frames
as a function of the their values relative to the initial panc! v leaenree

frame:
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at +au -aC (ar" +au" ]
sk sko- Sj3° Sk Sko,

.. 3¢ (ar' +3u, ]
SJ3° SJZO Sk Sko

a a a a* ax* a a _* ax*

A, 3., .. (r +3y ]:c (r By ] (2.117)
8330 sto leo Sk Ske S0, L Sk Sk,

where j=0 or 1; k=6,...,11, and the asterisk indicates the initial value
(before transformation) which is the value evaluated with respect to the {b}

vector base. Specifically:

a£s6"’a‘_’s6°=% (afsz+aﬂszo"a£s3+3253°) (2.118a)
*rs7+%usy = (oxg) (esgeusy g (Pregeus, ) (2.118b)
asss+ags8°=( 1-x,) [a£s3+ags3o) vy (*rsg+tus 4'0] (2.118c)
Esg*a!sgo=7(é554+3254°+a£ss+39550] (2.1184}
aEslo+a2510°=(l—x1)(a£sz+agszo)+xo[a£ss+agsso) (2.118e)
a£sn+agsuo=(l-x0) [a£52+a2520]+x0 (aEss*aﬁsso] (2.118f)

The quasi-static aerodynamic panel loads are extracted from Equation
(2.111):

a n ,
£,- [cshuf) [GAM, ] af (2.119)

vhere Cgh,f is as before, [GAM,] is updated to account for large qnasi-static
deformations, and each ag, in o is found from the quasi-static toim of
Equation (2.109):

ag =tan I ——20__ (2.120)




and the quasi-static components of the panel relative velocity, Vg. are

extracted from Equation (2.108):

o T R ]ao] (2.121)

For the reduced quasi-static flexible vehicle equations, Equation
(2.68b), I, and T, due to quasi-static aerodynamic loads are the upper 3n-3X1
sub-columns of quasi-static aerodynamic forces and torques in Equation
(2.114), respectively. For the translational quasi-static total vehicle
equations, Equation (2.69), F, due to quasi-static aerodynamic loads js the

sum of all the quasi-static aerodynamic forces in Equation (2.114):

T
Faero,= (3(3)}% faero, (2.122)

And, for the rotational quasi-static total vehicle equations, Equation
(2.68b), T, due to quasi-static aerodynamic loads is the sum of all quasi-
static 2erodynamic torques plus all the cross products of rg+ugy with the

corresponding quasi-static aerodynamic force:

T
~ 0
Taero°=(3(3)Tn [taeroo+(rs] faeroo]

T -
. (3(3)51“—1 [Gso)n—l_ [KunG}KunB]a°fa"°no (2.123)

2 3.1.7 Perturbation Aerodynamic Loads

To formulate the perturbation aerodynamic loads: first, all time dependent
variables are expanded into the quasi-static and perturbation appr imation of

Equation (2.62), the purely quasi-static terms have been accounted ta  in the
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previous section; then, all terms negligible with respect to the first order
perturbation terms are dropped (See Equation (2.64)). The resultant
perturbation aerodynamic loads as a function of the perturbation aerodynamic

panel forces is extracted from Equation (2.91):

m im

8faerol_p, [(Aacgoaczo ) af°+[ac§0 ] Aaf]— faero, (2.124)

A o o o
taero taerog

The grid transformation matrices, Dy, and qu, define a linear
relationship between the structural and aerodynamic degrees-of-freedom (8fzarq
and Ataeto to 83f, and A%u’ to Aq): that is, Dy, and qu are constant under
the perturbation assumptions. Furthermore, the perturbation rotation of the
aerodynamic panel vector bases beyond the quasi-static position is assumed
small: therefore the prime, double prime, and triple prime perturbation vector
bases will be assumed coincident with the quasi-static vector base. Also,
small angle assumptions will be employed in the evaluation of the perturbation
direction cosine matrices, 43Cgy and 43Cgq (Equations (2.96), and (2.100),
respectively). For A3Cgqy:

a _AQd
1 ey, 8%
o206, 1 0%y |-BCD-s%Rg) (2.125)

a _Ad
4 6512 1) 6511 1
vhere:

a a
1 a u83—0 U103

a -
8 8511=tan a a a a a
r82+ u820+A u83— rloz- Ulozo-A ulOz

a a
8ug,-87ujq 4 bS
z 3 3 = 31 (7.126a)

a a a a a
Igy+ u82°‘ r10y- u102o bsll
)
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a '’ a '’
- (8%u64-0%5, )

a -1
& 6512=tan a’ a’ a” a’' a’' _a/
617 Y61 *0 Y617 T917 ¥9y "4 U9
a a a
3 -(A 063—A U93) ) a ble. (2.1260)
ar6 :Fu6 -arg —aU9 abS
1 1, 1 1, 120
a " a "
AaB _tan'l A UGZ-A U92
513- [ [ Aa W a " at Aa ™
r61+ u61°+ u61- r91- uglo— uglo
a a a
87 ug, -8 ug 4'b
- 2 2 S1,
) ar .+ “2g,-2u ) ) (2-1260)
61% "61,7 T917 "9, S13,

Substituting Equations (2.126a), (2.126b), and (2.126c¢c) into Equation

(2.125) gives:

)

8%cg,E(3)-%p
o

ar _ (3 _a
51,8785, ) bSIO(dbs

wvhere dpg1o is a 3X6n-6 grid transformation matrix which combines the
appropriate weighted averages of all Aq to yield 83bg; (the subscript
indicates that this matrix is evaluated for the quasi-statically

deformed vehicle), and:

[ 1 9
ab511 0 0
o -
a 1 1 3
b =| 0 a =|a
1, b512 b51k ]
1 O
L O 0 ab513 1
o
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The procedure above to define 83Cgy is repeated to define 82Cg0:

1 028, -438
503 502
8cgyt Mgy, 1 62850, -E(3)-a%) (2.129)

a _pAd
& BSO2 i) 6501 1
vhere:

a a
1 4 u73—A u113

a -
8 B501=tan a_ a a _ a a a
r72+ u720+A u72- rllz’ ullzo—A U112

a a a
} a u73-A U114 a bso
e - - = = 1 (2.130a)
F72* 73,7 TllpT U11p  Psg,
o

a ’ a ’
K -1 “(A ug3-8 u93)
5502=tan a_’ a ' Aa 7 a ’ a '’ a ’
r61+ u610+ u61— rgl— quo—A ugl

a a a
R 87bsg,
= 3 = - (2.130b)
r61+ u61 rgl- Ugl bSOZ
" "
a 1 a u62—A ug,

8" ug,-8"ug Aabs
z 2 72 03 (2.130c)
Foy+ Ugy - f9g ug, bSO3
Substituting Equations (2.130) into Equation (2.129) resultx in:
Aacsoggm)’absooAaF?”:E( 3) _abg00 [dbso AG] (2.131)
o
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vhere dpgge is a 3X6n-6 grid transformation matrix which combines the

appropriate weighted averages of all aq to yield 4%bgg, and:

1
a
bsg, O 0
o -~
bsn =| 0 3 -|a (2.132)
0 b b
o U , SOy,
a
L o 0 bs, 1
0

Equation (2.131) is substituted into the first term of Equation (2.124)

to yield:

) - im
D1, (27050 Cag,)  Fo? {[3(3)* 0, (""sooﬁ]]acg%} o
=DL0{ (acgoojnafr [absoo (ac'g()oaf""°j]mdb'*"oo}Aa

{ aeroo}_nLo so, cso fs )] dbsoo (2.133)

taerOO

The second term in Equation (2.124) contains the coordinate
transformation 3Cgy (See Equation (2.106)). Vhen expanded into quasi-static
and perturbation components, the perturbation component is E(3) minus a
perturbation on the deformation variables (See Equation (2.125)). The unity
matrix will yield what appears to be an additional quasi-static aerodynamic
panel force. However, this has already been accounted for in the fir:t term.
To see this more clearly 3f is assumed to be a function of 2Cgy mnlv.

Equation (2.91) is expanded as:
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Dy, c§0c§1~%[a(3)+Aaas ] cso (E( ). a2 BSI]CSI

T a.T T a.T ]

-~ a a~
2D, €50, "Co1, N W S0, Csq_* cso 6*Bg, *c5, (2.134)

The second order perturbation term in Equation (2.134) is neglected (See
Equation (2.64)). The second term comes from the perturbation of the first
coordinate transformation and the quasi-static of the second. The first term
comes from the quasi-static of both coordinate transformations. Likewise, the
first term in Equation (2.124) contains the quasi-static component of the
aerodynamic -panel forces including any pure quasi-static terms generared under

the perturbation assumptions due to a coordinate transformation.

In light of the preceding discussion the second term of Equation (2.124)
is expanded. It is assumed that [GAM] is only a function of the quasi-static
variables. Therefore, the perturbation aerodynamic panel forces are linear
functions of the perturbation angle-of-attacks, 8a’, (See Equation (2.111))
and the second term of Equation (2.124) yields:

™ (acsooj.Aaf=°Lo (acgoocshufj.' GAH) o (2.135)

To find Oag an additional coordinate transformation, acsao' is developed
to rotate the a[gsl} vector base such that the first axis is coincident with
the quasi-static relative velocity and the second axis is still in the plane
of the first and second components of 2{agy} (See Figure 2-13). Only two
rotations are needed: the first rotation is in the plane of the panel, about
the third axis, such that the first axis coincides with the projection of Vg,
in the plane of the panel, the second rotation is about the primed <econd

axis:
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- a a a a
100]fe Bsazo 0 -s 68“20 c Bsa3° s Bsa3o 0
i'cs%= o10/f 0 1 o0 -sassa3 caﬁsa3
a a (o] (o]
0 01 Bsq, O Bsy 0 0 1
o (o]
- a a a a a
c B B B s B -s B
sm20 sm30 s,,L20 sm30 Sey
a a
- -58s,, Bse, 0 (2.136)
s*8s B %8, s i
Say ¢ FSa3 Sap ° PSag3 Say,
where:
a —lvsl
8 =tan ~—0 (2.137a)
Sa: v
s2
[
“Bsa, %5, (2.137b)
[o]
aﬁsal =0 (2.137¢)

bdag is defined as the arctangent of the magnitude of the vertical
perturbation relative velocity divided by the magnitude of the total relative
velocity. In the denominator the perturbation terms are negligible with
respect to the quasi-static terms. The numerator is a perturbation term and
is small compared to the denominator and hence allows a small angle
approximation (Note, the magnitude of the denominator may be evaluated with

respect to any reference frame):

av

Aas=tan—1 Zo3
2 2 "2
J(V510+AV51) +(V520+AV52) +(VS3O+AVSX)
z 23 (2.138)
J'2 2 2
v +V +V
$1,7752,%"83,
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Pigure 2-13. Perturbation Aerodynamic Panel Rotatinn
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Equation (2.136) is expanded into quasi-static and perturbation components
under the assumptions of Equation (2.62). This expansion and the shuffle
matrix in Equation (2.111) are substituted into Equation (2.138) to yield lug

as a linear function of AVg:

T a
¢l a3 cS av v Cg, &V
pqz _ _shuf” “Sa Csay”'s shuf “Say S (2.139)
2 2 2 2 2 2
JVSlo+vszo+vs3o valo+vszo+vs3o

where the final approximation is made uoting that APCsa is approximately e(3)
minus a skev;symmetric perturbation matrix.

AVg is found by expanding Equation (2.108) under the perturbation
assumptions. It is important to note that Equation (2.108) contains
coordinate transformations, and any purely quasi-static terms that result from
the expansion of these transformations have already been accounted for in

Equation (2.133). Therefore, the perturbation approximation of A&Vg is:

&V g- BV - [Aacsrn(?'))aCSIO BoKg+ (R+2rg, |- [MA 3(3)jl" [f] to1]

N

+ 5{: [xunaixun-]-das]aoj _acslo [[Ae-g(3))io+eoAi+A&(R+arSI)
T
ST fofion) Tl ol o
b oo Tl ol )
(R fafo]: sl 4 )
Equations (2.127) and (2.97) are substituted into Equation (7 .140) to

replace 43Cg; and A, respectively:
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_-a 3 |
av =Avg bsl (dbslo&]) Csl [90 o+(h\° (R+ rsl [MA E( )Tn IO]

. HA[KunuI unB] d- ]qo] acsl [Aﬁo+9°Ai+Az)(R+arsl]
safgk g<3)f“ [ t01]+ B[R, 51, a]- ]
T
AP Rl il glna,)

_ T
e Ralior]: e sl 4, )4 @14

The terms in Equation (2.141) are rewritten and regrouped so as to extract
. and combine according to the order of the independent quasi-static variables:

T
. - -1
&Vg= Vg +7Cg, {onr-eom [R+ar51+ [F} (3(3)j]h [ﬁ,l,} (01]
[+
k -lx ]-—d— Qo |80 }- |“bg, {%Cgq [BoX +&°[R+ars ]
upu| upBl  qg| 0 1, 1 o 1
T ~
PR EIAE j'"—l 2 o], mle g lea Iz
”O[HA () [“'l‘llm]+ MA[ unulxunB] -9 ]q"]}dbslo
3 I ~
+2cg { [HA a( )jl" [01 A[Kunﬁlxunﬁ]_dis] oq
a 1(o(3 T"‘l 5 | = l =
%y ["—A (g( ) [n,”[o]]+ ﬁﬁ[xunﬁlxuni]‘dis]m (2.142)
The following short hand notation will be used to simplify Equation
(2.142):

Voo™ g * r gt duggt (214D

2-78




vhere the first three coefficients are 3X3 and the last two are 3X6n-6.

Equation (2.143) is substituted into Equation (2.139) to obtain og as a
function of the structural perturbation variables. The Boolean operator
matrices are the used to substitute this result into Equation (2.135), which

is the second term in Equation (2.124):

aT \.a a,. T o CshufaCSgn "

DLO[ cs0 ) 8 f=DLo( cs0 cshuf) [GAM) "
° ° JVZ +V2 V2

S1, szo+ 3,

y [A"E*‘ [dvsarj.“ " [dvsaiz]m&"" [dvswjmwn*d;sﬁﬁ*dssbés] (2.144)

where the double prime represents a column matrix of m sub-matrices of the

- operand.

Finally, Equations (2.133) and (2.144) are substituted into (2.124) to

yield the perturbation structural aerodynamic loads for all 6n rigid sub-

bodies:
- C ac \m -
&f jarol_ a.T n shuf “Sap, [ " Mo
{At 'DLo ( csoocshuf) [GAM] 3 5 7 AV8+(stAr) ar
aero JVSI +Vsy +Vgq
o o o
(d 'j.Ai" (d jmwn ] - dn . l]
*Uvgax) &+ Yy an) 80 +dy_aqtatdy_sg™
a aT a, M -
of bsoo( Cso, fs,) DbSOOAq} (2.145)
For the reduced perturbation flexible vehicle equations. Egnation (2.76e),

4f and At due to perturbation aerodynamic loads are the upper 3n X1 nub-

columns of perturbation aerodynamic panel forces and torques in Fqguation

(2.145), respectively. For the translational perturbation total —chicle
equations, Equation (2.78), AF due tou perturbation aerodynamic panc) loads is
the sum of all the perturbation aerodynamic forces in Equation (7.145):
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T
Arae,°=[3(3)f" M aero (2.146)

And, for the rotational quasi-static total vehicle equations, Equation (2.79),
AT due to quasi-static aerodynamic panel loads is the sum of all perturbation
aerodynamic torques plus all the cross products of rg+uge with the
corresponding perturbation aerodynamic force and &ug with the corresponding

quasi-static aerodynamic force:

T
ATaéro=(E(3)fn [Ataero*[;s)nbfaero]

T -
+[B(3)fn—1 {(ﬁso)n—lﬁfaero'[[Eaeroso]n—II[0]]55}

,210) ez Eaccon, (€51 Kup] &
'(ﬁ‘unilkuni qo)Afaeron+faerono K, 51K, 8] (2.147)

2.3.2 Gravitational Loads

2.3.2.1 Sub-body Gravitational Load

Forces due to the Earth’s gravitational attraction are body forces,
proportional only to the mass of the sub-body and always in a "downward"
direction. It may be convenient to define the inertial reference frame at an
arbitrary angle. Thus, although the direction of the gravitational
acceleration does not change with respect to the inertial reference frame, it
may not be coincident with any one base vector component of the inertial

reference frame.

In order to incorporate gravitational effects into the hybrid.< nnrdinate
dynamic equations it is necessary to define the direction of the gravitational

acceleration in term of the inertial vector base, (i}:

g-(i) g (2.148)
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vhere g is a 3X1 coefficient matrix in which all elements, in general, are not

zero (depending on the choice of (i}).
The gravity forces, to be included in Equations (2.52f), (2.60), and

(2.61), should be expressed in the {b} vector base. Recall the base vector

relationship of Equation (2.2):

{i}T={§}Te (2.149)

This is substituted into the definition of the gravitational acceleration
in Equation'(2.148):

g={b} g (2.150)

Therefore, the time dependent (© being a function of time) force due to
gravitational acceleration, fgravg (a component of f only, Equation (2.26g)),

is:
fgravg=nsoe (2.151)

2.3.2.2 Vehicle Gravitational Loads
For the reduced flexible vehicle equations, Equation (2.52f), ¥gray and

fgrav are a column of fgravg (s=1,...,n~1) and a 3n-3X1 "column of zeros,
respectively. For the translational total vehicle equations, Equation (2.61),
Pgrav is the sum of all fgravg (s=1,...,n): '

T
rgrav=(z(3)fn fgrav (2.152)

vhere fg,ay is a 3nX1 column matrix of all fgravg. The total vehicle
equations were developed with respect to the vehicle center-nf.ma--.

Therefore, Tgrav is zero.
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2.3.2.3 Quasi-static Gravitational Loads

For the reduced quasi-static flexible vehicle equations, Equation
(2.68b), the quasi-static assumptions defined in Paragraph 2.2, Equation

(2.63), are imposed upon the n-1 column matrix of Equation (2.151):

_ n—l_,
Igravo=u'r(eo) g (2.153)
wvhere g’ is a 3n-3X1 column matrix of g.

For the quasi-static total vehicle equations, Equation (2.69), the quasi-

static assumptions are imposed upon Equation (2.152):

Pgrav°=(2(3)fn ET(eoj"g' (2.154)

where g’is a 3nX1 column matrix of g.

2.3.2.4 Perturbation Gravitational Loads

For the reduced perturbation flexible vehicle equations, Equation (2.76e),
the perturbation assumptions defined in Paragraph 2.2, Equation (2.64), are
imposed upon the n-1 column matrix of Equation (2.151):

L]

grav-“T( ) li" Igravo;“ﬁT(Afeo

in-1_
) w (2.155)

vhere the final equality makes use of Equation (2.74) which expresses 80 as an

approximate linear function of AI.

For the perturbation total vehicle equations, Equation (2.78). the

perturbation assumptions are imposed upon Egquation (2.152):

g,av- B( )f" nT g ~Fgravy- E( )f" uT N ] g’ (2.156)
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2.4 SPECIAL CASES

In the first part of this section, the results of the previous sections

villi be examined under rigid body assumptions and compared to the rigid body
stability derivatives. 1In the second part of this section a simple test case
is evaluated to illustrate the use and significance of the hybiid-coordinate

dynamic equations of motion.

2.4.1 Rigid Body Stability and Control Dynamics

2.4.1.1 Purpose

The purpose of this section is to demonstrate that the hybrid-coordinate
dynamic equations summarized in Paragraph 2.1 will yield the classical special i
cases wvhen the corresponding additional assumptions are applied. |
Specifically, the aircraft will be assumed rigid. The flexible vehicle
equations will be shown to yield the total vehicle equations under this
assumption. Then the resulting simplified total vehicle equations will be

compared with those found in Reference 8.

2.4.1.2 Rigid Body Hybrid-Coordinate Equations

The aircraft is assumed to be rigid. This implies that the :riffness
matrix, Kp, is infinite and that the aircraft does not deform (i.e. q is
zero). This also implies that Cg is unity. With q zero, the right-hand side
of the complete flexible vehicle equations, Equation (2.44c), is equated to

zero and solved for the externally applied loads, f and t:

f| e[ (o) orer) o
t HRJ:)' + (mjnHRo)'

Likewise, the complete total vehicle equations, Equations (.4)5) and

(2.46), are also greatly simplified:

P=M, 6X (2.158)
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and:

T - -
T= (3(3)j‘n {HT [—5((RT+I'£)&)+¢B[RT+:£)— (R+rs)(.n‘r]n [R' +r’)+HR(;)’ + (;s) nHRw’ }

T .
- (E(B)jl" {LVT+LVR}E{I_)) ';{%(l'i") (2.159)

With q equal to zero there remains only six unknowns (X and ®w) in 6n+6
equations. It can be shown that Equation (2.157) is contained in Equations
(2.158) and. (2.159) by summing the flexible vehicle loads for all rigid sub-
bodies to obtain the resultant total vehicle loads.
is f pre-multiplied by the pi operator:

The total vehicle force

The second term contains the sum of the first mass moments of each rigid sub-

body about the vehicle center of mass and hence is zero. The first term is

the sum of all mass premultiplying the total vehicle acceleration. Therefore

T
F =[E(3)T" My (6K) " =My 6K (2.160)

The total vehicle torque, T, is the sum of t and f weighted hy ifs moment
arm, R+rg, pre-multiplied by the pi operator, thus,
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[ we(6) s (o3 () ot o] o |
~o(Rerg)e s a(RMvrg)- (Rus)&;r]" (R*+r? ) g+ [Bjnngm' }

- [3(3)51" {LVT+LVR} (2.161)

In the above equation, getting from the second line to the third line is done

|
m
~
W
~
3
]
—
e H

by noting that: the 6X term is a constant post-multiplying the sum of the
first mass moment of inertia for each rigid sub-body about the vehicle center
of mass, which is zero; and the next two w terms make use of the following

skew-symmetric matrix identities:

I 0 -¥3 WJ(V1))(V1) (-¥3V2+¥2V3) (V1
VVV=—[VV)V=— V3 0 -Vl V2 V2 =— V3V1-V1V3 V2
=Wy Wy 0 V3 V3 -V2V1+V1V2 V3

[ 0 VoV +WVy W3Vp+WqV3g 1
=- -V2V1+V1V2 0 V3V2+V2V3 2
[-W3V+W1V3 -W3Vo+WoVy 0

V3
WiVy W1Vp WqV3 1V1 WaVp V3Vq

1
=[ WaVy WaV, V2V3]—l;1V2 VaVsy V3V2}]{32}=(VVT—VVT)V (2.162)
W3V W3V W3Val 1W1V3 WaV3 W3Vil) v

and:

e 0 -Vq3 Vy 0 -W3 Wy 0 -V3 W, 1
(VWW)V=| V3 0 -V Lk} 0 -V Lk 0 -w Vo
-Vo V73 O -Wp W3 O -Wy Wy O Vi

V1V2V1V3—V1V3V1V2+V2V2V2V3 V2V3V2V2+V2V3V3V3 -V S\ ALALR l
V1V1V1V3+V1V3V1V1 V1V2V2V3+V2V3W1V2 V1V2V3U3+V1V3U}V
vlvlwlwz-V1V2V1V1+V1V2W2V2 V2V2V1V2+V1V3V2V3 V2V7U1U)

0 -w
={V1 Vs V3]{3;}[ k! 03 —U1]rval VTVVV (2.163)
V3 V2 LA KV3J
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2.4.1.3 Comparison of Results with Classical Development

The results of Equations (2.160) and (2.161) can be compared to other
published results by appropriately renaming variables. Figure 2-14 shows the
variable notation used in Reference 7. These variables are defined relative
to a body fixed axis; {b}. Velocity components are U, V, and W; first time
derivative of X resolved in the (b} reference frame:

(dU)
dt

. . .-- dv
GX={§} therefore: GX-<a?r (2.164)

dv
dt)

Forces acting at the vehicle center of mass are described as IFg. wvhere s is
X, ¥, and z; total vehicle force, F:

\

(YP,

P={ V1P, { (2.165)

The total vehicle mass is m; My. This mass multiplied by the vehicle

acceleration, Equation (2.164), equals the vehicle force, Equation (2.165):

du

R
dv .o
dv

"t

The same procedure is repeated to confirm the comparisen ~f the 1otal
vehicle rotational equations. Rotatinnal velocity component: 1. T. 0O, and R;
®. The inertial dyadic elements are identified as Ijkv wvhere j and k are x,
y, and z. Thus:
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Figure 2-14. Rigid Aircraft Coordinates
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Ixx ‘Ixy -Ixz 2.167
Iow=|-Iyy Iyy -Iy,|4Q (2.167)
-Izx 'Izy Iz2

Component torques acting at the vehicle center of mass are L, M, and N; total

vehicle torque, T becomes:

T=q LM} (2.168)

The time derivative of Equation (2.167) is equal to Equation (2.168):

{ . . . . . . 3\
Z]-‘PIxx*PIxx'QIxy"QIxy‘RIxz‘RIxz
L] - . . L] . i
T DH-01yyalyy-RiyREy 5Pl -Plyy = (1. 0) (2.169)

\ZN"'RIzz*RIzz’PIxz‘PIxz'QIyz'QIyzJ

Thus, it has been shown that the hybrid-coordinate dynamic equations for
flexible aircraft reduce to the classical dynamic equations for a rigid body.
Equations (2.166) and (2.169) are called the Euler equations of motion of the

aircraft. Quod erat demonstrandum.

2.4.2 Simple Test Case

2.4.2.1 Purpose

The purpose of this section is to use a simple test case tn demonstrate
that the hybrid-coordinate dynamic equations do produce the same 1esults as
those derived relative to a Newtonian reference frame. The mode) being
considered is oﬁe dimensional with four lump masses (See Figure ° 1"y Body B

is one of the center sub-bodies and i: mazsless. The coordinat.- immediately
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Figure 2-15. One-Dimensional Three-Mass Mode!

2-89




beneath the model in Figure 2-15 correspond to hybrid-coordinates, while the
lover coordinates refer to inertial-coordinates. This model has only four
degrees of freedom: uj, ujy, uj3, and X. For simplicity, this model has no
structural damping; that is, D is zero. Also, the stiffness matrix will
consist of the linear springs connecting only the neighboring sub-bodies as

illustrated in Figure 2-15.

2.4.2.2 Hybrid-Coordinate Dynamic Equations Approach

The reduced flexible vehicle equations, Equation (2.52), are of dimension

two; a one less the number of unknown deformations (this being only a linear
problem). For this example uj will be resolved into the remaining degrees-of-
freedom according to Equation (2.43). The independent degrees-of-freedom of

Equation (2.52) become:

a=a={“1}, (2.170)
u3

the dependant degrees-of-freedom become:

qp=Up=uy, (2.171)
and the coefficients become:
N=N— +N~ K -, (2.172)
uu - uu, upu

vhere N is M, G, K, and A. Also:

E=LG={§1} (2.173)
3

The stiffness matrix in the second term in Equation (2.172). K., is
defined in Equation (2.47). For this example, Equation (2.47) i~ equivalent
to Equation (2.43), which is short hand notation of Equation (7 v where ug
is set to zero and solved for u,. The elements of the stiffune: marvix in
Equation (2.38) are defined in Equation (2.37) which contains the tree-free

stiffness matrix of the vehicle, Ky:
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1 -kqy O 0 } k1 uy

La=4F30f O k3 k3 O pugl *Lqa KLtu]{q } (2.174)
Fy 0 k3 -kp-k3| ko u 84 KPB“B Ug
Fg| [k] 70"~ i T-Elikf up

The lower partition of Equation (2.174) is set equal to zero and solved

for ug:

-1 1 uj
up=-Kp Re 0Tl [k1 0 k2] {32} (2.175)

It is nov apparent that the motion of m3 can not be resolved in terms of
the other degrees-of-freedom using this hybrid-coordinate method: m3 is not
being directly connected to Point Q. upg is defined as zero for the hybrid-
coordinate equations, thus uj can be expressed as a function of uj, or vice-a-

versa:

—une kl]ul_ 3

qn-uz-[- E%IO {u }'Kunﬁq (2.176)
3

Kynu as defined in Equation (2.176) is substituted into Equation (2.172).

The reduced coefficient matrices, N, are found as follows: the elements of H

are defined in Equation (2.48a):
Ty [EC2)- _1[];(1)j:2' ]
uu Mp H'l'

_[ml 0 ]{1 o]_ 1 [1 1} [my 0 ]}
0 myJllo 1] ™M*T2*M3y 1]{0 my

o1 |mmp+mm3  -mjm3 (2.177a)
m1+m2+m3_ -mimy mi{m3+momsy ]
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and:
M- = I [E(I)TZ
uu, EXHT ®n

L 1 my 0 1 m
m1+m2+m3LD m3 1 2

- 1 mqmy

—_— (2.177b)
m1+m2+m3

mym3

Similarly, the elements of G are defined in Equation (2.49a); hovever, this is
a linear problem with no rotation: ® is zero. Therefore, G is zero. The same
reasoning applies to K being zero (See Equation (2.50a)). The appropriate
elements for K are extracted from the definition of K, Equation (2.39), which
for this problem is found by setting Fg in Equation (2.174) to zero, solving

~ for ug as a function of q, Equation (2.176), and substituting back into
Equation (2.174) to express the remaining loads as a function of q only:

: 1 ]
L= - -K
Fqu KLtuKPBuBKFBq 9=Rq
([-ky O 0 1 ‘Ihll
1
[lo k5 k3 |+lo [RITk_z][kl 0 k] {jus
\L 0 k3 -ky-kj 2 JAUTY
~kikg 0 | kiks '!h11
=k1—fr;2- 0. :klkz-kz‘_(s}r - kikarkaky _ {]us =LKW Gy ]q (2.178)
kiky kikarkoks]-kikg-kiky-kok3) lup) Fuga Rupug

On the right hand side of Equation (2.52f) is Ly, which is defined in
Equation (2.51). For this one-dimensional example © is unity. Equarion
(2.52f) becomes:

L_u=-ﬁx?'+z=-{m1§}+{F1} (2.179)
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The preceding development is substituted into Equation (2.52) to yield

the reduced flexible vehicle equations for this model:

Kk .
1 m1m2+m1m3+m1m2E% -mqm3 ]{ul}

m1+m2+m3 —m1m3+m2m3E% m1m3+m2m3 u
B [ kiky+kikg 0 ]{UI}“{:IX}*{FI} (2.180)
1+%2 (1+ E%]k1k3 k1k3+k2k3 uy 3i Fi

The reduced total vehicle equations ,Equation (2.61), are of

u3

dimension one; the number of total vehicle degrees-of-freedom relative
to the inertial reference frame (this being only a linear problem). For

this example, Equation (2.60) becomes:

MpBK=(my+my+m3)X=F;+Fp+F3=F (2.181)

Equations (2.180) and (2.181) are nov combined into the three dimensional

equation :

m1m2+m1m3+m1m2E% -mimy (my+mo+m3)mq
1 k
EI:EE:ES -m1m3+m2m3E% mym3+mom3 (my+my+m3)m3
0 0 (m1+m2+m3)2
kikq+kiks 0 07 (uy ( Fq
- EI%EE [1+ E%)k1k3 k1k3+k2k3 0 ug =< Fj (2.182)
0 0 o (F+Fp+F3

2.4.2.3 Newtonian Physics Approach

In this section the Newton-Euler dynamic equations of motion (5See
Equation (2.18)) is applied to the same one-dimensional three lumped mass
model. This time, all motion will be expressed relative to the incvtially
fixed Point 0’. A free body equation is written for the tranzlation of each

rigid sub-body:
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For my: Fl-keq(xl—xf)+keq(x2-x§)=m1§1 (2.183a)
For my: Fo+keq(x1-x1)-(keq+k3) (xg-x5)+k3(x3-x%)=myx, (2.183b)

For my: Fy+k3(x9-x5)-k3(x3-x5)=m3x3 (2.183c)

wvhere a superscript asterisk indicates the initial (t=0) position of the rigid
sub-bodies, and the equivalent spring constant, keq’ is expressed in terms of

k; and ky by the series spring formulation:

1

1 1
- 2.184
Keq K1 * K2 (2.184)

This implies:

kik
keq:ﬁ{%ﬁ% (2.185)

Equation (2.185) is substituted into Equations (2.183a) and (2.183b).
All Equations (2.183) are then combined into a single matrix equation of

dimension three, expressed in terms of xj, xj, and xj:

. kqk kqk £ o

MmO 0N e R ¥y (P
. kk

R T :+k2 sky  —k3|dxp-x§ b=1Fs (2.186)
. : X

0 0 m3flxy -k3 k3l x3-x3 3

The results in Equation (2.186) may seem simpler than those obtained in
Equation (2.182). However, each of the three modes of vibration obtained from
these results will contain a weighted portion of the total vehicle motion and
both flexible modes; whereas, the hybrid-coordinate dynamic equa!ionz yield
these three modes directly. In the case of free vibration (F;=F; F,=0)
Equation (2.186) may be reduced to two equations in two unknown. =av x; and
x3. The coordinate x; is found in terms of x; and x3 by using the Heuton-

Euler equation for the total vehicle
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Mm{Xq+Myxg+m3x3=0 (2.187)
or:

Xn=w T1X]1+M3X3 (2.188)
2 ms

Equation (2.188) is substituted into the first and third partitions of
Equation (2.186), which is then rewritten so as to be expressed as a function

of x7 and X3t

LY L e

. 2.4.2.4 Comparison of Results

Finally, in this section the results of the previous two sections will be
compared. Specifically, Equation (2.189) will be shown to yield exactly
Equation (2.181) by making the appropriate transformation of variables (x; and
X3 to uj and uj). From Figure 2-15, the vector addition relating the two sets

of variables is:

X1 ~-R-c-ry+uy x} *—R—rl
X3 [=]X-R-c+rg+uy also x3 [=]X*-R+ry (2.190)
3 -R-c+r3+uj § *—R+r3

The definition for ¢ in terms of ug is in Equation (2.19). For this test

case, Equation (2.19) yields (also, making use of Equation (2.176)):

c=ﬁ%[m1u1—m2E%ul+m3U3) (2.191)

For the case of free vibration, X=X* and time derivatives of ¥ aie zero.
Equation (2.191) is substituted into Equation (2.190), which i then
substituted into Equation (2.189) to yield:
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[ml 0 ]{Gl‘ i(mlﬁl-m2%61+m3ﬁ3]}
u3- —A-(mvu M%urmzifs]

+[-r‘f%1’%§(+ ) n—lﬁ%]

-k3"—é -k3 (1+ g—g)

0 my

{ul- -‘6“1“1“m2E1“1+m3u3]} {O} (2.192)

uj- —-l-[mlul m2E1u1+m3U3)
vhich, upon regrouping, becomes:
k u kikq+kqk 0 0
1 ['"1'"2*'“1"'3“"1'"2;;; -mym3 ]{“1} 1 [ 1kq+kgk) : ]{%}{}
my+m+m3 -ﬂilm3+mZM3% mim3+mym3 \..1.3 1*%2 [14» %)klk:; k1k3+k2k3 uj3 0
(2.193)
This is exactly the results obtained by using the Hybrid-coordinate
- dynamic equations approach, Equation (2.180), for the free vibration case.
Quod erat demonstrandum.

2.5 SUMMARY

2.5.1 Review of Assumptions .

The aircraft, Body A, is composed of finite rigid sub-bodies, Ay, that
are inter-connected by linearly elastic members. Therefore, the deflection of
any of these elastic members yields a restoring force that is proportional
only to the corresponding deflection (K is constant). Thus q is limited to
deflections which do not produce any cross-coupling stiffness effects due to

the geometry changes.

The aircraft, Body A, is attached to a massless Body B for all six
degrees of freedom at one Point Q. The sum of the loads at 0 iz -etn. This
auxiliary relationship is used to define the stiffness matrix of the flexitle
aircraft. Prior to deformation, when ug and By are zero, the origin of Body
B, Point 0, is coincident with the vehicle mass center: therefor-. - iz

initially zero.
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The overall matrix equations of motion, Equations (2.62) and (2.113), are
written in terms of the sub-body deformations. However, the coefficients of
these equations are in terms of the overall vehicle motion (w, R, and X) and
the direction cosine matrices (®, C, and Cg); all of which are also unknown
(mostly a function of q). Thus, 3n+9 additional auxiliary equations are

required to uniquely describe the matrix equations of motion.

2.5.2 Reviev of Hybrid-Coordinate Dynamic Equations Development

The work by P. W. Likins for flexible spacecraft was rederived for an
aircraft of arbitrary configuration undergoing an arbitrary maneuver using a
hybrid-coordinate system. Vector bases are defined relative to an inertially
fixed reference frame, the vehicle, and each rigid sub-body. Direction cosine
matrices are defined describing the rotation of the vector bases to each
other. Vehicle deformation is defined by the motion of the rigid sub-bodies
relative to the vehicle center of mass. The motion of each sub-hndy is
described as a series of vectors which are .esoived relative to the

appropriate vector bases.

Special operators are defined to facilitate the matrix algebra necessary
in using a hybrid-coordinate system. Translational vehicle deformation is
considered first. The motion of the vehicle mass center relative to the
massless body reference point is described in terms of the rigid -ub-body
translational deformations. Separate Newton-Euler equations of motion are
vritten for translation and rotation for each rigid sub-body in terms of the
hybrid-coordinates. The resulting equations are combined into two sets of 3n
equations, which are then written as one matrix equation of order 6n. The
Newton-Euler equations are then developed for the vehicle, which yields two

sets of three equations each; for translation and rotation.

These 6n+6 equations have 9n+15 unknowns. Auxiliary equatinrne are
developed to uniquely specify the problem. 6n equations describe the n sub-
body direction cosines matrices as a function of the sub-bodv’s i1ntational
deformation. Six more equations resvlt from the vehicle’s 1ataticn- three

associated with defining the direction cosine matrix and thice delining
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rotational as a function of rotational velocity. For a free-free vehicle, the
vehicle stiffness matrix allows the motion of the massless Body B to be
described in terms of the deformation variables. This allows the deformation
variables to be reduced to 6n-6. The remaining three degrees-of-freedom
result from the choice of hybrid-coordinates: The vector base associated with
the massless body is defined to always be coincident with the vehicle vector

tase.

2.5.3 Linearization of Hybrid-Coordinate Dynamic Equations

All time dependent variables are assumed to be composed of quasi-static
and perturbation components. The quasi-static component allows for large
amplitude, but slowly time varying deformations. The perturbation component

allows for small amplitude rapid fluctuations about the quasi-static solution.

All variables are expressed in terms of their quasi-static and
perturbation components. The resulting equations are expanded. All purely
quasi-static terms are collected into a set of quasi-static equations. All
first order perturbation terms are collected into a set of perturbation
equations. All higher order perturbation terms are assumed negligible. The
resulting quasi-static equations are non-linear zero order (with respect to
time). The resulting perturbation equation is linear second order (with

respect to the perturbation variables).

2.5.4 Inclusion of Aerodynamic and Gravitational Loads

For the aerodynamic loads, a deformable panel method is assumed that
allows for large vehicle deformation. The deformation of the panels is a
function of the deformation of rigid sub-bodies. Aerodynamic loads are
assumed to act normal to the panel surface at the panel load points and are a
function of th> angle-of-attack at the panel normal wash points. The specific
relationship between load and angle-of-attack is beyond the scope of this
report. A vector base is defined at each load point and each normal wash
point. The orientation of these vector bases relative to the vehirle's vector
base is derived as a function of the vehicle deformation. The nrle of_attack

st

is defined as the angle between the i1elative velocity and *he plane of the

panel at the normal wash point.
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The results are linearized using the same procedure before. The
perturbation components are highly non-linear. To facilitate the description
of the perturbation angle-of-attack, an additional vector base is defined that
has one base coincident wi:h the quasi-static relative velocity, and one base
remaining in the plane of the panel. Perturbation aerodynamic loads become a
linear function of the perturbation angle-of-attack, which become a linear
function of the perturbation relative velocity, which become a linear function

of the structural deformations.
Since gravitational acceleration acts in a constant direction with

respect to the inertial vector base, gravitational loads are directly

implemented into the hybrid-coordinate dynamic equations.

2.5.5 Special Cases

The hybrid-coordinate dynamic equations summarized in Paragraph 2.1 are
evaluated under the assumption of a rigid vehicle. It was shown that for a
rigid vehicle, the flexible vehicle equations reduce to the total vehicle
equations. The resulting total vehicle equations were then compared to a
classical derivation reference publication by simply renaming variables

appropriately. This showed that the results are ideatical.

A simple one-dimensional three lumped mass model was evaluated. This
provided a more tangible perspective on the application of the hybrid-
coordinate dynamic equations, and particularly on the variable reduction.
Equations of motion were derived for the same model using inertial position
vectors. The two results were compared: most notably, the hybrid-coordinate
approach results in the total vehicle equations being separated from the
flexible modes, whereas the latter approach does not. By implementing a
variable transformation, the two approaches were shown to be equivalent.

nonlinear with respect to the unknowns.
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SECTION 3
DERIVATION OF EQUATIONS OF MOTION AND
STABILITY DERIVATIVES FOR A FLEXIBLE AIRCRAFT VEHICLE

3.1 INTRODUCTION
This Section presents the development of the maneuvering and control

equations from first principles. The derivation is based on ASE modeling
methodology for the stability and control analysis of a flexible airplane that
includes the synthesis of active control systems. In Section 2, Likins’

method was used to derive these equations and is not used any further.

The stability and control equations are derived by defining the

translation and rotation of an axis system relative to the inertial reference

frame. The structural deformations and rigid body perturbations are defined
relative to the inertial reference frame as well. The equations are

categorized as follows:

Maneuvering Equations - These equations relate the total aerodynamic
forces and moments, including the force of gravity, to the overall
motion of the airplane relative to the inertial reference frame. The
flexibility effects, that account for the effect of a maneuver load
alleviation system, are included.

Stability Equations - These equations describe the rigid-body
perturbations of the airplane relative to the inertial reference
frame. The development of the equations covers stability
augmentation, flutter suppression, gust load alleviation, and ride
quality aspects. The resulting equations are developed further to the
extent that "small angles" assumption is no longer valid.

3.2 RIGID BODY EQUATIONS OF MOTION
The six degrees of freedom equations of motion, that provide a rime

history of a rigid airplane during maneuvers, are developed.

Force Equation:

<3

(3.1)

alaQ.
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Moment Equation:
T = dH (3.2)

vhere V is the aircraft inertial velocity, H is the inertial angular momentum,
and m is aircraft mass. It is implicit in the above equations that the force,
F, the moment, T, and the time derivatives are all expressed in the inertial
reference system, the ground system in our case. It is impractical nor
desirable to use that reference system for simulations. Experience has shown
that six degrees-of-freedom aircraft simulation can be much simplified by

solving the above equations in the body axes system.

In the following, it is shown how the force equation is derived further
to be useful for simulation purposes. This derivation makes extensive use of
the Ground, Body, Stability, and Wind axes systems, and therefore vectors in
these systems will subscribed with G, B, S, and W respectively. The
definitions of the axes systems and the transformations from system to another

are given in Section 1 of this report.
The R.H.S. of Equation (3.1) represents the total force, F; the vector
sum of the gravity force, the aerodynamic force, and the propulsive force.

These forces, expressed in the proper reference systems, are:

Gravity Force:

Eg =0, 0, mgg (3.3a)
Aerodynamic Force:

Fp = (Fi, Fy, Fi)s (3.3b)
Propulsive Force:

Fp = (Py, Py, Pz)p (3.3c)
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The transformation matrices from axes system x to axes system y will be

denoted by Tyy. Hence,

cosa 0 sine]
Tgp = (A} = [ O 1 0 (3.4a)
{sina 0 cosal
fcosB -sing O]
Tys = [B] = [sing cosB 0 (3.4b)
10 0 1]
cosO cosy cosO siny -sin®
cosy sin¢ siné cosy cos¢ cosB sin¢
Tgp = [T] = |-cosé siny +siny siné sin® (3.4c)
sin¢ siny -cosy sin¢é c0sO cosé
+cos¢ cosy sind +siny cos¢ sin®

will denote the transformation matrices from Stability to Body, Wind to
Stability, and Ground to Body axes systems, respectively. In the above
equations, « is the angle of attack between the Stability axis and the Body
axis system, B is the sideslip angle of the Wind axis to the Stability axis,
and ¢4,9,¢¥ are the Euler angles between Body and Ground axes systems.

Since the Body axes system is adopted for deriving the force equation,
then

F = Tgg Fg + Tsp Fa+ Fp

Substituting from Equations (3.3) and (3.4) in the above equation gives

31 i X
F =[T3g| mg + [A] Fj + Py (3.5)
T33 Fie Pz
vhere T31, T3, and T33 are the components of the third column of Tgp in

Equation (3.4c).
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Figure 3-1. Definition of Euler Angles

AIRCRAFT SIGN CONVENTION AND QEFINITION %
OF STABILITY AND WIND AXIS SYSTEMS

Figure 3-2. Axis Systems
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Now, the L.H.S. of Equation (3.1) is proportional to the time derivative
of the aircraft velocity relative to ground. Since aerodynamic loads are
proportional to the aircraft velocity relative to the vind, V,,y, the velocity

relative to the ground is decomposed into,

Vasg = VYasv + Ywye (3.6)

vhere Vy g is the wind velocity relative to the ground. Hence the time

derivatives of both sides of Equation (3.6) is given by,

G G G
dVasg = dVayw + dVyc
dt B dt B dt B

vhere the subscript B is indicative of evaluation of the above terms in the

Body axes system (for consistency with the force terms). Now,

G B
dVaw=4dVay + 0xVay
at B dt B B

and

v

G Vx
d Yusc = Tes YwsG = [Yy]
dt B '

vhere w=(p,q,r). But,

By (Al [B] Vayy = d [A, [B] H
t B dt v dt 0

ala
b=
~
=
i

This implies that,

B [V cosa cosB]
d Va/p =d |V sing
dt B dt|V sina cosf
. fcosa cosB -sina ¢osB & - co=e sinBg B
= V{sinﬁ } + V{ cosB B ,}
sina cosBg cose cosP a - sine 1inf B

3-5




Combining the above equations yields

cosacosB -sinacosf -cosasing Vy gsinacosB - rsing
d Vpy/c = |sing 0 cosB Va| + |Vy |+ Vircosacosf - psinacosP
dt B inacosf cosacosB ~sinasinp] VB ' sing - qcosacospB
(3.7)

In the above equations Ox,ﬁy,ﬁz are the components of wind acceleration in the
Body axes system, V is the aircraft speed relative to wind. Equating the
R.H.S.’s of Equations (3.5) and (3.7) and premultiplying both sides by the

inverse of the 3x3 matrix in the later equation gives,

V= (T13 g + ;x - Vy)cosa cosB + (To3 g + %1 - Vy)sinB
+ ( T3y g + ;Z - V;)sina cosB + %—(Fi cosB + Fy sinB) (3.8a)
8 = ¢t Px + ¥ )cose sing « (T Py _ ¢,)cosB
= g1(-T13 g - ;& + vyx)cosa sin 238+ 5 - y)cos

~(T33 € + L2 - ¥;)sina sinB + X(-Fj sing + Fj cosB)} - (rcosa - psine) (3.8b)

. 1 . . P . F
o = VcosB {-(T13 g + gx - Vx)sina + (T33 g + ﬁz - Vz)cosa + ﬁk}

-(rsina + pcosa)tanf + q (3.8¢c)

In body axes system, the Moment Equation (3.2) becomes:

T=10a+wx (I0)

vhere,
Iyx -Ixy -Ixz
S Iyy Iyz
-Ixz 'Iyz I;2
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is the moment of inertia matrix; Ixx’Iyvazz are the mass moment of inertia
about the longitudinal, lateral, and normal axes respectively, and Ixy’IyZ’Ixz

are the products of inertia. Expanding the moment equation results in:

R . . 2 2

L = Igup = Iyt + (Izz-Iyqur - I.,pq + Ixy(q - pr) - Iyz(q - r7) (3.9a)
. 1 2 2 R . 3.9b

M= Iyyq - ( zz'Ixx)pr + Ixz(p - I ) - Ixy(p + qr) - Iyz(r ‘PQ) ( . )
. R 2 2 .

N = I, - I ,p + (Iyy—Ixx)pq + Iyyqr - Ixy(p -q°) - Iyz(q + pr) (3.9c)

where L, M ,and N are the sum of the external moments about the x, y, and z

body axes respectively.

Equations (3.8) and (3.9) fully describe the motion of a rigid airplane
in the six degrees of freedom system. Simplified sets of reduced degree of

freedom equations can be readily obtained from these six equations.

3.3 LONGITUDINAL EQUATIONS OF MOTION

The longitudinal equations of motion are obtained from the six-degrees of

freedom equations by setting all lateral and directional components to zero.

The resulting equations are as follows:
V= (T + Px _ vy)cosa + (T + Pz _ Vv, )sina + Fi (3.10a)
= (M3 8 + 5 X 33 8 + o z m :
. 1 P . . P . F
o = V(-(T13 g + ﬁx - Vy)sina + (T33 g+ EZ - Vz)cosa + ﬁk] +q (3.10b)

M =T 4 3.10
cg = Tyyd (3-10e)

"
o

B =0 j;and L = N
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3.4 AERODYNAMIC FORCES AND MOMENTS
In Equations (3.10), the aerodynamic lift and drag forces, Fy, and, Fj

and pitching moment, Mcg’ have been, traditionally, expressed in nondimesional

terms, i.e.,

Fi =~ a5 Cpg (3.11a)
Fg = -~ q S CLy (3.11b)
Meg = qSc Conp (3.11¢)

vhere CDT ’CLT ,CmT are the total drag, total 1lift, and total pitching moment
coefficients, q is the dynamic pressure, S is the surface area, and ¢ is the
mean aerodynamic chord. The parameters that influence those aerodynamic

coefficients are discussed in the following.
The total drag coefficient is expressed as,
Cpp = (Cp) .+ (ACD)cg + (ACD)SSP + (&Cp)y
vhere (CD)a’ (ACD)cg, (ACD)SSP’ (ACD)h, are the drag coefficients due to angle
of attack ,a, trim correction for center of gravity shift from c/4, spoiler

deflections and, the Reynold Number correction for profile drag, respectively.

These coefficients are determined as follows,
(CD)a =00 @ Crpasic
CLBasic = (CL)u * (CL)8H * (CL)Be

n
L

(€D gsp = 121CDgsp, 35Pi

(&Cp),, = (30,000 - h) 4.5 . 10-8




The variables that influence the total lift coefficient are angle of
attack, «, the horizontal stabilizer deflection, &H, the elevator deflection,
e, the pitch rate, q, the angle of attack rate, «o, the pitch angular

acceleration, q, the normal load factor, nz , and the spoiler deflections, &SP.

The normal load, nz, is the load component along the normal axis of the
aircraft body normalized by the aircraft weight. Equivalently, nz is the
projection of the sum of the aircraft acceleration and the gravity vector along
the normal body axis normalized by the gravity constant. It can be determined
from Equations (3.5) and (3.7) that,

nz = -(sinacosﬁ@ + cosacosBV& ~ sinasinBVé + (psinB - qcosacosB)V + Qz)/g

+ Ta3 (3.12)

The total lift coefficient, CLT, is expressed as,

CLp = (CL) o + (CL) gy + (CL)go + (CL) + (BCL) gop + (CL)y + (CL)g + (CL),

For small perturbations in the aforementioned parameters, the total lift

coefficient is represented as

ca .
CLT = CL1 + CLZ W ot CL3q - CL4“Z
vhere,

CL1 = f(a«, 8H, 8e, q, &8SP)

CLy = 3CL/3(caw2V)

aCL/ 94

GCL/ anz

(%}
=
&
[}

Similarly, the total moment coefficient is represented .

co .
CmT = le + sz VA A Cm3q - Cmanz
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Cpy = £(a, 8H, 8e, q, 8SP)

1

Cpy = Cp/d(ca/2V)

2

Cma = 3Cn/ 34

3

Cpy = 3Cp/3nz

For detailed derivation of CLT' CDT and, CmT’ refer to Appendix C.
Considering the longitudinal motion (B8<0), the normal load factor, nz,

from Equation (3.12) is given by,

nz = Nz, + nz, &«
1 2
vhere

nz, = (-V sina + V q cosa + T33 8 - Vz)/g

nz2 = -V coso/g

Now, the aerodynamic lift and moment equations (about the c.g.) become,

Fk = —a S [CL1 + (2-% CL2 - CL4 nzz) o + CL3 t.] - CL4 nzl] (3-13)

Mg =@ S ¢ Ecml + (I% Cmy - Cmy NZy) &+ Cpg § - Cp, nzl]
-Fx ¢ X2CG1 - F; ¢ X2ZCG2 + MP (3.14)

vhere,

XZ2CG1 = [cosa (xCg - xREF) + Sina (Wch - WLREF)]/C

X2CG2 = [sina (xcg - xREF) - cosa (VLCg - VLREF)]/E
MP = Moment due to thrust about the center of prin-ite (c.g.)
Xcg = The fuselage station (F.S.) at the c.g. of 1he aircraft
Vch = The waterline (W.L.) at the aircraft c.g.
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XI\EF = The F.S. at wing MAC
WLggr = The W.L. at wing MAC

The wing a.c. XZCGl and XZCG2 represent the moment transfer arms that
account for the changes in aerodynamic moments resulting from the forces
determined at a moment reference point other than the aircraft center of

gravity.

The sign convention here is such that the distance x is positive aft and
WL is positive up. Figure 3-3 depicts the distances used in the above
equation.

Figure 3-3. Explanation of Distances Appearing in the Longitudinal Equations

3.4.1 Solution of the Equations of Motion for &

The CSMP 90 computer graphics programs used for the time history analysis
initiates solutions of the equations of motion by performing solutions for a
and q at discrete intervals of time. Substituting for Fi from Eqnation (3.13)
into Equation (3.10b) gives,
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((-T13 sina + T33 cosa) g + (vxs1na - VZCOSa)

R
n
<

I

[Pz cosa - Px sina + q S (CL1 - CL4 nzl)]]
qS ,c . qS .
+m—v(-zv CLZ" CL4 nzz) a"'nCLBq + q
and rearranging yields,

&= (Ay + Ay §)/ A (3.15)

Vhere:*

- 1.0-98 _
Al = 1.0 mv (W CL2 CLZ; nzz)

wn

+

1 . . . .
A3= 7 {(-T13 sina T33 cosa) g + (vxs1nm - vzcosa)
1 [P_ co P_ sin q S (C o )l}
+ 5 [P, cosa - P sina + q ( L1 - Cr4 N2y +q

3.4.2 Solutions of the Equations of Motion for q

The second phase of the solution of the longitudinal equations of motion
is solving for the moment equation. Substituting for Mc& from Equation
(3.10c) and Fy from Equation (3.13) into Equation (3.14) gives,

. = e = C A A - o -
Iyyq =qSc [le + (IV sz - Lma nzz) a + Lm3 q - Cma nzl] +qS-r CDT XZCG2

S E[CLI + (T% CL2 - CL4 nzz) a o+ CL3 q - CL4 nzl] XZCG1 + MP

+
L1

and rearranging yields,

(3.16)
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Where,

My = I,y - @S¢ (Cpy + Cy X2CG1)
- o = C c
My = - q@ S clyy Cpy - Cp, 02y + (5y CL, - Cp, nzZ,) XZCG1]

M3 =q8S c[Cml - Cma nz, + (CL1 - CL4 nzl) XZCG1 + CDT XZCG2] + MP

From Equations (3.15) and (3.16) & and G can now be determined completely

3.5 AERODYNAMIC DERIVATIVES OF A FLEXIBLE AIRPLANE

3.5.1 1Inertial Reference Axis

The aerodynamic derivatives for a flexible airplane are defined relative
to an inertial reference axis. Definition of the inertial reference axis is

essential.

The concept of an inertial reference system is illustrated for airplaac
flight in the plane of symmetry, omitting considerations of the fore-and-aft
degree of freedom. The airplane is assumed to be flattened into the x-y plane
to more easily demonstrate the principle. Figure 3-4 shows an arbitrary

flight condition.

The aerodynamic force and moment, controlling the motion of the inertial

reference, and thus the flight path are in coefficient form, Reference (6).

TS T
L= CLgl® %) * CLg % * ‘Loz 70 * Clag T (3.18)
7V 7V
6 . e_ &.E ., e 9
Ch = Cmo + Cma(a--ao) + Cm8 et CmGE 5 CmaE 77 + Cp. ('pFV "')-( (3.19)

l

bAY

[
<<
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~\\‘~ Vyg COS ag

CENTER OF GRAVITY

-INERTIAL
REFERENCE AXIS

g = ZO/V

Figure 3-4. Flight in Plane of Symmetry

INERTIAL
REFERENCE AXIS

AXIS FIXED TO BODY
AT TWO POINTS

Figure 3-5. Inertial Reference and Body Axis
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where ag is the angle of attack at zero 1lift, and &, is the longirudinal

control surface deflection angle.

The derivatives on the right hand side of the equations must be computed
for the flexible airplane. The computer codes used to generéte these
stability derivatives appear in Appendix D of this report. Figure 3-5 shows
the inertial reference axis and an axis fixed to the body. In this figure
the position of the body axis relative to the inertial reference is defired by
zg and 6g. This distinction must be made because the inertial reference is
not fixed to any point of the body. If the flexibility of the airplane is
defined in terms of structural influence coefficients (flexibility
coefficients), a reference fixed to the body in a statically determinate way

must be defined. Elastic deformations are defined relative to this reference.

The inertial reference defines the overall motion of the airplane if the

following conditions are satisfied:
(1] [M] (z,) =0 (3.20)

lx—on M] (2.} =0 (3.21)

vhere xg is the structural influence coefficent reference point, z, is th:
displacement relative to the inertial reference axis and [M] is the mass

matrix.

These equations imply that the momentum and moment of momentum relative
to the inertial axis are zero, thus; the motion of the aircraft in the
inertial axis defines the total momentum and moment of momentum of the

deforming airplane.

The deformation of the body relative to the inertial axis svstem. {z.},

is defined by the following equation:
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{zr) = {1} 2p * {x—xR} GR + {z) (3.22)

wvhere {z)} defines the deformation relative to the body fixed axiz. Figure 3-5.

Denoting the aerodynamic forces by {2,} and the inertial fmrces by {Z;,]},

then the total distributed force is:
{Z} = (Z3,) + (2} (3.23)

The key step in this procedure is that the vertical force and moment
equilibrium are imposed before {Z_,} is computed. As a result, the equilibrium
between aerodynamic, elastic and inertial forces is automatically assured in
the final answer, It also follows that the results are only applicable to
free flight conditions and hence are not applicable to a supported model in a

.wind tunnel.

The forces-and-moments equilibrium is determined by the following two

equations:
0 = L)z} = Li(zyq) + L(zy) (2.264)
0 = lx-xOJ[Z} = Lx-xOJ{Zin} + [x—xOJ[Za} (3.25)
The total distributed force is written in the form:

()= {[1] - (BT LL - (/1) M) (x-xg) Ix-xg )} 12,0 (3.26)

vhere,

M= L1l(M1(1)

IO = l.)('“xo-l (M] {x‘xo}

This equation expresses the total force distribution, in teims of
aerodynamic forces, under the assumption of equilibrium between inertia forces

and aerodynamic forces.
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The aerodynamic forces, {2}, can be expressed in terms of the dynamic
pressure, aerodynamic influence coefficients, [Qgz,], and local angle-nf-attack
distribution. The local angle of attack is the sum of angle of atrack of the
inertial reference axis; the built-in (zero load) angle-of-attack distribution
{63)}; an angle-of-attack distribution associated with a control surface
deflection; an angle-of-attack distribution due to pitch rate of the -
reference; and angle-of-attack distribution due to elastic deformation.
Aerodynamic lag effects are included by adding an o« term, or by higher order

approximations derived from unsteady aerodynamic theory.

In order to formulate aerodynamic derivatives that correctly describe the
overall motions of the flexible airplane when used in the rigid airplane
equations associated with Equations (3.18) and (3.19), the derivatives must be

related to the inertial reference axis, and thus to op and 6.
In mathematical terms:

(2,) = Al J{{lhey + (8,) + (1/V){x - xg}8y+ [Dgliz )} + @ [0y, 10006, (3.27)

In this equation [Dg] is a differentiating matrix, that is [Dg] {7,} defines
the slope in the direction of the free stream. Alternatively, IUglii is the
streamwise angle of attack at point i due to a unit structural deflection at

point j.
The deformation (z,} is given by,
{zp) = (2} + [zg)8

where {z} is the elastic deformation, and {zg}d is the displacement dune to

control surface deflection.
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Let

(B] = [1] - lo ) {(-1/Tp) (1) Lx - x,J M) + [Dg) } (E]  (3.28)
{1 - a1y ) - /1) M) G - xg) Lx - xol}
Ig = bk - %o [M] (x - x)

vhere [E] is the square matrix of structural influence coefficients with Eij

is the deflection at point i due to a unit load Z applied at point j, i.e.

{z} = [E){Z}

Then it can be shown that:
(B] (2,) = alay,} {(-1/Tpp) (1) [x - x5) [M] + [Dg] } (z5) 8
v aleg ] { () ap v (80 + (/W) (x - xd80} + Al0 .1 (1) §(3.29)

The matrix [B] is constant for a given configuration and Mach number.
This implies that all aerodynamic lag is accounted for in [Qgz,]. This may not
be a valid assumption for fast maneuvers, because the above derivation is

based on [Qz,] being constant.

From Equation (3.29) it follows:

() = alBl"t 10,) {(May + (8,) + (1/V) (x - x,) &,
11 W e - xpd 10+ 10gl] 2 6)

+ qrep”t (0.1 (1} &, (3.30)

The above equation defines the distributed aerodynamic forces on the

flexible airplane corresponding to an equilibrium between aerodynamic forces,
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elastic forces, gravity forces, and inertial forces in terms of the motion of
the inertial reference axis, built-in angle-of-attack distribution and control
surface deflections. An implied assumption is that the inertial effects due to
z, can be neglected; that is, [1]J[M]{z ]} and Ix-xgJ[M]{z,} can be neglected.
Equations (3.20) and (3.21) satisfy these assumptions.

From Equation (3.30), all derivatives used in Equations (3.18) and (3.19)
can be derived. In addition, the deflections relative to the inertial
reference can be determined for any point on the flight path, and, therefore,
the total motion of each point on the airplane can be determined. This
includes the motion of the pilot seat and the motion of the sensors

(acceleration and pitch rate).

The effect of airplane flexibility in the aerodynamic derivatives that
determine the out-of-plane-symmetry motion is included in a manner similar to
that outlined above. The effect of fore-and-aft force in the derivatives will

also be included.

The technique under which the aerodynamic derivatives of the flexible
airplane are derived imply that they are valid for use in the usual airplane
stability equations, if the first structural frequency is sufficiently above
the short period and Dutch roll frequencies. If there is a possibility of the
dynamics of airplane flexibility entering into the stability characteristics,

the complete dynamics equations of the flexible airplane will be used.

3.6 FLEXIBLE STABILITY DERIVATIVES
A stability derivative is defined as the rate of change of a force

coefficient or moment coefficient with respect to some independent variable.
The theoretical metho.; used to obtain the desired stability derivatives are

outlined in the following sub-sections using simplified expressions {or

illustration.
Both rigid and flexible parts of the stability derivati— e~ o1« determined
as functions of dynamic pressure, Mach number and weight case. The Ilexible
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derivatives are calculated in two distinct and independent sets. The
distinction between the two is their frame of reference. One set is
designated fixed airplane stability derivatives and the other as the free
airplane stability derivatives. Although the magnitudes of the individual
derivatives are different for each set, when all of the derivatives are
applied to a'time history problem for one set, the resulting accelerations and
velocities versus time are identical to those that result from applying all of
the derivatives from the other set to the same problem. A short physical
description of the stability derivatives used in this report is given in

Appendix A.

Lift and moment coefficients are defined by,

Cy = LIFT/(Q Spgp) (3.31)
Cm = MOMENT/(q SREFC) (3.32)
m m
LIFT =i£1Pi H MOMENT =i£1Pi ARHi
ARHi = Xppp~ ¥4 (3.33)
or in matrix form,
cL /q3s 0 [1]
= o AIC| {a) (3.34)
Cm 0 k/qScl] LLARM]
Vhere:
Py = The lift acting on the itM panel
XxgpfF = The F.S. wvhere the wing mean aerodynamic center is located

x§ = The a.c. of the ith panel
AICija Incremental lift on panel i due to downwash applied at point j
k = 1 for full aircraft model

= 2 for half aircraft mod-t
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Aerodynamic influence coe

number of theoretical aerodynamic programs, such as VORLAX, OUADPAMN,

and TRANSAM.

Higher order derivatives,

fficient (AIC) marrices will be obrained using a
FRE. TEAM

coupling terms, relating rolling, pitching and

yawing moments to aircraft rotational velocities are also considered as

illustrated below:

MOMENT

ROLLING MOMENT
PITCHING MOMENT

YAWING MOMENT

The total load acting on

ROTATIONAL VELOCITIES

P q r
Clp CI{
C
Mg
Cn,, Cn,

a balanced flexible airplane is then represented

as the summation of rigid and flexible airloads and the inertia loads. that
is:
{p] = RIGID AIRLOADS + INERTIA LOADS + FLEXIBLE AIRLOADS (3.39)

Where:

RIGID AIRLOADS = [OL/Q] = Flae, aeREF] (3.36)

INERTIA LOADS - [V) = F [ng, éil (3.37)

FLEXIBLE AIRLOADS = [OP/A] = F [Aaflex| (3.38)

0 - ﬁ <
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3.6.1 Longitudinal Stability Derivatives

For the purposes of illustration, derivation of the longitudinal
stability derivatives of a rigid airplane with &« = 0 will be dealt with in the

followving. Using Equations (3.18) and (3.19),

CLa(a - ao) qs + CL6 6e qs + CLéE ;V qS+nz W = 0 (3.39)
e
v

— — - - ec - - - - .
Cm [a—ao) qSc + Cm [éeJ qSc + Cm'—[fV) qSc + Cm qSc - 610
o 6e oc 0
pAY

+nz ¥ ("REF‘ xcg) =0 (3.40)

vhere:
Igp = lx - xgl (M] {x - xq}

and, xggp is the reference point about which the moment coefficients are
taken. In this subsection if Xgpp is taken at Xcg then the last term in

Equation (3.40) becomes zero.

In matrix form, these equations become,
L 1 ] )
[Lxcg-x_]] {[As]{ 1 }e-ap) [As]{“s
©As] (%) ¢ {w}(nz) . {PZ”}(é)} - {8 } (3.41)

c, - (qS/Zjl'L 1 Ipag]{ ! } (3.42)
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vhere
[AICg] = .5([AIC] + [aIC]T)

[Ag] = [AICg] q

Collecting the terms that multiply [Ag] and defining their sum as the rigid

airplane angle of attack distribution yields:,

(mh - (2 Joeeor + fog Jooo - FRE) oo} 0o

3.6.2 Concept of Flexible Longitudinal Stability Derivatives

The incremental change in local panel angle of attack due to airframe

flexibility is:

Po] ] { Zuer} (3.45)

R
[1]
—
I

vhere,

[Eg] = .S({E] + [E]T)

The net vertical panel loads for a flexible airplane are:

Cos) - Billl) - G} - wemr « fog® e

Substituting for {ag} from Equation (3.45) into Equation (3.46) yields,

([ 1 ] B [As ][De ][Es ]){PZNET} = [As](“k} + (W}(nz) ‘Fzé}(é’ (3-47)

Let,

(o] = [t ]- [as 1o [es] (3.48)
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Then,
(2gge } = 1D 177 [ A]0agd + 1D 17 (W 32y + 1017t { P25 J 6 (3.49)

For steady maneuvers at specified load factors © = 0 and the © and nz terms

are fixed so that a solution can be obtained for (a-eg) and (8g) such that:

] {
p - do } (3.50)
Ixcg-x1J | Zygy

Expanding {og} in Equation (3.49), yields:

(o) 07 1 ] 1 6oy +107! 1 Pig]teod + 10711 ag]tesa) (8

= x an .o
+ 10711 [Ag] [fﬁl’-f/ig_] G5) « pHIme « 7 zgh® @
[

Each of the terms in the above equation represents a constant times the
parameter for which it is desired to have a flexible stability derivative.

Formulation of flexible stability derivatives from this equation are given as

follows:
cfixed _ L1 Jjo Y Bs)e 1y cfixed _ g™y [*s]( 1)
%flex qs/2 Maflex qcs/2

cfixed L1 T [As]{aae} fixed _ [*eg (07} [As]{aae}

C

L _ m -
seflex qS/2 8eflex qcS/2
{xcp-xcg} {xrp‘yng}
fixed — fixed —_—
-1. 1A - - - -
‘e . Lyl e Cnge  _ Leg ™Iy BsIU e )
Wflex qS/2 ﬁflex qcS/?
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. -1, A , ,

aél§ed . - L1 J(D ][ S]{gg} {aglxed} - (o Jo 1 }(“SI§Ed“o)
flex "rigid [ 1 J[D-II[AS]{ 1} flex rigid flex "rigid

fixed

cfixed Xeg™ xJ[AS][ %) flex

m = -
0flex qeS/2

ciixed 11 ol L1 Jw ciixed  Xeg® )07l W) - Feg” *J (W)
NZ¢)ex q8/2 DZ¢lex qeS/2

cred Lo (7)1 7) coixed gy ot {2} peg {72}

6 - ) -
flex qS/2 flex qcS/2 (3.52)

The flexible stability derivative defined above can be used to define the
flexible/rigid ratios and increments required to correct the equations in

Appendix C (Aerodynamic Equations).

The preceding derivatives will be the same as those for the rigid
airplane when [D] equals [1]). It is seen from Equation (3.48) that [D] equals
{1] vhen the dynamic pressure equals zero, since [Ag] = (q)[AICg], or when

[Eg] =[0].

3.6.2.1 Concept of Fixed Longitudinal Stability Derivatives

The stability derivatives derived in the previous section include the
superscript "fixed" in their definition. This designation pertains to the
assumption that physically speaking the airplane is constiained at two fixed
points. These are the points in the [Eg] matrix that show zero deflection for

all load conditions and from which all elastic deflections are referenced.

By examining the individual stability derivatives of Equation (3.50) it
is apparent that the force system represented is a series of airlnad distribu-
tions due to unit changes in angles «f attack in balance =ith «onrentiated

loads at the constraint points. The entire system is in static bhalanre.
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Equation (3.52) may be used to generate a consistent set of "fixed"
flexible stability derivatives suitable for use in time history balanced
flight maneuver analysis. Two types of stability derivative output are
required for a fixed airframe concept. The first type is the ratio of the

flexible to rigid stability derivatives associated with the applied angles of

attack, «, 8, and 6c/2V. The second type consists of the inertia derivatives
associate with nz and 6. The inertia derivatives represent the incremental

flexible airload.

The method of solution is illustrated by writing Equations (3.31) and

(3.32) in coefficient form as follows:

ZPZ = [CLmrarOT + Cannz + CLé (] ] (aS) = - W nz (3.53)

IMy = EcmaT“TOT + Cpp Nz + Cpg © ] (aSc) = -V nz(xXggp- Xcg) + Lyy® (3.54)

vhere:
CLop®T0T = CLo(o-0) + Crg 8¢ + CLgg (63/2V)
e
bAij
Chgyy ®TOT = Cmg(*-20) *+ Cng 8¢+ Cmgg (82/2V) + Cpg

PAY

The equations are then combined and expressed in matrix notation as:

(a-uo)]

) 8a nz W rz

[chlx } ] + [ Cnz } {“ } = (1/q) [ - 1{ N }
6c/2V ) S tinA
1
wvhere
PTLfix ] . [ CLo FLée rLéE/ZV J
* Cng  Cmg,  Cmécsov Omg
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is
of

is

to

is

is

the normal force and pitching moment coefficients due to an applied angle

attack distribution for (a - o), &g, 6c/2V and CnmO>

Lnz CLg
C = ..
nz Cmnz Cme
the flexible incremental normal force and pitching moment coefficients due

vertical and rotational accelerations (incremental airloads only),

v
[ v ] - 577 0
S v Iyy
- §77(XREF - Xcg) T5/7

the normal force and pitching moment due to balancing inertia reactions,

()

the balancing inertia load factor and rotational acceleration at the

reference point, and

is

the applied external angle of attack distributions.

The required flexible ratios and inertia increments are obtained through

independent solution of the terms of Equation (3.55). The required stability

derivatives may be obtained by solution of [Cp,] for unit values of a-og, 8,

and éE/ZV. The required inertia derivatives are obtained by solution of[Cph,]

for unit values of nz and ©. The required rigid values may be obtained by

repeating the solutions with [Eg] = [0]. Flexible/rigid ratios are ohtained

by division of the above two solutions.

3-27




3.6.3 Concept of Free Longitudinal Stability Derivatives

The stability derivatives derived in the previous section are for the so-
called "fixed" airframe consideration. The following discussion presents a
method of generating stability derivatives for an unrestrained or "free"
airplane system. These stability derivatives reflect the effects of the
simultaneous application of airload distribution and the required balancing
inertia load distributions. They provide greater insight into the physical
significance of each parameter.

The solution of the equations of motion for a "free" airframe is
illustrated by examining the "fixed" equations of motion for the single
parameter (o-ap). Equation (3.55) may be rewritten as follows:

(a-ag)
fix an nz - nz
[CL ] 0 + [an ]{ } =(1/q) [\-’}{ . } (3.56)
a 0 e S 2]

The "free" stability derivatives incorporating both airload distributions due
to the applied angles of attack and the balancing inertia contributions are
expressed as follows:

(a-ap) (a~op)
free OmIO fix an nz YBALANCE
Cy 0 + |Cy, 0 + | Cnz { . } =0 (3.57)
o 0 o 0 0

If a solution is performed for a unit value of (a-oy), Equation (3.56)

C ) fix A nz YBALANCE
o S R H P P
from vhich,
nz BALANCE N ERRR N EN
1 A o A ECT R o

becomes:




Thus the nz and © required to balance the "free" airframe may be obtained
through the solution of Equation (3.59) and the final value for the "free"
derivative can be obtained from Equation (3.37). The elements of (C,,], [VW/S],
and [CLafix] are the same as the "fixed" derivatives given in the previous
section. The above solution can obviously be repeated for each type of

arbitrary angle of attack distribution.

The solution represents an airplane force system in which the airframe is
in equilibrium, where the airloads are in balance with the inertia loads, and
the airframe is no longer "fixed" in space, but is free teo accelerate in the z
direction and rotate about the y axis. However, Equatio- (3.57) contains no
allovance for the z translation or rotation about the the y axis. The above
equations are shown to present the concept of "free" derivatives. The
particular solution for free derivatives encompassing the z translation and y

rotation is developed in Subsection 3.5.

3.6.4 Effect of Flexibility on ag_and Cmg

If the airframe under analysis has a design wing with a null camber and
twist (C&T) distribution, then the aerodynamic load distributions at zero
angle of attack, oy = 0°, will be equal to zero, and the zero lift angle, oy,
will also equal zero. Similarly, the pitch moment coefficient , Cmy will also

be zero.
If the design wing has a non-null camber and twist distribution, then the

flexible body aerodynamic load distribution of Equation (3.52) at « = 0° may

be expressed as:

vhere { oy } is the camber and twist distribution at «a = 0°. The lift and

moment coefficients due to camber and twist are then defined as:

flex - flex
{cgee} = @@ L1 I {pget ) (3.61)
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() - wio s (087 ) e
{al™) -ean trd [ ot ][ a]{1} (3.63)
{cait®* } = c2sasdlex | [ o8 ][ & ] {1} (3.64)

Substituting the above expressions for lift and moment coefficient slopes into
Equation (3.52) yields the following equations for the effect of flexibility
on oy and Cmg.

uoflex - - CLflex / chlex (3.65)
C&T a
coflex o - (cpflex / c,flex) oflex (3.66)
0 C&T o 0

Values of oy and Cmy for the rigid body can be obtained by repeating the above
calculations for [D‘ll = [I]. Flexible increments for «y and Cmg may then be

expressed as follows:

sogflex . gpflex aprigid (3.67)
ac, flex - cpflex - Cpllie (3.68)
0 0 0

The above flexible increments for oy and Cmgy may be included in the rigid body

equations of motion.

The total flexible lift and pitching moment coefficients of Equatinnz (3.39)
and (3.40) due to angle of attack « and oy are expressed as follows:

_ _ . flex
(CL )y =CLy *ReL, (o~ o+ oo ) (1.69)
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(Cm )y =Cny *Romy (@ - o + dogflex y 4 (cpo + OCHIEX) (3.70)

Note that in a typical 2-DOF time history analysis Cp ., Cper» %, and Cmg are
generally obtained from measured wind tunnel force data. The terms Repq»
Remes Auoflex, and ACmOflex represent theoretical flexible cor«ections as

obtained from the type of analysis presented in this report.

3.6.5 Horizontal Stabilizer Downwash Contributions

The lift coefficient acting on the horizontal stabilizer may be expressed as

follows:
( CL)TAIL = CL o+ ( CL )T + CL SH (3.71)
C&T )
HT
or;
€
(Cpamn = S [(1+3E) e &) + oL, (3.72)
“uT HT
where
CL = stabilizer lift coefficient slope dCL/da
op in the presence of the wing.
CL = stabilizer lift coefficient slope dCL/da
% out of the presence of the wing.
€ = downwash angle at « = 0°
de / da = slope of the downwash angle at a = 0°
(C ) = stabilizer lift coefficient due to wing camber
L T
C&T and twist at « = 00
( CL )T = stabilizer lift coefficient slope dCL/da
SHT in the presence of the wing.

The above stabilizer derivatives may be expressed as the summation of the load

distribution on the tail plane only, as follows:
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{ Cly } = rs)y Lig : p-1 | : As : {1} (3.73)
{ Ly }o-rs Lipl [ ol ] [ s : { ?T } (3.74)
cL sy Lipl [ ol ][ as] { (3.75)
C&T ! 11 |
{ Cus } - /8) Ligp | [ p-1 j [ Ag : {IZH } (3.76)
vhere .
L 1p J = summation matrix for tail load distribution only

{ 1 } unit angle distribuiion for total airplane control points.

{1}
7

{0}
Yen )
lsn

Reviewing Equation (3.72) indicates that the downwash terms at o = 0° may be

unit angle distribution for tail plane only.

camber and twist distribution at « = 00°.

unit angle distribution for tail plane moveable
control surface only.

defined as follows:

soflex - (¢ flex )p/ CL&;;X (3.77)
de/da YElex _ c,flex _ , flex Y/ ¢ flex 3.78
¢ derde) ¢ Loy Lagy Layy (3.78)

Values of CL“T’ CL“HT’ (CLC&T)T’ €9 and de/da may be generated in a
manner similar to that for 8y and 8Cmy in Equatioens (3.67) and (3.68). Thus
by repeating the above calculations for [D‘1 ] = [1]}, flexible effects for

Cy , (CLSHT)T, €p and de/da may then be expressed as follows:

oy
flex flex RIGID
S - (3.79)
a(de/da) 1% - (desde)f1®F - (desdeRIGID (3.80)
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R = C / C
CLOLHT L°‘HT L""'HT

RCL&HT = Oyt 1 Clgyy Ot

Thus the horizontal stabilizer lift coefficient of Equation (3.72) may be

revritten to incorporate the above flexible effects as follows:

(1+ gg + A(gg)flex) @+ (g5+ Asoflex) ]

( Cu) = C [
TAIL oHT

R
ayr CL

* CLge RCLaﬂTSH (3.81)

Note that in a typical time history analysis CL“HT’ CL&HT’ A de/da and g
may be obtained from either experimental data or from theoretical aerodynamic
codes. The terms RCL , Aeoflex and A(de/du)flex represent the theoretical
flexible corrections as obtained from the type analysis presented herein. The

independent real time pafameters are a and 3.

3.6.6 Determinations of « contributions

The change in lift coefficient with variation in the rate of change of
angle of attack, «, arises essentially from an aerodynamic time lag effect.
It comes from a so-called plunging type of motion along the z axis, in which

the angle of attack, o, remains constant during the disturbance.

The horizontal tail of a conventional airplane is immersed in the
downwash field of the wing and whenever the wing undergoes a change of angle
of attack, the downwash field is altered. Thus the change in stabilizer lift

may be expressed as a function of incremental downwash angle as follows:

CLoHT &€ (3.82)

(8C1) tail
where

Ae (de/da)a Ot (3.83)
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and At is the time lag from the wing to the tail. This lag can be expressed in
terms of the tail length, (distance from wing &/4 to tail t/4), 1., and the

free stream velocity. Thus, Equation (3.82) may be expressed as:

(8CL)tail = Crayp (d€/de) a (1y/V) (3.84)

By definition, the incremental stabilizer lift may also be expressed as

CLeaa/avy (372 = Cup (&c/2)(2/c)(de/de) (1,/V) (3.85)
Thus
Similarly, it can be shown that
Cm(&E/ZV) = CmaﬂT (21 /c)(de/da) (3.87)
Using rigid and flexible values for Cj, , CmdﬂT’ and de/dx obtained from the

above analysis, the theoretical flexible/rigid ratios RCL- and RCm- may be
o a

generated and included in time history analysis.

3.7 LATERAL/DIRECTIONAL STABILITY DERIVATIVES

The approach used for the longitudinal stability derivatives is similarly

employed for the solution of the lateral/directional stability derivatives ,
except that anti-symmetric aeroinduction, inertia, and structural influence

coefficients are utilized.

3.7.1 Lateral/Directional Equations of Motion

For simplicity, the applied aerodynamic forces used in the development of
the equations of motion will be limited to the side force due to an applied
sideslip angle. It will be shown later how to expand the applied aerodynamic
forces to include all contributions dne to the full set of lateral -rtahility

derivatives.
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L PY = -V nY

LN

W(Xcg - XREFINY + Iz ¥ - Iys

L

V(ZREr - ZegIny - Ixz ¥+ Iy

REF REF <«

REF REF

(3.88)

(3.89)

(3.90)

vhere ny is the inertial load factor, and $ and Y are angular accelerations

about the x and z axes respectively. The aerodynamic forces and moments may

be expressed as follows:

L Py

(CYB B + CYn ny + CY({} Y + CY;{; $) qS

Y

IN = (Cpg B+ cnnY ny + cn¥ ¥+ C"$ %) gsb

ZL

(Crg B + ClnY ny + CIW Vo c1¥ ¢) qSb

where B is the applied sideslip angle and,

CY() = aCY / ()
Cagy = 3a / 3 )
C1(y = 31/ 3C)

In matrix notations the above equations become:

vhere
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(3.94)




is the flexible side force, yawing moment and rolling moment coefficients due

to an applied sideslip distribution.

v Sy Sy
C C'Y C C
Yn = nn ny n;
Y C, Y C C
3x3 1. 1
nY Y ]

3x3
is the flexible incremental side force, yawing moments and rolling moment
coefficients due to lateral and rotational accelerations. (incremental

airloads only)

[ -bW 0 0
I . V(X - X)) I I
S -~ 7bS cg REF zz “Txz
3x3
W(z -z ) -I I
REF  “cg Xz XXJq. 3

is the side force, yawing moment and rolling moments due to balancing inertia

reactions, and

i
is the balancing inertia load factor and rotational accelerations at the

reference point.

3.7.2 Equations of Motion in a Panel Point Load System

The preceding equations may be represented as the sum of a net panel load

point system and expressed in matrix notation as follows

({0} (2] (=

L

vhere:

{ PRIGID } {P e } + { legEgTIA } (3.96)
RIGID ! RIGID
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and

[ T ] _, Summation matrix for total Y load, yawing
moment and rolling moment.

This shows that the net loads acting at the panel points consist of anti-

symmetric Y and Z airloads, and anti-symmetric X,Y and Z inertia loads.

The rigid body airloads are defined as follows:

{ PY’Q;:GID} - a[ AY,Z]{ B } 8 (3.97)
where

[ Ay,z ] - [ Qy ] * [ 0" ]
and

Theoretical aerodynamic induction matrix,
[ Q AS ] _, relating anti-symmetric vertical loads at the
Z panel points, to anti-symmetric angles of attack
and sideslip angles at the control point.

Theoretical aerodynamic induction matrix,

[ QY ] — relating lateral loads at the panel points, to
anti-symmetric angles of attack and sideslip
angles at the control points.

{ B } _, Anti-symmetric angles of attack and sideslip
angles at the control points.

The X,Y,and Z inertial loads are defined as follows:

(7, INERTIA } [ (o] [ ] [ ]] {

Y} (3.98)
RIGID

& €3

vhere:

(o )= [ {0} {rw} {0 } ]
(2™ ] [ (0} (ru ) (i} |

.
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IN
()= [ {0} {0 }{rai}]
and
{ } } { P - } N Inertial Y loads due to a unit
Y/Y Y/ & nY,Y, and ¢, respectively.
{ PX/V } — 1Inertial X loads due to a unit ¥
{ 92/3 } — Inertial Z loads due to a unit &
Thus, the net panel loads acting on the rigid airframe may be expressed as:
n
NET - INERTIA oY
{PRIGID =q[AY,z]{°‘5}B*[Px,Y,z ]{I} (3-99)
vhere:

INERTIA IN IN IN
[ Py,Y,2 ] = [ Py ] + [ Py ] + [ Py ]

For a flexible structure, the net loads acting on the panel points may be

expressed as follows:

() - (- ()
and
{ APY?;Elex} -3 [ Ay o ] { b8, } (3.101)

The incremental change in local anti-symmetric angle of attack and =ideslip

angle due to airframe flexibility is :

(o8, } - {00 ] [ ] {Perec ) G-100)
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vhere
Differentiation matrix relating deflections at
[ DaB ] — 1load points, to local angles of attack and
sideslip angles at the control points.

[ EAS ] N Anti-symmetric structural influence coefficient
matrix.

From Equations (3.100) to (3.1J2), it can be seen that,

{Perex } = { Parern } * @ [AY,z ] [DaB ] [EAS ] { Perex } (3-103)

or

NET -1 NET
{ Pflex ) = [ D ] { PRIGID (3.104)

vhere:

[0 1= [o- (e ] [2u] [#]

Therefore, the solution to the three degree of freedom lateral/directional
equations of motion may be solved using a summation of an anti-symmetric

lateral and vertical panel point load system, that is,

{ §Y} { 0 } <[] (e (3.106)

{0}

It should be noted that the above solution reduces to the rigid case when [D]

or

1]

(2] [ ] e

is the identity matrix [\I\] . Equation (3.105) indicates that this is the

case when the dynamic pressure equals zero, i.e. q = 0, or when the =tructural
influence coefficient matrix is null, i.e. [EAS] = [ 0 ]. The equations of
motion may be expanded by inserting Equations (3.99) and (3.104) intn (3.106),

as follows:
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n

21y 2 ) Nl - B ) -

¢ (3.108)
Ny
(B} { 7T DRI L™ T 1} oo
CYg
‘;;e (s [ [ [ ] (a0 ] {8} (3.110)
B

[, - (2 1 LT { 1o - D] J (o™ ]

7 ] L ] Pxfgfgm‘ ] (3.112)

—d

]
—
w

Obviously, the above solutions for either fixed or free derivatives can be
repeated for different types of {af)} distributions, such as for a rudder,
ailerons, unit rolling velocity, or unit yawing velocity. The reader is
referred to Subsections 3.7.3 and 3.7.4 for a description of the fixed and

free airframe concepts of flexible stability derivatives.

3.7.3 Concept of Fixed Lateral/Directional Stability Derivatives
The stability derivatives derived in the previous paragraphs include the

subscript "fixed" in their definition. Physically speaking, this designation
implies that the airplane is constrained at two fixed points. These are the
points in the [ EAS ] matrix which show zero deflection for all Joad

conditions, and from which all elastic deflections are referenced.
By examining the individual stabilitv derivatives of Equation (2. 108) it

is apparent that the force system represented in a series of aiiload

distributions due to unit change in angles of attack is in balance with
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concentrated loads at the constraint points. The entire system is in static

balance.

Equation (3.108) may be used to generate a consistent set of "fixed"
flexible stability derivatives suitable for use in time history balanced
flight maneuver analysis. Specifically, two types of stability derivative
output are required for a fixed airframe concept. The first type is the ratio
of the flexible to rigid stability derivatives associated with the sideslip
angle B. The second type consists of the inertia derivatives associated with
ny, V, and é. The inertia derivatives represent the incremental airload of
Equation (3.109).

The required flexible ratios and inertia increments may be obtained
through the independent solution of the terms of Equation (3.94). The
stability derivatives may be obtained by solution {Cygix} for a unit value
of 8. This solution is given by Equation (3.110). The inertia derivatives may

be obtained by solution of [ CYn ] for unit values of nY, V, and &.
Yy

Equation (3.111) represents the required solution. The rigid values may
be obtained by repeating the above solutions [ EAS ] = [ 0 ]. Flexible/rigid

ratios are obtained by element by element division of the above two equations.
Program DRSD solves the 3-DOF lateral/directional equations of motion for
a "fixed" airframe using the above method. A description of this program is

presented in Appendix D.3 of this report.

3.7.4 Concept of Free Lateral/Directional Stability Derivatives

The stability derivatives derived in the last section are for the so-
called "fixed" airframe consideration. The following paragraphs ptesent a
method of generating stability derivatives for an unrestrained o1 "free"
airplane force system. These stability derivatives reflect the effects of the
simultaneous application of airload distribution, and the required halancing
inertia load distributions. Thus the- provide greater insight inte the

physical significance of each parameter.
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The solution of the equations of motion for a "free" airframe mavy be
illustrated by examining the "fixed" equations of motion. Thus Equation (3.94)

may be rewritten as:

n
yY} (3.113)
3

The "free" stability derivatives incorporating both airload distributions
due to the applied sideslip angle and the balancing inertia contributions may

be expressed as follows:

{c, ™ } 8- CYZIX } e [ Cy ] { §Y}BALANCE (3.114)

B ny é

For a unit value of B, Equation (3.113) becomes:

n
(o™} - fle, ]+ om [T ¥)
S
B ny )
Therefore,
n,\BALANCE -1
{ !Y} ; {-[ ¢y |+ @ [§] } {c,) (3.116)
S Y
$ n B
Y
Thus ny, V, and & required to balance the "free" airframe may be obtained

through the solution of Equation (3.116). The final value for the "free"

derivative can be obtained from Equation (3.114). The elements of [CYn ] ,
Y

[ v ] , and { CYFIX } are the same as those in Subsection 3.7.3. and may be

S
8
obtained from Equations (3.110) to (3.112).

It is obvious that the above solution can be repeated fnr other rtypes of

arbitrary anti-symmetric angles of at'racl and sideslip distriibation
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Program DRSD solves the 3-DOF lateral/directional equations of motion for
a "free" airframe using the above method of solution. A description of this

program is presented in Appendix D.3 of this report.
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SECTION 4
AERODYNAMICS FOR AEROSERVOELASTICITY

4.1 INTRODUCTION
The subdisciplines of aeroservoelasticity: aerodynamics, feedback servo

control, and solid mechanics were developed, independently of each other over
the course of aviation history. Interaction between these disciplines could
be ignored roughly up to the 1950‘s. Modern fighters and transport airplanes
operate at combinations of angle of attack («) and dynamic pressure rendering
the integration of these disciplines mandatory. The modern airplane design
must ensure enhanced safety, reliability, operational life and unparalleled
performance. In the following, a historical background relating to the
evolution of these disciplines and the need for their subsequent integration

into the new discipline of aeroservoelasticity is briefly outlined.

Aerodynamics - Evolved from classical hydrodynamics and the empirical
science of hydraulics. The former dealt with formal solutions to
partial differential equations such as Laplace’s equation and reached
its zenith in the mid 1800s. The latter measured the flow of fluid in
pipes, channels and wires and about bodies such as ship hulls and
bridge piers. Scale ship models, for example, have been tow-tested
for several hundred years. Aerodynamics as a subject emerged fewer
than 100 years ago, and unsteady aerodynamics of lifting surfaces,
about 60 years ago.

+ Servo Control - Employment of measurements of the state of an object
as a means of automatically changing that state to achieve a desired
objective, defines feedback control. The device for amplifying the
measurement signal to effect the change is the servomechanism. The
steam engine with mechanical feedback of piston position for changing
slide valve openings effecting steam delivery and exhaust, represented
an application of this principal in the late 1700s. The coming of
electric power in the late 1800s introduced and required the use of
electrical feedback and electrical and electro-mechanical servos and
began to lay the foundation of what was to become servo control
theory. Modern evolution of the subject stems from chemical and
petroleum process control that led to fully automated production
plants as early as the 1920s. Modern servo control could thus be said
to have a history of about 100 years.

«+ Solid Mechanics - The oldest of the three disciplines evolved through
civil engineering from Roman times. Elasticity and maximum load
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concepts gradually emerged through stone and concrete construction of
in situ structures: bridges, aquaducts, dams, and buildings. Marine
architecture extended the subject to vehicles. Wooden ship structural
design evolved to steel within the last 150 years. Metal aircraft
construction practice and theory followed that developed for steel
ships. The study of elasticity thus has a history of over 2000 years
and the theory employed in aircraft metal monocoque structures a
history of over 100 years.

The three disciplines began interacting, two at a time, in aircraft
analysis and design as early as the 1920s. A brief review of these sets the
stage for the more complete discussion of aerodynamics and the part it plays

in aeroservoelasticity, the subject of this report.

* Aeroelasticity: The first analyses of the interaction of unsteady
aerodynamics and linear elastic structures wvere made in the early
1920s to gain an understanding of the previously unexplainable flutter
of aircraft lifting surfaces. Design changes based on these analyses
made the aerocelastic modes stable without the benefit of active servo
control.

Static aeroelastic effects began to severely limit fighter aircraft
maneuverability in WW II. Aileron reversal was the first example to
appear. This combined discipline is approximately 70 years old, and
is the oldest of the three.

» Aeroservo Control: The interaction of quasi-steady lifting surface
aerodynamics, classical mechanics of rigid bodies (linearized) and
servo control under gyroscope feedback acting through elevator,
aileron, and rudder deflection began to be studied for the purpose of
providing autopilots for commercial transport aircraft in the 1930s.
The DC-3 could be flown "hands-off" for example.

This type of system was extended to high speed pilotless aircraft in
VW II with the German V-1 pulsejet powered subsonic flying bomb and
the supersonic V-2 rocket, a forerunner to today'’s space vehicle
launch boosters.

* Servoelastic Dynamics: The third pair of disciplines - the
interaction of the linear elastic modes of a flexible vehicle (with
little aerodynamics influence) and servo control, under accelerometer
feedback acting through swivelling main rocket thrusters. for example,
began to be considered in earnest during the development of
intercontinental ballistic missiles (ICBMs) and space vehicle launch
boosters about 30 years ago.

It vas necessary to stabilize not only the neutrally stable highly
flexible body bending and axial modes and slosh modes of the fuel and
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oxidizer in large diameter tanks but also the completely unstable
vehicle "rigid" body modes.

The small damping of the elastic modes and fairly wide resonant
frequency spacing often provided mode independence and permitted the
separate stabilization of each.

As aircraft speeds increased in the 50s and 60s and wing thickness
decreased, the effects of lifting surface elasticity became more pronounced -
including the quasi-steady (or static) aeroelastic effects. These could
usually be accounted for by modifying the aerodynamic stability and control
derivatives of the rigid airplane. Thus the basic means of analyzing airplane
stability and control did not have to change to accommodate static aeroelastic

effects.

Dynamic effects at the structure mode frequencies could be neglected by
designing the servo control to roll-off rapidly as these modal frequencies
were approached. This permitted unsteady aerodynamics to also be neglected in
stability and control analysis. This independence of the control system from
rapid unsteady effects is still valid for many stability and control problems
today. Dynamic aeroelastic modes are traditionally stabilized passively by

aerodynamic, inertial, and structural design.

Static aeroelasticity very greatly affects servo control system design in
typical fighter aircraft configurations. With increasing dynamic pressure,
stability generally decreases (e.g., longitudinal static stability, Cyg»
decreases and lift curve slope Cp, increases with unswvept wings due to
leading-edge nose-up elastic twist) making the airplane more responsive to
disturbances. At the same time controls become much less effective (e.g.,
positive elevator deflection bends the aft fuselage down causing stabilizer
lift that acts to neutralize the elevator down force). Obviously, if the
control aeroelastic derivative approaches zero, no control system will be able

to stabilize and control the airplane.

When such behavior unexpectedly manifested itself in flight test, as it

sometimes did in the 50s, the only recourse open to the operator was to
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restrict flight operations to lower dynamic pressures (and sometimes to lower
transonic Mach numbers). If such a problem were caught in the design phase,
structural stiffness could sometimes be increased, though attendant weight
increase would usually force a completely new structure to be designed that

vould produre a less severe deflection distribution.

Structural design began to be greatly affected by requirements for
controls effectiveness, and the prevention of flutter and divergence.
Required wing main box torsional stiffness increases resulted in skin and spar
wveb thicknesses far beyond those required for optimum strength design. New
and unorthodox controls configurations became necessary to save weight and

retain aeroelastic controls effectiveness to high dynamic pressure.

It vas into this atmosphere that the new discipline aeroservoelasticity

vas born.

4.2 EQUATIONS OF FLUID MOTION
The equations governing the aerodynamic forces employed in stability and

control analyses are based on air considered as a continuum. The following

equations are developed, in descending order of complexity:

+ Navier-Stokes.

»  Euler.

* Full Potential

*+ Prandtl-Glauert (Linearized Potential).
- Hyperbolic (Supersonic).
- Elliptic (Subsonic).

+ Laplace (Incompressible).

Though it had been possible to develop the most comprehensive set of
fluid motion equations (the Navier-Stokes) over a century ago they were of
little use without the computer, except as the beginning of a path to simpler
more restricted equations. The simpler equations were the first to yield

technically useful results.
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An example of simpler equations is provided by the Euler nonlinear

partial differential equations, written in vector notation:

« Euler Equation

g% = - p V.u Continuity
Du ,

P Bt = - vp Momentum (Newton’s Second Law)
De

Pyr=- P V.u Energy Balance

Where:

D a " s 3 n

bt = 3t * (u. V) Following the Motion" Operator

These are usually written in divergence form to facilitate computation:

- Euler Equations in Divergence Form

3 3 (pu) 3 (ev) 3 (pv) 0 Continuity

at ax oy 9z
2
%{(pu) + %;(pu +p) + g;(puv) + %;(puw) = 0 Momentum, x corponent
2
%?(pv) + %;(pvu) + g;(pv +P) + %;(pvw) = 0 Momentum, y component
2
%?(pw) + %;(pwu) + g;(pwv) + %;(pw P 0 Momentum, z component
3 ¢’ 3 ¢, e ) ) e
5[9(8 + ) )] + E[{(e + 5 ) + p}pu] + -a—;[{(e + 5 ) + p}pv]
3 2
SRR o e

Euler and Navier-Stokes nonlinear partial differential equations are
solved by erecting a grid of volumetric elements that totally fills the space
surrounding the object under study. The time rate of change of fluid density,
momentum, or energy within an element is proportional to the net flux of the
quantity into the element. A pseudo time-stepping procedure can find the no-

flux condition that marks a steady-state solution (see Figure 4-1).
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L

One dimensional continuity equation for tyvpical volumetric element:

pu (pu + 9(ow) AX) _p _a_ﬂ‘:‘)_
dx gx

—— ——

Q)

‘—A K e

Figure 4-1. Euler Equation Solution Volumetric Element Grid

The potential equation of fluid motion may be obtained from the Euler

equations as follows:

Full potential equation is based on:

2% = -p Y.u Conservation of Mass
Du ,
P ot = - Newton’s 2nd Law (F = ma)
. | Y Isentropic Equation of State Substituted
P, R for the Energy Equation

The potential equation applies to flows in which vorticity is null.

does not apply to:

It




+ Boundary layers and wakes
- Separated regions
- Within shock thickness or behind curved shocks

If ¢ is the velocity potential, then the fluid velocity is given by

Cve L i 2, 538, 2%
u-V¢_13x+Jay+kaz

Fluid Rotation w = Vku = WV ¢ = 0
First the Bernoulli equation is deriven. the Momentum equation:

1 3% _ 0 with 298 o 29
5 VW + V T (V$.9) 96 = O with Tl v T:
vith 1/p substituted from the equation of state, may be integrated over any

path through the fluid from point A to the point of interest.

1
p ¥ L
L o Y. v, (ve.9) -0
po at
1
Y 1
Po Ty 3¢
—_ p Vp.dr + VSF .dr + (V6. Vo.dr + C(A) = O
%o A A A

The Bernoulli equation becomes:

p r-1
[—9-] Y [P_] Y+—ai+]-'t.lz+C=0
%o 2
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or equivalently:

L
t 2

1 2
a’ +

1€

(V¢)2 + C=20

Q

Now the conservation of mass equation may be written as follows:

3p
at

Lol Lad

+ V.V + V¢.-Z—°- =0

and from the Isentropic equation, may be substituted

°e
P

p—
<
P
[y
S——
aQr
ot
N
[}
Q

to yield

1 aaz

(v - Da? 2

+ 9V 4+ -———l———f V¢'Vaz =0

(v - Da

Differentiating Bernoulli’s equation with respect to time gives:

2 2
da_ 3¢ N
5e = - (v - 1)[atz + (99 V’at)

and taking the gradient of Bernoulli’s equation:

Val - _ (y - 1)( g% . (v¢-V)v¢]
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and substituting into the above equation yields:

2
a2 o - 22 2049 X we(ve-mvs = 0
22 3t

or more concisely:

N

2
e - 22 [%— . (V¢'V)} (78)
at ¢

4.2.1 Linearized Potential Equation (Unsteady Prandtl-Glauert)

It applies to steady uniform free-stream flow. Body produces small

perturbation unsteady velocities that decay rapidly with distance upstream.

U=9p= Vo + V¢’ = i(U + u) + jv + kw

Where: Vo = iU, and 94’ = iu + jv + kw
Thus:
3¢ _ aer 3%l ,
3t = 3t 7% 2" 74 - 4 and

Substituting these into the full potential equation yields:

2, /
a’Pe = 2 L [g— . %(V¢-V)](V¢'2 L AT
at t ax
Expanding the equation yields the nonlinear full potential equation in

the perturbational potential:

2 ’ ’ 2 ’ 4 2 !’
alPer - T8 gper -39 L 2pd L oy -0 L ver (e -mywer 4 02 X
i 3t EPED T i
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Discarding all nonlinear terms leads to:

2 ’ 2 ! 2 ’

¢ + 2Ua d + U2 3 ¢ _ a2V2¢'
2 axat

at X

The equation is normally rewritten as follows:

2 2 2 2 2
2 a ¢I a ¢I a ¢r _ 1—_ a ¢I a ¢I
(1 - M) 7+ + az[atz + 2Uaxat]

ax ayl 8zl

which is the linearized unsteady Prandtl-Glauert equation.

Where M = U/a, the Mach number. For supersonic speeds, M > 1.0, the

equation is elliptic in the spatial coordinate.

4.2.2 The Linearized Unsteady Bernoulli Equation

To go with the linear unsteady Prandtl-Glauert equation and to preserve

linearity of the AIC matrix is the linearized unsteady Bernoulli equation:

Before these equations can be solved the boundary, initial and uniqueness

conditions must be specified.

4.3 BOUNDARY CONDITIONS
Boundary conditions on the surface of a moving body, see Figure 4-2, may
be described by:

DF
ot = ©
vhere:
F(r,t) = C
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WING

Figure 4-2. Body Defined by the Function F(r,t) =0

is the function that describes the surface of the body and C may be zero or a

constant.

Substituting F into the boundary condition equation and expanding yields.

o ww a0
aF ) 3, O OF
T (U + u’) % * v 3y + W 3 = 0

For example, with the body described by: =z = f(x,y,t), the function F

becomes:
F(l’,t) = Z - f(x,y,t) =0

The boundary condition becomes:

Y LAt
_at-(U+u)ax—Vay#V=O
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or

of
ay

a

f
t

v o= + (U + u) gé + V

Q

For a flat-plate lifting surface by linearized theory:
w=o—+1U 3% vhere z is the structural deflection

4.4 METHODS OF THE EQUATIONS SOLUTION
With a range of fluid motion equations available of varying capability

and complexity, and with the principles for determining the boundary
conditions understood, it becomes necessary to choose the equations that suit
the problem. An appropriate analysis method is then found or created for that

equation set.

The method of solution should be selected from the options listed in
ascending order of complexity. These roughly parallel the original

chronological development.

Methods for solving the simpler equations are listed first, thus laying a
foundation for the more demanding methods needed by the more comprehensive
equations. Some solution methods are as follows, each listed under its

appropriate fluid motion equation:

« Incompressible Equation (Laplace).

- Vortex Lattice (2-D Steady Lifting Surface).
- IAMA (Incompressible Arbitrary Motions Aerodynamics).

- Linearized Potential Equation (Prandtl-Glauert).
- Subsonic (Elliptical)

o USSAERO, DPM
o DOUBLET LATTICE METHOD (DLM) (unsteady).
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- Supersonic (Hyperbolic).
o QUADPAN (Steady Panel).

o POTENTIAL GRADIENT (Unsteady Multiple Interfering Lifring
Surfaces).

o MBOX, Harménic Grad, DPM, Supersonic Kernel F.
- Full Potential Equation.
-+ Euler Equations.

- Navier-Stokes Equations.

4.4.1 Incompressible Equation (Laplace)

Introduction
Solutions of steady and unsteady lift distribution of surfares may be

expressed in terms of a number of elementary functions, that individually
satisfy Laplace’s equation. Each describes the spatial distribution of a
scalar potential field. The corresponding gradient (or velocity)
distributions approximate observable physical flows. Functions describing
uniform flow and the flow fields resulting from the following elementary flow

generating devices are described and discussed:

« Source (and Sink)
+ Doublet
- Vortex

Nev functions formed by the superposition of elementary potential
functions will also satisfy the linear Laplace equation and result in
physically realizable flows. It is also permissible to construct solutions by
superimposing elementary velocity fields and this is often more easily

visualized.

In final combined solutions large velocities are admissible. If large,
compared to the mean flow velocity, the "strong" Bernoulli’s equation must be

employed rather than the linearized version to obtain pressures in the flow.
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Since Laplace’s equation is time-independent, the gradient of the
potential field at a point describes either a steady velocity or an
instantaneous velocity changing with time. If the boundary and uniqueness
conditions are satisfied and the resulting potential field satisfies Laplace’s
equation at that point in time the kinematics of the flow are valid

independently of time.

Due to the discrete nature and finite strengths of the elementary flow
generating devices - source, doublet and vortex - the corresponding functions
are singular at the centers of their spatial location. As long as the devices
can be empléyed as discrete elements and the boundary conditions met at points
other than the points of origin, then the singularities cause no problem in
numerical analysis. If, however, the devices are arranged in distributed
fashion along filaments, in sheets, or throughout volumes, then integration

may become singular and special means must be employed.

The devices are employed as discrete elements arranged in a pattern
dictated by the geometry of the immersed lifting surface. The problem to be
solved is the determination of the element strengths that satisfy the surface
timewvise varying boundary and uniqueness conditions. The timewise history of
element strengths then defines the flow kinematic behavior. The forces acting

on the body are determined from this by Bernoulli’s equation.

Uniform Flow

If the coordinate axes are fixed near the immersed body and translate

with it at a mean vehicle speed, U, the uniform flow potential function is:

¢=Ux+C

The gradient of this scalar function

V¢ = iU + j(o) + k(o)

is the freestream vector velocity.
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4.4.1.1 Source (and Sink)
The potential function of a unit source, m = 1.0 (i.e., emitring a volume

flow of 1.0 cubic ft/second), located at the origin is as follows:

P 1. J 2 2
= It T Xy sz

where r is the radial distance to any point.

The velocity vector from a source will always be directed radially,

therefore, and is given by:

4nr

The flow velocity from a three-dimensional or spherical source,
therefore, reduces as the reciprocal of square of the distance from its point
of origin. It should be noted that the volume flow from the source must be
equal to the product of flow velocity and surface area at any radial station.

1 3 X Anr2 = 1.0 ft3/sec

Volume flow = v.S =
r
4nr

Streamlines from a source radiate in straight lines from the point of
origin, therefore, a source can induce no velocity in a plane passing through
its origin. For this reason sources are not used for modeling lifting
surfaces. The principal use of sources and sinks is to give thickness to
bodies and wings. For example, a source in a uniform flow produces a flow

about a shape resembling the front end of a body at zero angle-of-attack.

A sink is a negative source in which the flow velocity vector is directed

toward the origin.
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4.4.1.2 Doublet

A doublet may be formed by allowing a source and a sink of equal strength
to approach one another with the strengths increasing as the distance between
them decreases so that the product of strength and intervening distance

remains constant.

Let a source of strength, m, be located a distance 8z/2 above the plane,
z = 0, at the origin and a sink of equal magnitude be located the same

distance below the plane. The strength of the doublet so formed is defined as

uzmAZ
3 4
and the units of p is £ x ft = fr_
sec sec

The equation of the potential function of the doublet may be obtained
from that of the source and sink by combining them and finding the limit:

3 .
¢doub1et - M5 unit source

Therefore, the unit doublet potential function is:

for z below the plane and x = y = o, ¢ is positive, as z approaches the plane
the function becomes infinite, switches to negative infinity above the plane

and is negative above.
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The velocity component normal to the plane is given by:

v = = -1
3z 4nr r2
for z = 0 (i.e., velocity normal to x,y plan)
IRACUI
92 Anr3
for x =y =0
v=3z ~°
2nr

AT SAME RADIAL

"—_\ POSITION
Wyay=0 = -2 W0

Vhen z = O¢g = O so 34/3x = 34/3y = O and the map of streamlines is as

shown above.
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The doublet just described is physically like a tiny actuator disk (or
propeller) that pulls in fluid from below the plane z = 0 and discharges into
the region above. It neither adds nor subtracts fluid from the flow as do the

source and sink.

Doublets are often distributed over lifting surface elements and are

particularly useful for modeling thin surfaces of arbitrary planform.

Consider the characteristics of the uniform distribution of doublet
strength over an area, I'. The equivalent doublet on an increment of area is

given by
p =T dx dy
and since u has the dimensions ft“/sec, T has the dimensions ft2/sec.

A uniform distribution of doublet strength over an area is exactly
equivalent to a ring of concentrated vorticity or a vortex encircling the

region.

Some of the present applications employ concentrated, or discrete
vortices running along lines, only. Any surface element of arbitrary shape
lying in a plane, that supports a uniform distribution of doublet strength, T,
may be replaced by a vortex of strength, I, running continuously about its

periphery.

Remembering the equivalence between sheets of uniform doublet strength
and circumscribing vortices permits the establishment of important laws

governing discrete vortices.

4.4.1.3 Vortex
The vortex that occurs at the discontinuous edge of a constant doublet
field is of a constant strength along its length. This is known as

Helmholtz’s first theorem.
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Vortices often form closed endless filaments or rings. If the edge of
the element of fluid supporting the doublet distribution was flowing past a
wall, the mirror image of the flow on the other side of the wall would
continue the vortex. The vortex then would appear to terminate at the wall.
That the vortex filament must endless or terminate at a wall is Helmholtz’s

second theorem.

In a vortex the tangential velocity is constant on a circle of radius r

about an infinitely long two-dimensional vortex.

Velocity = 5%;

where T is the circulation of the vortex.
Any closed line integral of t..e velocity vector component, V, along the

line following any path that encloses the origin must equal, T.
§‘7‘d§= I'

In general, a closed line integral of local fluid velocity component
times line element length that encircles any closed vortex filament will yield

the circulation of the filament.

Before leaving the vortex subject there is one last item of importance.
To aid in the computation of the velocity field of complicated snakelike
vortices, such as shown in the sketch below, the Biot-Savart Law may be
employed. It is noted that a complicated vortex may be broken into a number
of small equivalent elements and the flow fields of all pieces combined to

yield the total complicated flow field.
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fvds-rv

An element of a vortex of strength, I, and length, ds, induces a

" velocity, dVp, at Point p, normal to the plane formed by the radius, r, from
the element to the Point p and the axis of the vortex element, according to
the Biot-Savart Law:

I' cosB
dVp = 7% 2 ds

~ "\

where B is the angle between the radius to Point p and the normal to the

vortex element in the above plane.
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The Biot-Savart Law may be expressed in an alternative form by noting

S oin g D
C - sin B; [ = cos B
s _sinB
so that B = cosE
2 , 2
and ds _cos'B + sin’8 dB = dg
h 2
cos B cos B
Substituting the results ds = dg
cos B
h
and r = cosP

into the Biot-Savart equation gives

T
dVvp = in h dB
Example:

A straight line vortex is extending to infinity in both directions. The

induced velocity at Point "p" a distance, h, from the vortex is:

r n/2
Vp = Inc cospB dB
-n/2
T
Vp = 5

4.4.2 2-D Vortex Lattrice Method
The 2-D Vortex Lattice method illustrates the means by which the

chordwvise distribution of lift is affected by the shape of the mean camber

line, Figure 4-3, in incompressible flow:
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. AIRFQIL
Xm MEAN
CAMBER
Xa | ' LINE

O DOWNWASH (CONTROL) POINTS
AT 3i4 Ac

o LIFT (VORTEX) POINTS
AT 114 Ac

Figure 4-3. Incompressible, Steady, 2-D, Airfoil

Boundary Conditions at Control Points:

() \ \

“ ! =)
ot ax

Yo .32_2 .a_zg

J r = - 4 8' b + U J ax b

\ k) \at ) \3x J

It should be noted that the first term in the R.H.S. of the above
equation is zero for steady motion.
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Aerodynamic Influence Coefficients (AIC):

Y1
Y2

k 1

wm = L e rn, i.e., = [AIC]

n=1 2n(xm i xn)

Yk
This implies that
AICmn = 1Ac
Zn(xm 5 - Xn)

1. 1

Differential pressure coefficient across element n is given by

prnU
AC - Ac -
pn § U
4 3\ 4 3\
ac wl
Py
ACP2 ol vy
{t- e _rae)t { } -
e U2 )
2
AC Y
k
ka L)
\

4-23




EXAMPLE:
Let the airfoil experience a uniform unit angle-of-attack:

9z 9z 9z '
1 2 k 1
el el TR B i -1.0, k = 20, &c = 550 ¢ = 1.0
For this example, the pressure distribution is given by
(AC ) )
P, 1.0
ACPZ 1.0
{ : b = "ZAE [AIC]~1 4 ]
Acpk 1 O)
)
\
as shown in Figure 4-4.
20
1§ =
dcg 10~
5
g | | . 1 1
0 0.2 0.4 0.6 0.8 1.0
xic

Figure 4-4. Chordwise Lift Distribution Due to Unit Angle-of-Attack
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The Incorpressible Arbitrary Motions Aerodynamics (IAMA) Method

This method illustrates the means by which a vortex lattice method may be
employed to find the unsteady lift distribution on a low aspect ratio lifting
surface. The surface may have any timewise and spatiél distribution of slope
and normal velocity. First the surface is divided into equal sized elements,
as shown in Figure 4-5. A lift point is placed at the midpoint of each

quarter chord line and a control point at each three-quarter chord line.

Ring vortices are placed on the surface and wake elements as shown in

Figure 4-6.

A typical wing and wake is shown in Figure 4-7. A time-domain analysis
yields the left distribution shown in Figure 4-8, and Figure 4-9 is the

response to a step plunge velocity.

|
|_— PLANE OF SYMMETRY

APEX
\:

BOUND OR
SURFACE ELEMENTS

TRANSITION OR
TRAILING EDGE
ELEMENTS

1\ SHED OR

WAKE ELEMENTS

X + LIFT POINTS
» DOWNWASH POINTS

Figure 4-5. Surface and Wake Representation
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Figure 4-6. Ring Vortex Geometric Specification
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Figure 4-7. Typical Ving and Wake Model
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By use of the Biot-Savart relations given in previous section, the

dovnwash, w, is related to the bound, transition and shed vortex strengths as

follows:

4 T
{(w} = |w ' w .t
rb ¢ T r
% S s s
nxl nxn  nxm-n mx1

The downwash required at step, p, is given according to the boundary

condition specification in Section 4.3 by:

{(v(p)} = {3z/3t(p)} + U (3z/3x(p))
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Determination of ring vortex strengths, by satisfaction of boundary

conditions at time step p = 1, is given oy:

t

x/U is the increment in the time between the points at which boundary

conditions are satisfied.

-1
r (1) "
b,t b, t
[ ] - [ ] {w(l)}nxl

nxl nxn

p represents the pth time step in a sequence.

Determination of strengths increments at time step p = 2.

I (1)
0

V@) - wany - |

s
Xn nx1 nx(m-n)

(Arb’t(Z)} = {rwb,t}_
nxl n

m-nx1
Total wing ring strength:-
{Tp, t(P)} = (Th,¢(p - 1)} + (8T}, ((p))
Ring strength history is converted to differential pressure hy the
unsteady Bernoulli equation:

op = p[U3r/a3x + 3I/at)
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4.4.3 Linearized Potential Equation

Doublet Lattice Method
The DLM, see Reference [8], is employed in high subsonic speed flutter

and atmospheric turbulence response.

Gridding

The method applies to wing, tail, control surfaces, flow-through
nacelles, and body, if each can be represented as a combination of zero
thickness flat panels (of any planform), that have no initial or steady-state
inclination to the free-stream flow. The wire-frame geometry of the panels is

such that it lies parallel to and does not deform the flow.

Flow inclinations are achieved solely by enforcing boundary conditions at
one control point in each areal element into which the panels are divided.
This has been called the "venetian blind" model. The major panels may have

relative dihedral and vertical separation between them.

Panels are defined as lying in a single plane. The contiguous elements
making up the panel must be arranged in chordwise strips, each of constant
width, from leading edge to trailing edge, but elements in each strip may have
varying leading- and trailing-edge sweep and chord length. Panels then are
usually chosen to nest within the wing outline, with boundaries along control
surface hinge lines. Control surface elements are treated the same way as
other elements (these rules also apply to the Supersonic Potential Gradient
Method (PGM) and 20NA 51).

Though no panels are required on lifting surface wakes (wake effects
being included in the acceleration-potential methodology), two surfaces may
not lie one-behind-the-other unless strips of elements have continuous width
over the two surfaces. (This is because singularities stream behind the strip
side edges and give spurious induced downwash on following-surface control

points if they do not lie midway between edges.)
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If it is not practical to keep strip widths continuous, the problem can
be avoided by raising or lowering the second surface about one and one half
strip widths relative to the forward surface. This small gap will usually not
make a significant change to the results, since chordwire velocity

perturbations are not employed in the method.

Bodies should be modeled as cruciform flat plates, looking forward. Some
analysts have used a series of ring-wings of difference radii fore and aft to
represent tapering fuselages, but the calculated lifts on these elements must
be reduced by a factor (usually 0.5), to account for the fact that the
physical flow is not swallowed by these rings. This practice, however, is not
recommended since in the event that the body cross-section is not circular,

some other unknown factor would be more appropriate.

In the case of flow-through engine nacelles of any cross-section shape,
hovever, no correction is needed and paneling that follows the shape is

recommended.

The lift force on each panel element is assumed to be concentrated
uniformly along a straight line across the quarter chord and is directed
normal to the undeformed surface. The control points lie on element

centerlines at the 3/4 element chord position.

Method Description

The DLM is designed to treat discrete frequencies of oscillation, one at
a time. The method assumes that all surface elements of the airplane are
oscillating at this frequency, though not necessarily in phase. The frequency
is non-dimensionalized so that model motions will synchronize with the
drifting flow vorticity in the same way as they would on the full scale
airplane regardless of scale or wind speed. The nondimensional firequency is
called a "reduced frequency"” or Strouhal number which is defined as the ratio
of frequency in radians/second to numbers of passages of a reference length

per second, i.e.:
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U?— &€ radians/chord

k: =U

(8]

vhere ¢ may be delta-wing root chord or conventional wing semi-chord at the

3/4 semi-span, and U is the flight speed.

Motions of the aircraft are specified at the control points, in matrix

form, as

s W 4 3
4 2
1 10
Z 4
2 20 .
1wt
L b = L p e
4 V-4
\ kJ \ kOJ

and are resolved into local angle of attack as discussed in the boundary

conditions subsection:

o} - 5 G &)
in 9
&

The objective of the DLM is to find the matrix relationship between the

induced velocities at each control point on the whole configuration and the

sinusoidal oscillations of lift point on each element.

( \ r ¢ o 8 & 9 00 ] ( \
“ a1 212 41n 4
% 1. a1 3 U 2n 2

L 4 = . W . b
\“nj an1 ahZ ...... ann In
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vhere

/ - Opds

0p is the differential pressure across the surface element, and 4s is the

element area.

If the complex matrix { } is known over the vehicle, then the complex

[+ 4
")
lift force is given by:
() A A .. 1 ()
1 A1 Ao 40| (%
2 Byy By e Aonl %2
4 4 = 1. k
kn rnl An2 """"" Ann %
\ . /

{AIC] = Aerodynamic Influence Coefficients

and it fits into the linearized equations of aircraft motion, including

structural motions as:

(M] (&} + {K] {a} - [AIC] {a} = O

The equation is usually written in terms of the structural modes (mass-
stiffness). This causes the mass and stiffness matrices to become diagonals

but leaves the [AIC) matrix full, (it is also complex).
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Theory Discussion (Doublet Lattice Method)

The DLM is based on the acceleration potential rather than on the
velocity potential discussed in the previous section. Other applications of
the acceleration potential are discussed in Reference [5]. The relationship
between the two is as follows. The acceleration potential is based on the

momentum equation:

Discussion of the DLM is simpler if the Eulerian axes are assumed to
reside in the zero velocity fluid so that the aircraft, in passing, induces

only small velocities and position changes to air particles. Thus:

=, A, (u - Vu-=-9

ray be approximated to
Ju
S T

This states that the instantaneous fluid acceleration is:

Because of the small translational displacements during acceleration to

the distributed velocity, at time, t, the velocity may be obtained by:

t
u(t) = J a(t)drt

or

t
wt) = | -2 wpode




By the velocity potential method, however, the velocity is given directly

by the gradient of the scalar potential, ¢.
u = V¢

The relationship of the pressure p (a scalaP) to the velocity potential

is as follows:
1o, _ gy
) =V5

The DLM employs lines of constant strength acceleration potential
doublets along the quarter-chord loci of the panel elements. These are
equivalent to lines of constant lifting force per unit span across element
spans. (In the DLM these strengths vary sinusoidally in time at the specified

reduced frequency.)

To illustrate the behavior of such aerodynamic devices a single point
acceleration potential doublet, with axis normal to the plane (x. y) of the
lifting surface and whose strength remains constant with time, will be
discussed. It has the same form as the velocity point doublet of Section
4.4.1.2.

First the velocity potential doublet:

wvhere strength, u, may be thought of in terms of distributed doublet strength
per unit area, I, which is also the circumscribing vortex strength of an

elemental area of constant doublet strength. Then

u = I dxdy dxdy is element area.
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The velocity component, normal to the x, y plane at zero, then is given

by

3¢ 1

W= 7= = -

3 T dxdy
4nr

and the acceleration component normal to the surface:

L. S} N
3t T dxdy

. ]
w__.—
9z Anr3 at

A pressure field due to a pressure difference across an elemental area may be
assumed to be analogous to the velocity potential field due to a doublet.
Hence, from the doublet equation, the pressure (or acceleration) potential is

expressed as:

1

-2
3 (p) =

4nr3

Ao N Ll

Opdxdy

vhere 8p is the differential pressure across the doublet origin and the

acceleration normal to the x, y plane at r is then:

. 13 13

and the velocity component normal to x, y plane is given by:

v(X,y,t) = v(tyar - Y 1 ap(ndr
e ® 4nr3

-® -
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Before moving on tn discuss the accelieration potential doublet, as it
acts in the DLM, it is instructive to equate the velocity and acceleration

potential expressions for parcel acceleration, a, normal to the x, y plane.

Velocity Potential Acceleration Potential
A A
1 ol \ / 1 \
73 3% dxdt = -= 3 Apdxdy
4nr ° 4nr
arl _ &
Thus 3t -
ol

or 8 = »p T

the well known result from compressible unsteady aerodynamics is the unsteady

Bernoulli equation in stationary fluid.

It is now possible to determine the velocity, w(x, y, t), at Point p,
normal to the x, y plane in stationary air induced by a point doublet of

constant strength moving past it at a constanc speed and any subsonic Mach

number. (In the DLM this point doublet would be spread out laterally across a

strip wvidth to form a finite width line doublet of the same total lift. The
velocities induced by the line and point doublets would be approximately the
same at control points several strip widths away. This illustrates the

behavior of the DLM for steady nonoscillatory flow.)

DIRECTION POINT DOUBLET

OF MOTION
&

~
r
y

1p = 1y
Ip Iy UAL

STATIONARY
CONTROL POINT
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The doublet will be assumed to come into existence at x = 0, t = 0 and to
translate at speed, U, at a distance, y, laterally of Point, p. The problem
is to deduce the time history of the development of normal velocity w. The
doublet will be traveling at subsonic Mach number and compressibility effects

are to be included.

The smooth motion of the doublet may be thought of as a series of closely
spaced hops. At each point a frontal wave is sent out at the speed of sound,
a, that produces a steady fluid acceleration pattern and centered at the
position of the doublet. This pattern reaches Point p at a later rime given
by, 5, where r is the radial distance, from the instantaneous position of the

position of the doublet, to p.
It is clear that the time of arrival, T, is given by

X
v

u

+

al
1}
o~

The velocity induced at Point p then is given by

t
_ _Opdxdy dt
w(xp’ t) = 4np r3
0
wvhere
2 2
r = J(xp - xv) + Yy
x = Ubt
v
T=£+At
a

At and T are dummy time measures.
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Thus the two equations,

d
w(x,t)=-9%§y- L T dt
[(xp - Uat)” + y7] 7

1 2 2
T = a J(xp - Ubt)” + y~ + &t

will permit the problem to be solved.
Example:

The induced velocity, w, and acceleration, ¥, are computed for Xp = 10,
y = 4, and u = 1.0 for the three cases of a = 5 (M = .2), a = 2 (M = 0.5) and

a 1.25 (M = 0.8). The graphs for these cases for APdxdy/4np = 1.0 are shown

in Figure 4-10.

In this example, it is important to note that the induced velocity
increases to asymptotic level as the doublet passes by. This means that the
doublet leaves a permanent wake behind it. A finite span line doubler,
instead of a point, would leave a horseshoe vortex in steady flight. It
should also be noted that the calculation procedure takes care of this wake

automatically so that the wake need not be explicitly modeled.

An interpretation of this analysis is that, for a steady flow situation
(not a sinusoidal variation of elemental lift force), we have calculated a
number of elements in the reciprocal of the AIC or normalwash matrix. Suppose
ve consider a swept wing, flying at M = 0.2, M = 0.5 and M = 0.8. Its normal

wash matrix was shown on Page 4-33, as

(e} = (aIC]"1 (&)
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Factoring it by the forward speed it gives the form just calculated:
(v} = (B] (/)

For example the matrix elements for element p due to the forces in

elements 1 through 5 may be read from the plot, for M = 0.5

Bpl = 0.09
sz = 0.072
Bp3 = 0.042
Bpy = 0.017
Bps = 0.002

This outlines the aerodynamic logic employed in the Doublet Larttice
Method. The method is generally valid for attached leading edge flow at
angles of attack from -5 to +10 degrees and to Mach numbers up to M = 0.8 for
highly swept slender configurations or to slightly above the critical Mach

number.

4.5 DERIVATION OF THE STATE-SPACE EQUATION

4.5.1 1Introduction

The equations describing the dynamics of a flexible airplane in flight
are usually written as a set of simultaneous second order differential
equations. The aerodynamic forces are defined as functions of frequency and
are, strictly, only valid for constant amplitude. The generally recognized

form of the equation is:

[[u] s2 4+ [D] s + [K] - % ov2 [A(ik)]] (z} = 0 (4.1)
vhere:
z degrees of freedom: discrete displacement at structural nodes
(M} mass matrix
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[D] viscous damping matrix
[K] stiffness matrix

(A(ik)] complex matrix of unsteady aerodynamic coefficients: a function
of the reduced frequency k = wc/V

v true airspeed
p air density
s Laplace transform parameter

Equation (4.1) is for free flight without excitation. Any excitation (e.g.,
through control surfaces) will add a right-hand side to Equation (4.1).

Equation (4.1), therefore, is a stability equation and because it is for the
flexible airplane, it is also called the flutter equation. Any instability

associated with the structural modes of vibration is called flutter.

Stability of the system, defined by Equation (4.1), is defined by the
roots of its characteristic equation: s = (y + i)w, where w is frequency in
rad/sec and vy is the logarithmic increment. In solving the characteristic

equation of Equation (4.1), the constraint k = (c¢/V)IM(s) must be observed.

To take full advantage of the methodology developed under the discipline
referred to as Modern Control Theory, it is necessary to reformulated Equation
(4.1) in state-space format. The state-space format is set of simultaneous

first order differential equations with constant coefficients:
s {x} = [A] {x} + [B] {u} (4.2)

The degrees of freedom x are called state variables. For the second-order
system, Equation (4.1), the state-space vector {x} contains {z} and {sz}. It
may also contain higher derivatives, {szz], etc., as well as lag functions
such as {sz/(s+B)}. The additional state variables result from approximations

of [A(ik)]) in terms of rational functions of s.
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In the following, the state-space equation, corresponding tn Equation

(4.1) but with control added, is derived.

4.5.2 The Force Equation
The relation between the degrees of freedom {z}, the corresponding forces

{2}, and the elastic characteristics of the airplane is defined hy:

(K] {z} = [2] (4.3)
The deflections {z}, most easily visualized as downward translations., may
contain rotations as well as translations in other directions. Similarly, {z)

may contain moments.

The forces {2} are composed of inertia forces (d’Alambert’s principle)

viscous damping forces, and aerodynamic forces.
The inertia forces are:
{Zinertial = -(M] (Z} (4.4)
The viscous forces are:

{Zyiscous = -ID] (z) (4.3)

The viscous forces may be associated with hydraulic dampers, or they may be

used to approximately represent structural damping.

The aerodynamic forces are:
1 2 .
{(Zzero) = 7 o V< [A(iIK)] (2] (4.6)

The aerodynamics matrix [A(ik)] is obtained from aerodynamic influence

coefficients, a basic relation between the air aerodynamic force distribution
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over a lifting surface and the angle-of-attack distribution. In some methods
of computing unsteady aerodynamics a more basic relation is defined by a
matrix of induced velocity coefficients, defining induced velocities in terms
of a pressure distribution. In the following section, the more basic
formulation leading to [A(ik)] is presented, as well as the rational function

approximation of [A(ik)] needed for the state-space representation.

4.5.3 Formulation of the Aerodynamics

The formulation of the unsteady aerodynamics is baced on the relation

(33 = 25 (NID) (2p) (4.7)

v oV

vhere {8p} represents the pressures at aerodynamic force nodes, {w} is the
velocities normal to the lifting surface, induced by {4p}, and [NID] is the
induced normal downwash influence matrix. The induced velocities can be
defined anywhere in the flow field. For the purpose of computing {4p} due to
airplane motion, however, they are defined at so-called downwash collocation

points.

Downwash collocation points are those points on a lifting surface at
vhich the induced velocity normalized by the free stream velocity is equal to

the local angle of attack {a}, i.e.,
(a} = (7 (4.8)

In the doublet lattice method of unsteady subsonic aerodynamics
(Reference 25) there is a downwash collocation point associated with each
aerodynamic force node point, although they don’t coincide. The result is a

square invertible matrix [NID], and thus, from Equations (4.7) and (4.8):

(8p} = 7 ov2 {NID]-] {(a) (4.9)
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The inverse [NID]‘1 is the matrix of aerodynamic influence coefficients:

[AIC]). Thus, Equation (4.9) is equivalent to:

(8p} = 3 o2 [AIC] (a) (4.10)

There are unsteady aerodynamic computer programs that compute [AIC| directly,

some of them leading to a form consistent with the equation

(Zaero) = 5 V2 [AICL] (a) (4.11)
In this equation {Z,o,,} is defined at the structural nodes. in general
different, and different in number, from the downwash collocation points.
Thus, [AICL] is not necessarily a square matrix.

In the following derivation, Equation (4.9) is used as a starting point.

From {4p}, by an integra.ion or "lumping" process represented by [ZP],

the aerodynamic forces are obtained:
{Zaero} = [2P] {op} (4.12)

The local angle of attack, taken relative to the free stream velocity, V,

is given by

(a) = (ag) + (a}) (4.13)

The contribution ag is the instantaneous slope of the lifting surface,

relative to V, in a plane through V perpendicular to the lifting surface:
(ag) = [Dgl (2} (4.14a)
vhere [Dg] is a differentiating matrix.

The contribution a, results from the rate of translation in a direction

perpendicular to the lifting surface:
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(a;} = (D] {%} (4.14b)

vhere [D,] is an interpolating matrix.
Note that to illustrate the principle, it is assumed that there are only
z-type degrees of freedom and that all z’'s are defined perpendicular to the

lifting surface.

Substituting Equation (4.14) into Equation (4.13) and replacing z by sz
yields:

(a) = [IDg] + ¥ [0,1] () (6.15)
Combining Equations (4.9), 4.12) and (4.15) leads to:
1 2 -1 s
(Zaero) = 3 ov2 (2P] (NIDIL [(D,) + § [D,1] (2) (4.16)

For constant amplitude oscillation s = iw = i(Vk/c). The induced
velocity matrix is a function of ik. It follows that Equation (4.16) can be

written as:

(Zaero) = 5 V2 [A(iK)] (2} (4.17)
where A(ik) is defined as in Equation (4.1) and is given by:

[A(ik)] = [2P) [NID(ik)]-1 [[Dg) X (o,1] (4.18)

For developing the explicit function of s, [A(s)], corresponding to
[A(ik)]}, the [Dg] and [D,] contribution to [A(ik)] are identified separately,

and the explicit occurrence of s in Equation (4.16) is maintained.
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[A(ik,s)] = [ZP] [NID(ik)]-! [Dg + % [zP] [NID(ik)]-1 (D,

Let:

[Ag(ik)] =
and

[Az(ik)] =
Then:

[ACik,$)] =

[2P] (NID(ik)]~1 [Dg]

[Zp} [NID(ik)]-1 [D,]

[Ag(ik)] + § [Az(ik)]

(4.19)

(4.20)

(4.21)

(4.22)

Preliminary to approximating [A(ik,s)] by an explicit function of only s,
[Aguik)} and [A(ik)] are avproximated by [Ag(p)] and [A,(p)], vhere p is the

nondimensional form of s: p = cs/V.

Following Reference [26], the following terms are approximately,

[Ag(P)]

[A,(P)]

Because the state-space equation will be written in terms of s (see

5] » 1 Ll

(B,o) +

(4.23)

(4.24)

Equation (4.2)), Equations (4.23) and (4.24) are written in terms of s by

letting p = cs/V:

[Ag(s)]

[Ag(s)]

"
@
o
+
)
™
N
\_.‘
()
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where

BJ =V bj/C (4.27)

Combination of Equations (4.17), (4.21), (4.22), (4.25), and (4.26) leads

to the following approximate gxpressions for the aerodynamic forres:

n .
> o2 [(Beol + 5. Pal |,

{z } o=
aero o1 5+ B
1 .2 1s s : [sz] |
+ 3 pV v [B;ol Tt z —— {z} (4.28)
j=1 j

Vith an obvious shortening of notation this is written as follovs:
1 42
(Zaero} = 7 #V© [A(s,V)] (2} (4.29)

To clearly demonstrate how Equation (4.28) is used to develop the state-
space equation, without using unnecessarily long algebraic expressions, it
will be assumed that n = 2.

The following section deals with the incorporation of Equation (4.28) in-

the airplane dynamics equation, and the introduction of control surfaces.

4.5.4 The Dynamics Equation

The total force distribution on the airplane is given by the sum of the
inertia forces, Equation (4.4), the viscous forces, Equation (4.5). and the
aerodynamic forces, Equation (4.28) or (4.29). Replacing d/dt by s and d2/4d¢2
by sz, this leads to

(@) = [-141 52 - (0] s + 5 o2 [A(s,W)]] (2) (4.70)
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Combining Equation (4.30) with [K}{z} = (2}, Equation (4.3). leads to the

flutter equation, the equivalent of Equation (4.1).

To introduce the effect of a forced control surface deflectinn, a
distinction must be made for z used in Equation (4.30). In Equation (4.3), 2z
represents the sum of displacement due to rigid body motion and elastic defor-
mations. The forces in Equation (4.30) are due to the sum of these displace-
ments, and additional displacements, due to control surface deflection. To

make the distinction, {2z} in Equation (4.30) is replaced by {Z}:
2 1 2 p
@ = [ s2 - (01 s + } w2 (a5, 01] (B (4.31)

The relation between {2z} and {Z} is given by
{Z} = [zg] (8} + (2} 4,32)

Each &8 represents a forced control surface rotation, and each column in
[zg] represents the z-type displacement due to the corresponding &. Thus,
[zg] contains nonzero elements only for nodes on control surfaces. Their

values equal the distanccs from the nodes to the hingeline.

It should be understood that the forced displacements [zg] (8} are in
addition to any displacements on the control surfaces included in {z} that are
part of the elastic or rigid body response. The actual control surface
rotation, relative to the main surface, is the sum of § and the rotation due

to elastic response implied by Equation (4.3).

Equations (4.3), (4.31), and (4.32) are combined to
[M1 52 + 01 s + ®) - F o2 [AGs,W]] ()

- [M1 52 - o) s+ F o2 [AGs, W] [25] (8) (4.33)

2
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If {8} = O, the right-hand side of Equation (4.33) is zero. and the

equation corresponds to Equation (4.1), the flutter equation.

The number of discrete degrees of freedom {z)} may be large. Fnr a
typical airplane analysis it may range from 100 to 300, This iz not an
unreasonably high number for vibration analysis, but for flutte:r analysis and

active control design it leads to higher-than-necessary computing costs.

The number of degrees of freedom is reduced by modalization. nsually by
means of natural vibration modes. The deflection {z} is assumed to he a
linear combination of lower-frequency, natural vibration modes, earh of which

is defined by a column in the modal matrix [T]:
{2z} = [T} {q} (4.34)

Elements of {q)} are the modal degrees of freedom, also called modal
coefficients or participation coefficients. The modal matrix [T]. in general,
also contains rigid body modes, if deemed necessary for description of the
system under consideration. Typically, {q)} may have 2 to 50 elements.

Introducing Equation (4.34) into Equation (4.33).1eads to more equations
than there are degrees of freedom {q}. The number of equations is reduced to
the number of degrees of freedom by premultiplication with the transpose of T:

(7).

The result is:
(171 [iM} s2 + (0] s + (K] - 7 V2 [AGs, 1] (T (a)

- 117) [-14) s2 - (D) s+ 5 o2 (AGs, V)] [25] (8) (4.35)
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Identifying [TT] [ ]} [T) by an overbar (e.g., [TT] [M] [T) = [M] and

[TT] [ ] [zg)] by a hat (e.g., [TT] [M] [zg] = [M], Equation 4.35) is written

as:
|11 s2 + (81 s « (R - } ov2 (A(s,)1] (@)
- [1M1 52 - 1 s« 3 o2 1aGs, W] (8) (4.36)

Introducing the detailed expression for the aerodynamic forces, Equation

(4.28), with n = 2, into Equation (4.36), leads to:

[{il 2+ (D]'s + K] - 5 o2 [Beg) - 5 V2 [By0) §

R WP SR
- 2 DV [Bell S+Bl - Z pv [882] S*Bz

L w2igaqlst 1 oz 1.2
- 2 pV [lel v 5"‘51 - 2 pv [BZZI \V S"'Bz (q}

sz [BzO] \57

| Lad
N =

= [.[n] s2 - [D] s + 3 V2 [Bgol +

1 s
+ g oV (Be1l s+8 2 V2 [Bo2] s+B9
1 2 L8 1 90 1 s
) V< [B;,] vz S+B1 + 5 oV [Byo] 7 58y {8} (4.37)

The notation of the aerodynamics elements in Equation (4.37) is
shortened: ([Cggl = 1/2 pV2 [B8y], etc. The new symbols are defined below in

terms of symbols without overbar or hat.
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(Coj) - 5 V2 (TT1(Bgj1IT]  [Cojl = 5 V2 [TT1(Bgjlldgl 3 = 0,1,2
= 1 42 (T 1 ) 1 2 (1T 1 .
[Cz51 = 5 oV [T 1[B51IT] § [Cz3] = 5 oVC [T }{Bg5lldsl § j=09,1,2
(4.38)
Vith this notation, Equation (4.37) becomes:
(M] s2 + (D] s + [K] - [Cgol s - [Cepl sfel - [Cqol Sfﬁz .
52 52 ) 2 - i
- [Cz1] S+B - [Cz2] 5+6; {a} = |-[M] s¢ - [D] s + [Cgo]
c 1Cgol s + [Co1] S + [Capl S + 1Cp1] Sk + [Cpal | (8)
(4.39)

4.6 STATE SPACE EQUATIONS FOR AEROSERVOELASTICITY SYMMETRIC AIRPLANE

The development of the final state-space equations will be done in a

manner similar to that of Section 4.5. However, gust equations will be
included, and a more general for. of the servoactuator will be used. At a

later time, the equations for explicit force feedback may be added.

4.6.1 Gust Equations

The angle-of-attack due to penetration of a gust can be repiesented by

i —iwai —ikAxi
{eg) = v 1e T = w {e < (4.40)
where
u = gust velocity
V = airplane true airspeed




reference length

n
1]

&xj = Xj - Xcg for each DOF
k = reduced frequency
v = uwV

The gust aerodynamic forces are then given by

(Fg) = 7 ov2 [2P) [Ag(ik)] [og) (4.41)
After modalization
(g} = IT1T (Fg) = § o2 (Fe(ik)) v (4.42)
" where
_ -ikax;
(Fg(ik)} = [TIT [2P] [AL(ik)] {; < } (4.43)

Use the approximation from Reference [26]

, 4 (Bgp
(Fg(p)} = {Bgo} + {Bg1} p + {Bga} p“ + L ‘B:%;— (4.44)
j=3

Replace p with the generally used Laplace transform operator s:

p=Cs (4.45)
_ c 2
{Fg(s)} = {Bggl + {Bg1) v S+ (Bga) ) s
v
+ {Bg3) §§§3+ (Bgs) sfsa (4.46)

4-54




and

(0g(s)) = 5 V2 (Fg(s)) (4.47)

Equations (4.46) and (4.47) give the gust aerodynamic forces defined in terms

of the state variables w, sw, szw, sw/(s+B3), and sw/(s+8;).

The basic gust input is taken to be white noise of level n. A filter is
then defined which will convert this to the desired psd shape. The Dryden
gust spectrum is generally used for control systems work, and will be employed

here. A Dryden psd filter can be represented by

L U ST Y L U L (4.48)
g a, 0f |g )
vhere g is a dummy variable, and

2 3~

1= % °1 = I
1 1

az:——- Cz: —_— (4.49)
2 int3

and T = L/V, with L = scale of turbulence.

Closer examination of Equations (4.46) and (4.48) reveal a singularity
when combined witili the identity equaiion ws = ws (necessary because of the

existence of both sw and v as states). These equations are

WS = WS (4.50a)
ws =aj v+ g+c1hn (4.50b)
gs = ay) vw+cyph (4.50c¢)
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Since ws is a state variable, we need a derivative of this to put on the left
side. Therefore, we will use a suggestion by Hassig and add szwsz to Equation
(4.50b). Thus, Equation (4.48) becomes

v 0 1 0 w 0
swh = |ag/ey  -1/e9  1/ey| {svw} + {C1/¢y (4.51)
é ay 0 0 g )

wvhere € is a small quantity. Again care must be taken that this is chosen
properly, i.e., small enough to be correct, but large enough to avoid ill-

conditioning in the matrices.

4.6.2 Servoactuator Model

Assume a servoactuator which can be represented by a polynomial in s

5 - N(s) U = i=0

D(s) -

[=4

3
(%4

=]

(4.52)

N 13|08 43

[
o

where §, the control surface rotation, is a response quantity, and u is the

input command. Rewvriting Equation (4.52),
(bps™ + bm_ls""'1 + *+c 4+ bg) & = (aps" + an_ls"‘1 + cte 4 ag)u (4.53)

Define additional state variables,

8 =538
& = s2s
§n.1 = s™1 5  (4.54)
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This takes care of the denominator, but the numerator requires an additional
step. In order to achieve a state-space formulation we must change u and its
derivatives into state variables. This can be done with the following

equation:
(g7 s™1 + 1) u = u, (4.55)

Note that we must go to the n+l power of s in this equation. This can be
explained by examining Equation (4.53), where the term with the highest powver
of s on the right-hand side must represent a state variable - not rthe
derivative of a state variable. In order to form the state-space equations, a
derivative of this variable must appear - thus requiring the sn+! term in
Equation (4.55). Equation (4.55) allows the selection of small values for gq,
thus making u. essentially equal to u for the problem at hand. Therefore, ve

can define the new "quasi-input" states

u] = su

uy = s2u

u, = sMu (4.56)
The complete state vector for the servoactuator is then 8§, &3, & -+, &, 1,

u, ui, ug, °"°°, Uy - a total m+n+1 quantities.
Using Equations (4.53), (4.54), (4.55), and (4.56), we have the necessary

n+m+1 equat.ons to define the state-space model for the servoacruator. These

are shown in complete form in Equation (4.57).
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& 8§ & dp1 U Up
[ [0 1 o o 0 o0
8 0 0 1 0o O
8 0 0 0 0 0 0
l; -bg -by -b3 -bn.1 ag a3 a
-1t = |5 B, By by b5 by by
u 0 0 O 0 0 1 0
uq 0 0 0 o 0 1
uy 0 0 0 0 0 0
_Gn_ ([0 0 0 0 -1/gg 0 0
or
3 0 1 0]
Sl =10 0 1]
. (Bg) (Bs1) [Bgy]
m+n+1
where

0
-bo
by
0

yp = 100 --- OJlx men-1° {Ba}m+n-1 -

u2 “ e

Un
0 [5 M
8
0 52 0
an
-b—m' 46m_1 p + 40 ! Ue
0 u 0
0 lll 0
0 U2
0 ] yn ] _1/814
(4.57)
8 0
14+ {0 p uc (4.58)
5 By
0
0
i {Bs = 4-byp ¢ row m
Yoo
0

The requirements for choosing €; will not be examined.

damping that:

iw =1 2 nf
wvhere
w = frequency in rad/sec

and f = frequency in Hertz
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If &) is chosen to make u and u, differ by only a percent then

g1 s™1 < o0.01 (4.60)
or
-
e < _0.01 (4.61)
(2)‘tf)n+1

Remembering that n is the order of the numerator in the polynomial evpression
for the servoactuator, we can see that for frequencies above 1 Hz., & becomes a
very tiny number quite rapidly, especially for complicated servos. For

instance, let’s compute it for n=3 and f=1 Hz:
g7 < 0.01/(2m)4
g1 < 0.64 x 107

and
1/g = 0.156 x 10°

This large number may make [A] matrix somewhat ill-conditioned. Careful

attention should, therefore, be paid to Equation (4.61).

4.6.3 Phugoid Mode
Equations for including the phugoid mode in the aeroservoelastic model

will not be developed.

Assume a modal transformation such that:

{:} - [1] {% (4.62)
af

where x and z are the deflection distribution, x,, 2z, and 6, are the rigid

body degrees of freedom, and q¢ is the flexible body degrees of freedom.
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Keeping in mind that the flutter equation is a perturbation equation from
an equilibrium state, lets look at the vertical force created by a small

increment in forward velocity, AV. The aerodynamic forces are

(24} = % oV2 [AIC(0)] {xgq) (4.63)
vhere {aeq] is angle of attack at equilibrium.

The incremental increase in vertical forces is

da
(4Z,} = oV [AIC(O)] (aeq} AV + % pV2 [AIC(0)] {-353} av (4.64)

-V
_—"‘-—-————-——J
=6, + vy (4.65)
For V> | 25 |, vy = tan v
tan v = -2,/V (4.46)

vhere the negative sign enters because of the definition of the direction of

rotation of v.

(4.67)

a= 8, - =—

<
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g O (4.68)

Substituting this in the second term of Equation (4.64) gives an

expression which is negligible because of the presence of both z, and 4V as a

product.

da
% oV2 [AIC(0)] {;359} av = 0 (4.69)

Thus, writing the perturbation in velocity as -x,, since x is defined positive

aft, Equation (4.64) becomes
1 2 y
(42p) = -6V [AIC(O)] {meq) Xo = -7 oVp2 (3] (4z) %, (4.70)

Now consider the arag forces on the total airplane only,
D=1/2 ov2 Cp S (4.71)
We are concerned with the incremental force due to x,, z,, and 8,.

AD = oV Cp S OV + 1/2 V2 S Cpy ba

vhere a = a(V, 25, 65) (4.72)
da dJa da
do = 3V ov o+ 32y Zg + 36, 8y (4.73)
éo 1 -
ba = ;5 OV - 7 2o + 8 (4.74)

4-61




The first term in Equation (4.74) can be neglected for the same reason as

before in Equation (4.69).
&D = - pV Cp S %o + 1/2 V2 S Cpy (8, - 2,/V) (4.75)

1
There is also a drag force due to the change in direction of total velocity

due to an angle-of-attack change.
XL = 172 oV2 ¢ S 2,7V (46.76)

The total force in the x-direction is

z z
AXA=—pVCDSx°+%pV?'SCDa[eo—vq]+%pV2CLS\To- (4.77)
or
ax, = 2 02 |22 ¢ S 7o + S 4.7
A=2p 7 DSX0+7(CL—CD,1)ZO+ CDaeo (4.78)
or
1 2 SXO
&Xp = 5 oV [x)-( X, er szq (4.79)
e0
The total aerodynamic forces can then be written:
Xo
X, sX: sX- ¥X¢ O Z,
F . PO R I (4.80)
VAN =5 (8z)s [AIC] °
q
vhere
[AIC] = [AIC) (T,] (4.81)
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and
1 lo]
[T] = (4.82)
{0y T,
Now define
(arcy] = 1,17 [AIC] [T,] (4.83)
If
S
(a) = [(Dg] + § [0,1] 17,1 (az) (4.84)
() = 3 ov2 [T,)7 (2] [A(iK)] (a) (4.85)
This can be divided into pitch and plunge:
(0) = 5 o2 [[86()] + & 1a()]] (ag) - § (1,17 (8y) % (4.86)
where
(Ag(s)] = [T,1T [2P] [Aq(ik)] [Dg] [T,) (4.87)
and
[A;(s)) = [T,1T [2ZP] [Aq(ik)] [D,] [T,] (4.88)
Now using the rational function approximation,
[Ag(s)] = [Ag(0)] + stl [Bgp] + Sfﬁz [Bgy] (4.89a)
[82()) = [A2(0)] + S35 [Ba1] + Shp= [Bz) (4.89b)

where we use only two terms in the series. These

by a least square fit using two or more k-values.

matrices can be determined

Note that the modal matrix

[T} is now of a predetermined form, i.e., the first 3 columns represent rigid

body fore and aft, pitch, and plunge, in that order.
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4.6.4 Equations of Motion

A control surface rotation, §, gives the additional displacements.

{z¢) = [zg] (8} (4.90)

vhere the ith column of [zg] gives distances from a hinge line for the

particular control surtace corresponding to 8;. The total deflection is

{Z} = (2} + {2z} (4.91)

The equations of motion are

[[n] s+ [Dls + [K] - 7 V2 (A, 1] (3} + [x] (2) = (FG (s.1) w

(4.92)
Substituting for Z from Equation (4.91) results in
[1M1 52+ 101 s + 1K) - } V2 1G5, 0)1] (2)
= [ s2 - 01 s+ F V2 1AGs,001] (251 (8)
+ {Fg(s,V)} v (4.93)
Now,
{z} = [T] {q} (4.94)

Note that, in order to incorporate the phugoid mode, we must modalize the
aerodynamics first. This presents a possible problem for the aero forces on
the right side of Equation (4.93). The contribution to X-forces due to rigid
control surface motion should be zero since this side has not post-multiplying
(T]. This requires that Xos 2o, and 6, are not on a control surface. This
seems to be acceptable. After modalizing, Equation (4.93) becomes

464




where

and

Here

and

(161 s+ (61 s + [R) - } o2 L5, 0)1] (@)
- [-[M] s2 - [D] s + % V2 [A(s,V)]] [z5] (&)

. 2 ov? {;G(S,V)] v
(51 = (M7 [-] [T]
(-1 =117 (-]
sX; Xg lo}

(A(s, V)] = |- - - - - X oo

[A(s,V)]

0 lo] 610 {o]
(0} 17,17 [atcl} (o) [aIC]

Here {q) also contains the rigid body DOF, i.e.,

z, (xo]
(Q} = eo = dz

wvhere {q¢} represents the flexible modes.
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(4.95¢)

(4.96)

(4.97)

(4.98)




Redefine the parts of Equation (4.96):

sX sX X (0]
(A(s,W)] = |- - - =X oo 2% T
{Az) s [AIC]
vhere
(A} = -2/V [1,1T (a,)
and
(alc] = [T,)T [a1c] [T,]

Leaving off the first rov of each matrix in Equation (4.95), we have

[1F1 52 + 18,1 s + (Ry) - § v (afC)] lqy)

NI

- {—[Hz] s - [Dy] s + 5 o2 [AIC]} [zg] (8)

-

v 7 oV (Fgp(s,V)) w + 3 V2 (a) sx,
Now,
[AIC) = [Ag(s,V)] + s/V [Ay(s,V)]
vith
[Be(s, V)] = [A(0)] + 5= Ber] + 35 By
(25,001 = (&)1 « - 1Ba1] + g 1By
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(4.10u;

(4.101)

(4.102)

(4.103)




where

{;'Gz(s'v)} = “;GO} + ‘E,'S' {écll + {3‘5‘}2 (;362]

S (2 S (a 4.104
* s+B3 {Bg3} + s+B, {Bgs4) ( )
Let
L w2 (4.105a)
{Cco} = 7 #V° {Bgo}
L w2 (e (4.105b)
{(Cc1} = 7 oV {Bg1}
{Cg2} = % oVZ (B} (4.105¢)
L 2 3 (4.105d)
{Cg3} = 57 oV° (Bg3)
L 2 (8 (4.105e)
(CGA} =2 oV {BG[‘} .
[Cx 1 = 5 ov2 (8, ] (4.106)
[Cool = %— V2 [Eg(0)] (4.107a)
C L o2 (8 (4.107b)
(Co1l = 7 oV° [Bgl .
(Cql = % V2 [Bg] (4.107¢)
(€0l = % oV [A5(0)] (4.107d)
(C,1] = % oV [B,1] (4.107e)
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(€221 = 3 oV (2]

[Cool = & ov2 (A6(O)] (2]
(Col = L o2 (Bgy] (2]
(Coal = } o2 [Bepl l25]
(Ca0l = 3 oV [4,(0)] [24]
(Catl = L oV [Byy) (2]
(Caz] = L oV (B3] (24]

{4,

(4.

(4.

(4.

(4.

(4.

(4.

107¢£)

107g)

107h)

1071)

107j)

107k)

1071)

Note that the notation of Equations (4.95b) and 4.95¢c) still holds for

these equations, Equation (4.100) becomes

S
S+ﬁ1

[[ﬁzl s2 4+ [Bz] s + [Ky] - [Ceol - (Ce1l - 535 (Canl

" 2 2 .
- s (G0l - ggp (Gl - gy (€22l (4]

= [—[Hz] 52 - [Dz] S + [Ceo] + stl [Cell + Sfﬁz [Cez]

) 52 ) 52
+ s (G0l + g7 [Ca1l + g (Ce2] ] (8)

SwW
S+ﬁ3

+ (Cgo) v + {Cg1) sv + (Cga) sw + (Cga)

+ [CGQ} nga + [Cx) SXq
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vhere

(71 = 11,07 ) (7,) (4.109)

There is also an equation of motion for the fore and aft direction.

Assuming x, to be uncoupled from the other DOF, for the free airplane we have

stzxo + Dy Sxq = % sz (X% SXqg + Xé szq + Xg8g)
A—- ~ Fod
- %y sxg + [lsz s+ [er) (a,) (4.110)
where
£ - L2y (4.111a)
x 2 x '’ '
7 L v2 ix.
lsz =7 oV lxz 00 0J , (4.111b)
and
|%e] - 2 o2 0¥ 00 -+ 0] (4.111¢)

Now we are only lacking some identity relation in order to complete the state

model. Some of these are:
S Xg = S X (4.112)

(4.113)

L
n
——
0

N
St

s{q,) =

For the others note the following:

R
s+8; - S+B5

qs (s+B5) - qsBy
S+Sj
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Thus

s2 s{q})B; _
Sips - s{q} _E*_BJ—— v j=1,2 (4.114)

This is also true for §,

2 s {8} B
s{é&} R S
S+Bj = s{q} - S+8j ; j=1,2 (4.115)

likewise for the gust lag terms,

vs + wBy - WBj v(s+By) - wBj

sw_ _
S+Bj - S+Bj - s+8j
wB;
sv J . '—
SE Ym0 I (4.116)

The complete equations for the state space model are found in Equations
(4.60), (4.61), (4.108), (4.110), (4.112), (4.113), (4.114), (4.115), and
(4.116). These are shown in full matrix form in Equation (4.121). This may

be written:

[H] {x} = [HA] {x} + [HB] (u} (4.117)

Define
[a] = (H]7! (HA] (4.118)
[B) = [H]"! [HB) (4.119)

Ve then have the final state-space format:

(x} = [A] {x} + [B] (u}
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SECTION S
MODEL-ORDER REDUCTION FOR LINEAR SYSTEMS

5.1 MODEL-ORDER REDUCTION FOR LINEAR SYSTEMS

5.1.1 Introduction

Model-order reduction makes application of modern control thenry more
practical. To include all of the huge number of modes of a structural
dynamics model in the control-system plant of an active control =vstem would
not only strain the capability of the computer facility, but would lead to

compensation transfer functions of much higher order than necessary.

A method of model-order reduction that Lockheed has successftully used in
the past and some variations of a more general method, which are currently
under study, will be discussed. These methods are: (1) spectral
decomposition, and (2) balanced approximation. Spectral decomposition is the
more direct method, but is limited to linear time-invariant (LTI) systems (the
usual model for stability ana control of airplanes). The balanced
approximation method can be applied to time-variant models and, obviously, to

their LTI extensions.

The main thrust of the model reduction problem, as reported here, will be
limited to LTI systems denoted simply as (A,B,C) realizations. The

corresponding state-space equations are:

x(t)

)

AX(t) + Bu(t)
(5.1)

y(t) = Cx(t)

5.1.2 Background

Befnre the development of the jumbo air transports and other large
aerospace vehicles, rigid-body equations were all that were needed for the
mathematical description of an airframe in a control-system model. Except as

needed for the judicious placement of sensors, concern with the =stvuctural
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dynamics of the airframe was avoided. Structural paths affecting servo
feedback signals were part of the control system technology, but any nother
aspects of structural dynamics were left to the dynamic loads and flurter

disciplines.

Vith the advent of new technologies aimed at controlling the structural
modes of large flexible bodies came the need to expand the contrnl theory
domain. The most obvious approach to these higher-order models vas linear
algebra, the basic analytical tool for structural dynamics, dealing with
vectors and matrices. Adoption of these methods in control theory led
naturally to the development of multi-loop optimization processes which
utilize state-space models and which are covered under the broad discipline
known as "modern control theory." Large scale digital computers were

essential tools for this work because of the large matrix sizes.

Stability-and-control engineers have been working with vectors and
matrices for decades. The state-space approach i§ little more than a method
of accounting. It is equally applicable to time-domain (differential
equation) or frequency domain (Fourier/Laplace transform) models of dynamic
systems. There are several advantages to using state-space models. a few of

vhich are:

* A large number of scalar equations can be expressed as a small number
of vector-matrix equations.

* The linearization of aircraft equations, which are inherently
nonlinear, is straightforwvard.

+ Appropriate reduced-order models can be generated easily.

0f course, in order to apply the above conveniences, in addition to those
of the previous classical methods, control theory applied to the design of
airplanes is based primarily on linear analyses. Rigid-body data in the form
of stability derivatives from the wind-tunnel curves are used to compute small
perturbations and related output data characterizing the flight dynamics. A

set of these linear models, each representing a particular flight condition is
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used to study airplane control in the total flight envelope. The rigid body
input data may also include stability derivative corrections to represent
airframe flexure influences upon the aerodynamic forces. This is not
sufficient, however, where the dynamics of the lowest structural mode couple
vith the short period of the rigid body model. Similarly, the lowest
structural mode will couple with the next higher mode, ad infinitum; so that
the correct model for some handling quality studies must include the dynamics
of several modes. In case the original model (designed for flutter analysis)
does not include accurate rigid-body characteristics, then a good
representation can usually be obtained by inserting rigid-body coefficients in
the appropriate matrix locations. This approach "estimates" the coupling
between the short-period and the lowest structural mode. If this is not
acceptable, then the original model must include accurate representation of
the rigid-body modes. Lockheed is presently developing new flexible-modeling
techniques that will yield large flexible models with accurate short-periods

and phugoids.

Obviously, a large aeroelastic model of the type commonly used for loads
or flutter analyses must be reduced to comparatively low order before it can
be used in a practiéal setting for control system studies; e.g., a real-time
flight simulator. Since structural-dynamics models are practically time
invariant, the required simplifications can be done conveniently by exploiting
the fundamental attributes of linear algebra: eigenvalues, eigenvectors, and
superposition. After the aeroelastic model has been reduced to an appropriate
order, it can then be superimposed upon a rigid-body, total-force model if
desired. A comparatively simple alternative to the total-force model,
sometimes used for take-off or landing, is one which utilizes time-variable
interpolation of stability derivative increments between sets of stability
derivatives. In most cases, however, linear models with constant roefficients
are adequate for the study of stability and control characteristics, including

handling qualities.
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5.1.3 Summary of Two Model Reduction Approaches

Two entirely different approaches to model reduction of linear time-
invariant systems are discussed in this report. They are: (1) bhalanced
approximation, and (2) spectral decomposition. The balanced approximation
approach is better known, having been thoroughly developed and discussed in
the technical literature since about 1979, at which time the importance of
model reduction, as applied to multi-input/multi-output systems, had barely
been recognized, Reference [13]. The spectral decompositioﬁ approach was
developed and used by Lockheed, beginning in 1974, during studies that led to
the development of the L-1011 Active Control System, References [14] and [15].

5.1.3.1 Assumptions

1. The system is Linear Time Invariant (LTI)
2. The Balancing method is applied to the stable part of the transfer

function

A short description follows on how to separate a transfer function into a

stable part and an unstable part:

Let
G(s) = GS (s) + Gu (s)
Stable Unstable

Let P be a matrix of columns of which are the eigenvectors of A, i.e.,
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The eigenvalues are labelled such that XS

Define

g -p1lx

-p!s

C=C P

and partition B and C conformably with

As 0

0 Au
B

- S - - =
1.e.,B= s, C = (C C)

5 S u
B
u

It follows that

= -1 = = -1 -
G(s) = CS(SI - As) B§ + Cu (sI - AU) BU

\ \ /

v v
Gs(s) Gu(s)

The above is clearly the "stable + unstable" decomposition.

5-5

is stable and %”

is unstable.
i




5.2 THE MATH MODEL - FROM FIRST PRINCIPLES
An airplane flying through changing flight conditions is de=cribed

mathematically by a set of nonlinear aerodynamic curves from whirh stability
derivatives are normally derived. A simulation of the exact equations would
not include the stability derivatives per se; nevertheless, the derivatives
would be represented in the simulation by the slopes of the aerodvnamic
curves. The resultant dynamics of the simulation will closely approximate

those of a linear model as long as the motions are small perturbations.

The nonlinea~ equations of motion can be written as a single wvector

differential equation

g(t) = f(x(t), u(t)) (5.2)
vhere §(t) is the state vector, and u(t) is the control vector.

Qutput quantities are represented as

y(t) = h(x(t), u(t))

The aircraft is trimmed in unaccelerated flight if the sysrem is at

steady state, i.e., g(t) = 0. The states and controls for trim are defined by

0= g()fo(t)) Eo(t))

Perturbations from this trimmed condition can be characterized by a
linear model, which is obtained by a Taylor series expansions of Equation

(5.2) about xg and ug. The linearized dynamic equation is

ax(t) = A 8x(t) + B du(t) (5.3a)

and the linearized output is

by = cbx(t) + Dou(t) (5.3b)
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wvhere A,B,C, and D are Jacobian matrices of derivatives with respect to x and
u evaluated at the trim condition. In this report, subsequent incremental
equations of the above form will be written with the A’s deleted. All of the
elements of these Jacobian matrices are real scalar variables. In general,
the matrices are time-varying; but in keeping with the assumption that the
aircraft is trimmed, it can usually be assumed that the matrices are constant.
During flight manuevers where the stability derivatives are changing rapidly,

the linearized model must contain time-variant matrix coefficient; i.e.:

X(t) = A(t) x(t) + B(t) u(t) (5.4a)

y(£) = C(t) x(t) + D(t) u(t) (5.4b)
where the state at time t, x(t), is an n-vector; the input at time. r, u(t),
is an m-vector and the output at time t, y(t), is an r-vector. A,B,C, and D
are matrices of compatitle size. We will refer to this model simply as
(A,B,C,D).

The desired input from the aerodynamic and structural disciplines to the
control system engineer are contributions to the A and B matrices for all trim
conditions representative of the entire flight envelope. Selections of the C
and D matrices depend upon the sensor locations. D is usually zero except for

accelerometer outputs.

The elements of the state vector x include all of the variables of the
flexible model and of the control system, including the actuators and sensors.
Those of the control vector u contain all of the control commands. TIf the
model is reduced from a larger one, then the negligible variables of the state

vector are removed and the A,B, and C matrices are modified accordingly.
Figure 5-1 is a state-space block diagram of Equation (5.4) with no

direct coupling from input to output (D = 0), but with anticipated feedback

signals from output to input through the feedback matrix F. Although the
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overall model-reduction problem is a function of the closed-loop system, the

scope of this report is restricted to the open-loop realization (A,B,C).

5.2.1 Solutions of the State-Space Equation
The real-time solution of the state variable in Equation (5.4) is

-

x(1) = #(t,t0)x(tg) + f§0¢<t,r)a<r>g<r>dr (5.5)

vhere ¢(t, tg), known as the transition matrix, is defined by its time

derivative:

3(t,t0) = ACDS(L,t0); #(tg,tg) = I (5.6)

1o}

utt) yit)

Bit) Civ

At <¢

Fith =

Figure 5-1. Time-Variant (A,B,C) Model With Anticipated Feedback
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The transition matrix is exactly analogous to the integrating factor used
in the classical solution of a single, first-order differential equation vith
variable coefficients.

If the matrix A is time invariant, then the transition matri» is

$(t,tg) = eAlt-t9) = o(t-tg) (5.7)

Therefore, if the system, Equation (5.4) is time-invariant, the integral

in Equation (5.5) becomes a convolution and the equation is simplified to:

x(t) = #(t-tg) x(tg) +t£t ¢(t-t) Bu(t) d t (5.8)

Taylor’s series expansion of the matrix exponential eh(t-1n) provides a
- convenient computer implementation of the transition matrix of an LTI system,

j.e:

(i) = ahteor) L F 100N
1=0 it

If the matrix A(t) is variable, then $(t,tp) is obtained by computer

implementation of Equation (5.6).
Laplace transforms of the LTI systems with tg = 0, are:
LI#()] = (sI-a)~1
X(s) = (sI-A)~1 (x(0)+BU(s)) (5.9)
The corresponding output, with the initial conditions at zeio, is

Y(s) = C(sI-a)-1B U(s) (5.10)
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The expression
G(s) = C(sI-A)-lB
is the matrix transfer function of the (A,B,C) system.

5.3 MODEL-ORDER REDUCTION APPROACHES

Inspection of Equation (5.9) reveals a possible approach to the model-

order reduction problem as follows:

1. Vith all initial conditions zero, consider all possible srate
responses to all possible unit impulses (one at a time) in the
control vector.

2. With all input signals zero, consider all possible output transients
due to each possible initial state (set at unit value, nne ar a
time).

3. Veigh the above results by appropriate means; then eliminate the
states that yield negligible results.

Clearly for this approach each of the matrices A, B and C contribute
heavily in the evaluation. Controllability (state responses due tn unit
impulses at the input) and observability (output responses due to unit initial
conditions) are the prime considerations. This is the basis for the method of

"balanced realizations."

5.3.1 The Balanced Approximation Approach
As mentioned previously, inspection of Equation (5.9) suggests the steps

for a balanced approximation of an LTI system. An intuitive application of

each step would be as follows:

Step 1

As applied to the input of Equation (5.9) one at a time, the <et of
Laplace transforms of unit impulses could be represented by an ideniity matrix

of order m; i.e.:
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[Uy(s) Up(s) ... Up(s)] = I

The corresponding set of impulse response vectors in the time domain

wvould be
[x1(t) x2(t) «.. xp(t)] = eAlB (5.11)
If the system is stable, an appropriate measure of all possihle impulse

responses would be the time integral of a real symmetric non-negative definite

nxn matrix reflecting eA!B; i.e.:

W= of eAtBBreA’ gy (5.12)

A real symmetric matrix Q is non-negative definite if for all real

nonzero vectors, the scaler x'Qx > O.

Step 2

Similarly, with no input and with the initial conditions applied one at a
time, the set of initial conditions could be represented by an identity matrix

of order n; i.e.:
[x1(0) x2(0) ... x,(0)] = I,

The corresponding set of output vectors (transient responses in the time

domain) would be

[y1(t) ya(t) ... y(t)] = CeAt (5.13)
Again, if the system is stable, an appropriate measure of all possible

transient responses due to initial conditions would be the time integral of a

real symmetric non-negative definite nxn matrix reflecting CeAt: i.e.:
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M = of eA'tcrcebtde (5.14)

These matrices, W and M, are called the controllability and observability
grammians respectively for an LTI system. Some of their properties are: They
are symmetric; they are non-negative definite; and they satisfy the following

time invariant Lyapunov equations, respectively:

(5.15)

\
(o]

AV + WA’ + BB’ =

(5.16)

1]
(@]

MA + A'M + C'C
If W (or M) is positive definite, then its eigenvectors are linearly
independent, and each response vector in Equation (5.11) or (5.13) has a

unique value other than zero.

The criterion for linear independence of vectors, called the Gram

criterion, as presented in Reference [2], Chapter 2, is summarized below:

The criterion can be stated in terms of the positive definiteness of a

grammian. A set of real vectors
X1 2 X2 4 «--y Xy

in a Euclidean space is called linearly independent if there exists no set of

non-zero real numbers aj, ajs,..., ap such that
aiX] + agXy + ... + apXgp = 0

To test a set of vectors for linear independence, a simple way is to form

m equations by premultiplying the above equations by X1',X2', etc.. to obtain
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3 S .
X1'X1 X1'X2 -eeveeee X1 Xp a) 0
X2'X] R2'X) se.eee.e Xp'Xp ag | = |0

L Xm' X1 Xp'X2 eeeeerenn Xm' Xm am | 0

L L J

The mxm matrix on the left is the grammian associated with ihe given set
of vectors. It is clearly symmetric since Xj'Xy = Xj'Xj; moreover it is non-

negative definite as shown by the easy calculation which follows:

la;g ag ..... ap] X1'X] X1'X2 ceeeennn X1’ Xp a 1
X2'X1 X2'X) eveennn X2' Xm a2
Xm'X1 Xp'X2 ceveenen. Xm' Xm an
L ) L J
= ll 1X] + @9X) + ..... + agXp

Clearly, if and only if (iff) the grammian is positive definite. there

exists no nonzero set of a’s such that
ajX] + @2X) + ... + ApXp = 0

Therefore, if the vectors in Equations (5.11) and (5.13) are all shown to
be independent by virtue of the positive definiteness of their grammians, then
the corresponding (A,B,C) model is minimal; i.e., it cannot be reduced without
introducing some error. However, if any of the vectors are dependent, then
the corresponding grammian is not positive definite, and the system is not
completely controllable or not completely observable, depending on which
grammian is not positive definite. The corresponding model is not minimal and

can be reduced without introducing error.
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Beginning with a minimal system (both grammians positive definite) is a
basic premise. Indeed, balancing cannot be extended to non-minimal systems
without non-trivial modification, for balancing would attempt to equate a
singular grammian to a non-singular one. Nevertheless, to view the system as
11 some of its srates can be treated approximately as uncontrollable or
unobservable is the key to model reduction by balancing. This concept is

amplified in the next subsection, 5.3.1.1.

Step 3

The various singular values of W, relative to each other, represent the
various degrees of input-state coupling in the (A,B,C) system. Likewise, the
various singular values of M, relative to each other, represent the various

degrees of state-output coupling.

As in the case of a scaler transfer function with its magnitude defined
as the ratio of output to input, so might the magnitudes of a matrix transfer
function be defined. This set of magnitudes comprises its "singular values".

A squared singular value of any square matrix Q is an eigenvalue of 0'Q

explained as follows:

Denoting an eigenvalue of Q’Q as o and its corresponding eigenvector as

v, then
Q'Qv = o2y
Premultiplying by v’,
v'Q'Qv = o2v'v

Therefore

[lowl} 7 11l < o2
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Thus, a singular value represents an output vector/input vector magnitude

ratio.

Special coordinate transformations in the state space of the matrices W
and M, called "balancing", result in identical sets of singular values for V

and M. The balancing process will be explained in Paragraph 5.3.14.

In the following three subsections, excerpts from Reference (5.4) are
presented as more rigorous background for the above statements. In Chapter 2
of the reference, it is shown how the input-output characteristics of two
time-variant systems - even those of different order - can be exactly
equivalent. This is true if the system of larger order is either
uncontrollable or unobservable. The balanced realization approach is based on
the principle that a system having a state which is comparatively
uncontrollable and unobservable can be considered to be actually so without

significant error in the approximation.

5.3.1.1 The VWeighting Pattern

A relationship between an input u and a response y is commonly described

by the triplet (A,B,C) which means
(1) = A(DX(t) + B(t)u(t), y(t) = C(t)x(t) (5.17)

In addition there exists, in accordance with Equation (5.5), a

possibility of a description by an integral equation:

t
y(t) = y(tg) + [ T(t,0)u(o)de (5.18)
to

vhere

y(tg) = C(t)&(t,tg)x(tp)
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and
T(t,o) = C(t)¥(t,o)B(0o) (5.19)

T(t,o) is called the weighting pattern. A given matrix T(t.o) is said to
be realizable as the weighting pattern if there exist matrices A. B, and C
such that Equation (5.17) holds for all pairs (t,o) with %(t,to) = A(L)&(t, tp)
and #(tg,tg) = I. The triplet (A,B,C) is then called a realizatinn nf T(t,q).

If a given weighting pattern has one realization, then it has many. For
example if P(t) is nonsingular and differentiable for all t and if system

Equation (5.17) is one realization of T(t,o) then in terms of z(!) P(t)x(t),

"

we have the alternative realization:

2(t) = (P()A()P~L(t) + P()P~1(t))z(t) + P(t)B(t)u(r)

y(t) = c()P~1(e)z(e)

By focusing on the weighting pattern, it is possible to define a type of
equivalence between various systems with the same input-output characteristics
vhen x(tg) = 0. Furthermore, with a given weighting pattern there exist
realizations having state vectors of different dimension. If the system given
by Equation (5.17) realizes the weighting pattern T(t,¢) it will be called a
minimal realization if there exists no other realization of T(t.s) having a
lower dimensional state vector. This minimum dimension is called the order of

the weighting pattern.

A lack of controllability indicates a deficiency in the coupling between
input and state vector, and a lack of observability indicates a deficiency in
the coupling between state and output; so it is reasonable to expecr that
minimality is related to these ideas. The following theorem states that this

is indeed the case.
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Theorem 1

The system Equation (5.17) is a minimal realization of Equation (5.19) if

t
V(tp,tq) tg 1@(to,o)B(c)B'(a)fb'(to,a)da
and

t ,
tOIIQ’(tO,a)C'(a)C(o)Q(u,tO)dc

are both positive definite for some pair (tg,tp).

For the sake of brevity, lemmas and theorems from Reference [16] are
stated here without proof. In the reference, the proof objectives are to show
that: 1. For controllability, the state vector x(t) must lie within the
range space of a prescribed linear mapping, and 2. For observability, the
initial state vector x(tg) must lie within the null space of another
prescribed linear mapping. For example: 2z belongs to the range space of A if
there exists a y such that Ay = z; and y belongs to the null space of A if Ay
= 0.

The above matrices W and M are the controllability and observability
grammians for time variant systems respectively. In the following two
subsections some lemmas and theorems concerning controllability and

observability will clarify the meaning of the above theorem.

5.3.1.2 Controllability

Problems associated with the controllability of time variant systems can

be illustrated with a simple ballistic problem. Suppose the dynamics are

given as

2(t) = B(t)u(t)
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Assume B(t) and z(tp) are known and let the problem be that of finding

u(t) so as to insure that at t = t} > tg, z takes on a certain value.

Integrating yields
L1
z(ty) = z(tg) + té B(t)u(t)dt
Hence, if z(ty) - 2z(tg) lies in the range space of the linear mapping
!
L(u) = tg B(t)u)(t)dt

then the desired transfer is possible; otherwise is it not. This statement is
analogous to one which might say that a line and a plane in a thiee
dimensional space can be expressed in terms of a two dimensional space if the

line lies on the plane; otherwise it cannot.

Lemma 1

t
An n-tuple xq7 lies in the range space of L(u) = 1 B(t)u(t)dt if it lies in
X1 u t u

the range space of the matrix

t
V(tg, tq) = t&l B(t)B’ (t)dt (5.20)

Corollary

There exists a control u which transfers the state of the svstem z(t) =
B(t)u(t) from zg at t = tg to zy at t = t] iff z; - zg lies in the range space
of W(tp,t1) as defined in Equation (5.20).

The extension of these results to the (A,B,C) realization leads to
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Theorem 2
There exists a u which drives the state of the system
x(t) = A(t)x(t) + B(t)u(t)

from the value xg at t = tg to the value x7 at t = t7 > tg iff %, - *(t,t1)x

belongs to the range space of
t1
V(tg,ty) = t({ $(tg, t)B(t)B' (1) ¥ (tg,t)dt

The above controllability grammian plays an important role in rhe theory
of forced linear systems. Some of its properties are: It is symmetric; it is
non-negative definite ty > tg; and it satisfies the linear matrir differe tial

equation

V(t,ty) = ACEV(L,ty) + W(t,t7)A"(t) + B(t)B'(t), W(ty,ty) = O
In the special case where A and B are time invariant it is possible to
calculate the range space of W quite easily. Moreover, contrary to the
general case, the range space does not depend on the arguments of W except in

a trivial way.

The following theorem expresses the situation. Its proof is based on a

Taylor series expansion of B’exp(A’(tg-0))r; = 0. Note that
XIW(tayts )R] = }1 | |87 expcar (t, -o))x ||2da
S17 0 TR Tl P 0 S|

is equal to zero because X1 is in the null space of W(tgyty)-
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Theorem 3
For A and B constant and A nxn, the range space and the null space of

W(tg,t) for t > tg coincide with the range space and null space of the nxn

matrix
V. = [B,AB,....An-1B][B,AB,....AN-1B)"
Moreover, for any vector xp and any t > tg,
Rank[W(tg,t),xg] = Rank[B,AB,....AN"1B, xg]

Therefore, an n-dimensional linear invarient system is controllable if

[B,AB,..... A“‘lB] is of rank n.

5.3.1.3 Observability
Observability questions relate to the problem of determining the value of

the state vector x, knowing only the output y over some interval of time.

Thus, consider the homogeneous system
x(t) = A(DX(1),  y(t) = C()x(t) (5.21)
rather than to deal with the more complicated system Equation (5.17).
The homogeneous problem leads to the linear transformation
L(t) = C(t)#(t,tg)x(tg) = H(t)x(tg)
For these transformations we define the null space of this mapping as the

set of all vectors x such that H(t)x(t) is identically zero over the time

interval tg < t < t]. A characterization of the null space is given by the

following lemma.
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Lemma 2
Let C be an mxn matrix whose elements are continuous on the interval

to < t < tj. The null space of the mapping L(x) = Cx coincides vith the null

space of

t
1.,
1 M(to,tl) =tg C’'(t)C(t)dt

The following theorem is closely related to Theorem 2.

Theorem 4 _
With A, C, and y given on the interval tg < t < ty, together with
Equation (5.21), then it is possible to determine x(tp) to within an additive

constant vector which lies in the null space of M(tg,t1), wnere

t
1,, /
M(to,tl) = tg ] (t,to)c (t)C(t)#(t,to)dt

In particular, it is possible to determine x(tgp) uniquely if M(tp,tq) is
nonsingular. Moreover it is impossible to distinguish with a knowvledge of y,
the starting state x; from the starting state x3 if Xx; - x7 lies in the null

space of M(tg, ty).

The above observability grammian plays a role analogous to that of
V(tg, t1) introduced in the previous section. As with W(tg, t7). some of its
properties are: It is symmetric; it is non-negative definite for t; > tg; and

it satisfies the linear matrix differential equation

SH(t,t) = AY(EIM(t,ty) + M(t,t1)A(t) + C'(1)C(t), M(ty,tq) = 0

Again, in the special case where A and B are time invariant it is
possible to calculate the null space of M quite easily. Moreover, contrary to
the general case, the null space does not depend on the arguments of M except

in a trivial way. The following theorem expresses the situation
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Theorem 5

For A and C constant and A nxn, the range space and the null space of
M(tg,t) for t > tg coincide with the range space and null space nf the nxn

matrix
M. = [C’ a’C’...asD-1cr]

As before, an n-dimensional linear constant system is observable if M. is

of rank n.

5.3.1.4 Balanced Approximations

Summaries relative to open-loop balancing in References [17] and [18]
comprise most of this subsection. The basic idea is that the singular values
of an appropriately defined matrix are system invariants which measure how
strongly certain parts of a system enter into its input-output behavior in
balanced coordinates. If some singular values are much smaller than the
others, then a part of the system dynamics can be eliminated, resulting in a

lowver-order system approximation.

A disadvantage of open-loop balancing is that it requires that the
original system be stable. Moreover, it is difficult to predict closed-loop
stability of a control system based on an open-loop reduced model. Although
the scope of this report does not include closed-loop balancing, such
techniques have been developed (e.g., Equation (5.5)) and shown to guarantee

closed-loop stability of reduced-order models.

As previously explained, the balancing approach to model reduction relies
on measures of input-to-state and state-to-output coupling. These measures
are based on the controllability and observability grammians which. for stable
time-invariant systems, are defined by Equations (5.12) and (5.14)
respectively. If (A,B,C) is uncontrollable or unobservable, then a lower-

order a model, having precisely the same impulse responses, can be found.

5-22




Two models are equivalent if they are related by a nonsingular
Tz(t), then the model

i}

transformation of coordinates. That is, if x(t)

3=TlATz+T 1By, y

it

CTz
is equivalent to (A,B,C). Letting

A = T'l AT, B = T'1 B, C =CT

then this equivalence is denoted as

(4,B,C) 5 (&,B,0) (5.22)

If Equation (5.22) holds, then it is easily shown by substitutrion into
Equations (5.15) and (5.16) that the transformed controllability and

observability matrices satisfy the relationships

-1 -1 (5.23)

=}
1

o
=
-

= T'MT (5.24)

Xl

A primary purpose for looking at equivalent systems is to discover what
system properties are coordinate free; i.e., system invariant. A key element
of the open-loop balancing theory is that while W and M do not have system
invariant properties, the product of the two matrices does, and it provides a
coordinate-free measure of state coupling. This fact follows dirvectly from
Equations (5.23) and (5.24).

Tl uMT (5.25)
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Equation (5.25) implies that the eigenvalues of the product matrix WM are
system invariants. Since the matrices W and M are both positive definite if

(A,B,C) is controllable and observable, the eigenvalues of WM will he strictly

positive. Note that WM = TA T-1 where A = WH. Denoting these eigenvalues as

o, they will be assumed to be ordered as

01 > 62 ... 2 0 > 0

If T is chosen to be the corresponding set of eigenvectors. then WM is

the diagonal matrix of eigenvalues:

Corresponding reduced versions of W and M are

V=M= 21
reduced from
“:1 0 hl 0
U = , M =
0 z 0 L
W m
i ] 1 ]

In balanced coordinates, each state component is as controllable as it is
observable. Moreover, the o¢i’s give a measure of the degree of

controllability and observability of each component.
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Note that I, I, = O if the corresponding modes of the system are
uncontrollable or unobservable, in which case the coordinate system is

balanced:
Do these solutions satisfy Equations (5.23) and 7{5.24)? Yes; it can be shown
in Equation (5.3) that specific eigenvectors can always be chosen such that
T-1wT' -1 - Block diag (£, L)

T'MT = Block diag (I1, ZIp)
where

L = diag (o1, o9, ..., a,)

Lyl = diag (op,1 » Oge2 » -+ Op)
with
91 2 92 2 +.. 2 O > Oyl = k2 = --- = 0y = 0

The system model is reduced from the ntM_order (4,8,C), to the kth_order

- -

(A,B,C)y by partitioning in accordance with the following rationale:

1f for some k, oy,1 << oy, then the first k state components represent
the part of the system which carries most of the input/output information;

i.e., the robustly controllable and observable part. Let [ be partitioned as

El 0
L=

0 22
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Let (A,B,C) be partitioned conformably as

This implies that (A73,B1,Cq) is a good Kth_order approximation of the
nth_order system (A,B,C). Indeed, letting T, represent the first k columns

of T and letting Sy, represent the first k rows of T-1, then

(A11,B81,C1) = (SknATnksSknBsCTnk)

Fortunately, balanced realizations have some remarkable structural

properties which make stability of the subsystems automatic.

Note that the reduced state variable is a part of the transformation z,
and not of the original x. This is sufficient if the reduced model is to be
used for control-law synthesis; but if it is required that all elements in the
reduced state vector are to be observed (e.g., in an iron-bird simulation),

then the original output matrix must be the identity matrix (C = I).

5.3.1.5 The Balancing Algorithm

Calculating the reduced order model using balancing requires computing
the stable projection of the AST model from Figure 5-4. The steps for using

the balanced approximation approach are as follows:

1. Compute the controllability matrix W and observability matrix M for
(A,B,C) as solutions of the Lyapunov equations,

AW + WA’ + BB’

"
o

A'M + MA + C’'C

L}
(e}
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2. Compute a coordinate transformation matrix T to yield (A.é.é). The
system is balanced when T is chosen such that

WM = TAT-1

where A is the diagonal matrix of eigenvalues of WM and where T is a
corresponding matrix of eigenvectors. Then

A = UM

3. Organize the elements of A in descending order; i.e., arranged such
that

61>02> seee 2 Op

Then let [ (=A1/2) be partitioned as

4. Reduce the system model from nth_order (A,B,C), to kth_arder (A,B,C)y
by letting T,y represent the first k columns of T and letting Sy,
represent the first k rows of T‘l; then computing the reduced model.

(A11,81,1) = SknATnks SknBsCTpk)
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5.3.1.6 Model Order Reduction Over a Disk
The error bound for the previous method, the balancea approximation

approach, is,

[l6ts) - 6s) || < 2(ape1 + ++ + o) ¥ s c RHP

vhere G is the reduced model of order r. n is the order of the full model.

o’'s are singular values over the RHP. The proof is given in Reference [20].

It is more practical to minimize the error over the actuator handwidth,
i.e., a finite bandwidth, instead of over the entire bandwidth as done in the
previous method. The problem of model reduction over a disk can be stated as,

see Figure 5-2.

{2

'{P/f s - hipy - 22BL

1+12

2/
7

z.h'](s]-.i-_a'_ x

POLES AEMOVED
FOR SANOWIOTH .
CONSIDERATIONS

Figure 5-2. Bijective Mapping Between RHP and Disk D




1 |[ o - £ || < e

vhere ¢ is preferably smaller than the full RHP case, i.e.,
€ < 2(op,1 + ** + o).

Dr. Jonckheere and Li, Reference 20, have found a way to achieve the
above objective. They use a bijective mapping which transforms the problem,
and this new problem is solved using the balanced approximation method. But
the error is found only over the disk which is less than or equal to the error

over RHP. Their methodology follows.

The only known engineering solution to this general domain problem is to
construct a conformal transformation h that establishes a bijective mapping

between RHP and D,
h: RHP » D

and that hence reduces the problem to conventional balancing:
su G(s) - é(s) = Su G(h(z - é(h(z )
2 | || =zep 1 che=? ) |l

The right half side of the above equation is a classical balancing
problem provided the mapping h: RHP » D preserves the degree. The only case
in which this happens is when D is a disk in which case h is a bilinear

mapping, see Figure 5-2.

It remains to correctly place the disk in the complex plane. This is

based on the following two considerations:

1. The full order model G(s) must be analytic in disk. Therefore, the
disk must not include any poles of G.
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2. The disk must cover the interval {jw : - < w < @} of real
frequencies not exceeding the bandwidth @ of the actuators. This
guarantees that the error bound is verified over this critical
frequency range.

The bilinear mapping is, see Figure 5-2,

sehcare el 52T

If G(s) = C(sI-A)~!B, then G(h(z))= J + H(2I-F)~1G with
J=C(BI-A)~1B
H=C(BI;A)‘1
=-(oI-A)(BI-A)"1
G=(B-0)(BI-a)~1B

Using conventional balancing, a reduced model of order r, G(z) is

obtained and it satisfies,

] S 50 (| €2 (oputD weesod) o ¥ < R

vhere op’s are the RHP singular values of G(h(z)).

The reduced model is recovered back by inverse mapping,

G(s) = G(h~1(s))
Dr. Jonckheere and Li, Reference [20], have proven that for this mapping
D)

2(0p,1 + ** +0p) < 201D+ o0 4oy

the error bound on the disk is smaller than the error bound over the
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5.3.2 Model-Order Reduction by Spectral Decomposition

An appropriately reduced model, (A,B,C)y reduced from (A,B.¢),. will
describe the rigid-body dynamics and only that part of the structural dynamics
necessary for the particular purpose at hand. A technique utilizing spectral
decomposition provides a means for decoupling elements of the state variable
of an LTI system into two or more models without sé}ious degradation of the
total results. For example, it permits model-order reduction of the decoupled
parts of the original (A,B,C) triplet into (A,é,&)k and (X,ﬁ.é)n,p. The
procedure begins with a truncated model of intermediate order, n. and uses
spectral decomposition in the subsequent process. The intermediate model
includes several structural modes couples by generalized, unsteady aerodynamic
forces. Spectral decomposition leads to a singular matrix coefficient A; for
each eigenvalue )\; in the intermediate model. Indeed, if spectial

decomposition is used, these singular matrices are the n residues:

]

Ay i <n

<
-1

H

Res; (sI—A)‘l, 1
lim (S-XAj)(sl-4)

S*Xi

vhere A; is in the ith modal component of (A,B,C), which means

Xj = Ajx + Bju , yj = Cix (5.26)
with

The matrix Ej can be shown: to be the outer product of e; and v; the
normalized eigenvectors of A and A’,respectively, i.e., Ej = e; t;'. This
matrix has one nonzero eigenvalue of 1, and its trace is also 1. hecause the

trace of a matrix is equal to the sum of its eigenvalues.

In the application of classical control theory, which is devnted to LTI
single-input, single-output (SISO) systems, it is common practice to ignore,
in the transfer function, stable poles that are remotely located on the
complex plane; because they are very lightly couples with the set of poles

that are important to the analysis. The residue of any lightly coupled pole
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is negligibly small; so the corresponding partial fraction can be dropped,
thus reducing the order of the transfer function with negligible degradation.
In other words, the residue is negligible and therefore comparatively
"unobservable". It is the nature of partial fractions that a transfer
function reduced in this manner preserves all of the residual influences of

the deleted poles as reflected in the residue values of the important poles.

In addition to the remoteness of a pole as an indication that the pole is
lightly coupled with the important part of the system, there is also the
effect of the proximity of a zero to the pole. The residue of anv pole is
proportional to its proximity to a zero. Indeed, if a zero is superimposed
onto a pole, it cancels the pole. In other words, if the pole i< closed to a
zero, it is nearly "uncontrollable" or "unobservable” because of its

negligible residue.

The analogous situation with regard to a multi-input, multi-output (MIMO)
system is that the matrix coefficient of any mode which is lightlv coupled to
the remaining part of the system is negligible and the mode can be dropped
from the partial fraction representation. The corresponding rows and columns
of the state space matrices can then be deleted, thus reducing the rank of the

state variable matrix coefficient.

The roles of observability and controllability in LTI systems with unique
eigenvalues can be made quite clear by substituting into Equation (5.10) the
matrix TAT-! in place of A. Then

Y(s) = C(sI-A)-1B u(s)

CT(sI-A)-17-1B y(s)

CT and T-1B are the measurement and control influence matrices vespectively.
Denoting these in terms of their column or row vector respectively, as

appropriate, then the r x m matrix transfer function is
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G(s) = [g1 g **** g&pl (s - ry) 0o ... 0 hy’
0 (s rp) 0 0
0 0 (s - rp) | hp’
. g;h'y
- i=1 (5 - ril

If, in G(s), any pole (s -~ r;) is cancelled by a corresponding zeto, then
either g; or hj, is zero; i.e., this mode is either unobservable or

uncontrollable.

Whether a particular mode of a MIMO system is lightly coupled with the
remainder of the system is not immediately obvious, as it is in rhe case of a
SISO system, because the "zeros" and residues of the transfer function are
matrices rather than scalars; but, with inspection of Aj in Equation (5.26)
above, it becomes obvious in view of a criterion for decoupling which is

discussed in Paragraph 5.3.2.2.2.

5.3.2.1 Decoupling Rationale

Given a large system of simultaneous linear differential equations
expressed in the state-space form Equation (5.1), a means of approximating the
system by uncoupled models of lower order is explained below. Responses from
the separate subsystems will combine to form a good approximation of the

solution of the original set of simultaneous equations.

For simplicity, the present scope is limited to systems with distinct
eigenvalues wvithin well-separated groups of frequency ranges. The procedure
decouples the frequency groups without producing significant departure in
character from the corresponding components of the original model. Specifi-

cally, it is possible to write into a nearly equivalent partitioned form
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X** = Akkxkk 4 Brky

in wvhich the elements are decoupled subvectors and submatrices, i.e.:

- r - r 9

( él** Al** O ......... O 51** B].‘.’*
).(2** = 0 AZ** ...... 0 52** . BZ**
ooooooooooooooooo 9-
év** 0 O ....... AV** L xv** B"**
b B L p - - L
Each decoupled subsystem
gk *k = A **xp k% 4 By **u , 1 <k < v (5.27)

represents a separate frequency range of the total system behavio:.

The procedure begins with the spectral decomposition of the nxn matrix A
into its special components corresponding to each of the n distinct

eigenvalues:

' |
A= LA (5.28)

n n
B = EB,C= [C
i=1 i i=1 i (5.29)
where:
Aj = Aj By
Bj = By
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The A matrices corresponding to conjugate complex eigenvalues and other
eigenvalues in the kth frequency group are then combined into nxn Ap* matrices

such that

1 k k=1 k (5.30)

Then, by selective nulling of rows and columns (setting all elements in
selected row and column to zero), each triplet (Ap*,By*,Cp*), is decoupled to
become (Ap**,Byx*,Cpx%) .

It might be suspected that the same procedure can be centered about
singular value decomposition (SVD), wherein the expansion of the square matrix
is relative to its singular values instead of its eigenvalues. TIf practical,
the SVD procedure would have certain advantages (e.g.: singular values are
alwvays non-negative real); but the SVD procedure is not practical because it

can be applied only to symmetric A matrices as shown below.

5.3.2.2 Matrix Decomposition

As implied above, there are at least two basic approaches ro decomposing
a square matrix: 1. separation of eigenvalues in a spectral decomposition
(SD), and 2. Separation of singular values in a singular value decomposition

(SVD). The formulae for the two decompositions are of identical form:

A = EAR’ for spectral decomposition (5.31)

A = ULV’ for singular value decomposition * (5.32)

vhere A and I are diagonal matrices of eigenvalues and singular values
respectively; and E, R, U, and V are matrices of corresponding eigenvector

sets as follows:

* This formula is true for rectangular matrices in general (not necessarily
square) if the matrix is mxn with m < n.
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E is the set of eigenvectors of A, normalized such that complex pairs are
conjugate, and arranged according to the sequence of eigenvalues in A.

R is proportional to the corresponding set of normalized eigenvectors of
A’. The proportionality constant is such that the corresponding vectors
of E and R are orthonormal; i.e., E'R = I.

U is the set of normalized eigenvectors of AA’, a-_anged according to the
sequence of singular values in I.

V is proportional to the corresponding set of normalized eigenvectors of
A’A. The proportionality constant is +1, with the sign selected such
that VI = A'U.

Considering the similarities between the two matrix decompositions, why
can’t the SVD method be used for model-order reduction? The problem is that:
é = Ag is a valid transformation of g = AX; but é = Iq is valid only if A is

symmetric. This is explained as follows:

Given that

= Ax + Bu (5.33)

[

and lettin& x = Eq, then

q = R'AEq + R’Bu , R’ = E-!

with R’AE = A. On the other hand, substituting Equation (5.32) into Equation
(5.33)

é = ULV’'x + Bu
Letting x = Uq,

g = vug + U1Bu , v 2 u-l
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It should be noted that V'U # I because (AA’)’' # A’A, except when A is

symmetric.

Derivations of Equation (5.31) and Equation (5.32) are included in the
folloving subsections. These include derivations of well known relationships
that are commonplace; nevertheless they will be derived here to explain

clearly their applications to the problems of model-order reductinn.

5.3.2.2.1 singular Value Decomposition - A left singular vector u; of the

matrix A is defined by

AA'uiz = aizui (3.34)
vhere aiz and vj are the ith eigenvalue and eigenvector respectively of AA’.
Assuming that A’uj is an eigenvector v; of A’A (right singular vector of A),
then

A'A(A'u) = 052 (A'u;) = A’a52 u4 (5.35)

The above assumption is known to be true because of Equation (5.34);

therefore
A'uy = V§ (5.36)
and
A'Avy = 032 vy (5.37)

What is the length of v; relative to that of uj? This can he computed as

follows:

Ilvi||2 = vi'vi = (A'uj)"(A'u;) = uj’AA’u; = (AA'uj)'u; (5.38)
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Then substituting from Equation (5.34) into Equation (5.38):
[P = cor? woros = 2]

So,
el = sl
From Equation 5.34) and Equation (5.36)
Avy = o032 uj (5.40)
Dividing Equation (5.40) by Equation (5.39)

. . = 0:2 y. . .
Avy / ||v1|| = 05% ug / cll'ulll

Then
Avi = o5 uj (5.41)

In the above derivation, vectors in the equations preceding Equation (5.41)
are intentionally not underlined. The underlined vectors in Equation (5.41)
are normalized. The two sets of n vectors in Equation (5.41) can now be

grouped into a matrix equation;

AV = UE (5.42)

where
V=lyvivy - vnl,U=[uyu "yl
and vhere I is the diagonal matrix of singular values. Note that V is

nonsingular and orthonormal. Therefore, this concludes the derivation of
Equation (5.32), because Equation (5.42) and Equation (5.32) are equivalent.
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5.3.2.2.. Spectral Decomposition - From First Principles - The state vectors

in Equation (5.1) can be resolved into a new set of coordinates., which is the
set of eigenvectors corresponding to the matrix A; and then can be decomposed
into separate equations describing the state of the system along each

eigenvector coordinate. By a2 transfermatien of variables
x = Eq (5.43)

vhere E is the matrix of eigenvectors

E=fey e+ el (5.44)
Then
q=4Ag + EIBu, y=CEq (5.45)
vhere A =E-Ll AE is a diagonal matrix of the eigenvalues of A.

A = Diag (A1 Ay = Ny

This means that the component equations in Equation (5.45) are decoupled.
That A is a diagonal matrix of eigenvalues can be seen from the fundamental

relationship for eigenvectors with respect to the matrix a and its transpose:

A'ry = A rj (5.47)
Transposing Equation (5.47) and postmultiplying by e;
Ej' A_e.l = XJ Ej' ey (5.48)
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Premultiplying Equation (5.46) by rj’
Ej' Agi = Xj r;’ e (5.49)
Subtracting Equation (5.49) from Equation (5.48)

(\j - Aj) £y’ €5 = 0

Then, if

£;’ ej = 0 (5.50)

shoving that the vectors are orthogonal. Furthermore, if the eigenvectors are

normalized such that,

1, 2, ..., n (5.51)

Iy’ ej =1 1

then the vectors are orthonormal, and the product of the matrices
’
[ rprz *°° In ] [ €1 €2 *°" €p ]
is a unit matrix, which is identical to the expression R'E = I.
Expanding
R’AE = [ ry rp *°° r, ]' A [ e} ey " ey ]

and substituting Equations (5.48), (5.50), and 5.51) yields the proof that

R’AE = A is the diagonal matrix of eigenvalues.
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Also, by pre- and post-multiplication
A = EAR’ (5.52)

Thus, eigenvalues and eigenvectors, although usually pictured nnly as
functions associated with a matrix, can be regarded as basic elements from
which the matrix is constructed. The spectral decomposition of a matrix into

its basic elements can be observed from the above relationship, which when

expanded is
n n
A= I e3 Ai £'i = I Ai (5.533)

The spectral decomposition of B is, to a large extent, analongnus to that

above. B = ER’B and, therefore, can be expressed as

n n
B= ¢ e £'i B= L Bi (5.53b)
i=1 i=1
Similarly
n n
C= L Cegy r'y = I C4 (5.53¢)
i=1 i=1

Writing the state-space Equation (5.1) as the sum of its spectrally

resolved components yields:

. n . n
x= ILx3= L (Aj x+ Bju) (5.54)
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In accordance with Equation (5.43)

X=e1qy +€ + *** +e,qy = L epaqy (5.55)

shoving the components of x along the axes of the eigenvector coordinate
system. The control vector u and output vector y also have components in this
system as shown in Equation (5.45). This means that elements of the vector
R’B u are in the system of eigenvector coordinates and are independent of each
other. The matrix R’B is called the control influence matrix. It should be
noted that a rowv of zeros in this matrix means that the corresponding
frequency mode cannot be influenced by the control vector, u. Similarly CE is

the measurement matrix.

Substituting from Equation (5.43) into the left-hand part of equation
(5.45) and premultiplying by E

x = E (A + R'B u) (5.56)

The projection of the above derivative into the i th eigenvector is

Xj = €5 (A a3 + £y’ Bu) (5.57)
Now, from the definition of A; in Equation (5.53) and from Equations (5.55)

(5.50), and 5.51,

B k=1 (5.58)
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Then, Equation (5.57) becomes

X; =A; x +Bju, (i=1,2,...,n) (5.59)
or
Xi = M\ Xj + Bju (5.60)
The Laplace transform solution of Equation 5.60) is
X;(s) = (x4(0) + B; U(s)) / (s - Aj)
After summing all of the spectral components,
X(s) = IXj(s) = L(x4(0) + Bj U(s)) /7 (s -Xy)

From Equation (5.58)

Xj = A X/ N
Then, denoting
Aj/N = By
X(s) = I(Ej x(0) + B U(s)) 7/ (s - Ay) (5.61)

Therefore, the spectral components of the A and B matrices are exactly
analogous to the coefficients of a partial fraction expansion. (learly, from
the development, each numerator in Equation (5.61) is a function of all modes,

even though some of the modes in the "partial fraction expansion" are dropped.

5-43




5.3.2.3 Criterion for Decoupling with Spectral Decomposition

The degree of coupling which exists among the state vector elements can

be determined by inspecting each of the E; matrices. The Ej's are all

singular matrices, each having only one non-zero eigenvalue.

Vith spectral decompositiék, the non-zero eigenvalue is always +1; and,
because the trace of a matrix is equal to the sum of its eigenvalues., the
trace of E; is alvays unity. This provides the criterion for reducing the
matrix. Any element in the diagonal of Ej{ with a modulus much less than unity
can be deleted without significantly affecting the value of the trace,
provided that the absolute sum of such elements is also much less than unity.
The corresponding rows (and columns) in each of the equations represented by

Equation (5.60) can be deleted. This can be easily justified as fonllows.
The transient solution of Equation (5.60) is
X3(t) = %x3(0) exp (A1)

If all the elements in x; (0) were identical, then all equations (rows)

in

would be duplicative. Clearly, the ones which are of no particular interest
(the ones corresponding to negligible elements on the diagonal in Aj) can be
deleted. The result of these deletions will be negligible if they do not
significantly change the eigenvalue Aj; i.e., if they do not change the value
of the trace of E; significantly from its unit value.

Determination of what spectral components are combined into the
corresponding Ap*, By*, and Cp* matrices depends upon the overlaps of
significant diagonal terms in the Ej’s. Then, after computation of each
A; (= A\{Ej) and each B; (=E;B), and each C; (=CE;), those which should be

combined are added to yield the corresponding (Ay*,By*,Cy*),. These in turn
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are then decoupled to become the (Ap**,By**, Cp**)  triplet by appropriate
nulling of rows and columns corresponding to the negligible diagonal elements

in the selectively combined Ej’s.

The Algorithm for Spectral Decomposition

A summary of steps in the spectral decomposition approach is as follows:

1. Compute the eigenvalues and the corresponding eigenvectors of A and
A,

2. Compute the complete set of A; matrices (n in number and nxn in
dimension).

3. Null any row and corresponding column in each Aj where its diagonal
element is negligible. Now it is apparent that, associated with each
eigenvalue, there are certain components in the state vertor wvhich
are thus identified as being insignificant.

4. Null the corresponding rows of B; and the corresponding columns of C;
in Equation (5.53).

5. A nev (A,B,C), realization is formed by summing only thnse
(A{yBi,C5)’s which are associated with the eigenvalues in the
frequency cluster of interest.

6. The n-k insignificant states are then removed to form the minimal
realization (A,B,C).

5.3.2.3.1 Example: Rigid-Body Model
The following example will serve to illustrate the spectral decomposition

and decoupling procedures. An intuitive approach for approximating the short
period and phugoid modes of an airplane are presented in Sections 4 and 5 of
Dynamics of the Airframe, Bu Aer Report AE-61-41I, Northrop Norait. September
1952 Reference [21]. Here the same airplane equations are used as a model for
demonstrating the application of the spectral decomposition method.
Substituting the appropriate data into the corresponding longitudinal
equations, then re-writing the equations in state-space form yields the

followving:
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c
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—
c

J

—

—

-32.170 .

-.00970 1.0560 0 0
p -.00015 -1.4300 1 0 o .1058

-y .00012 _14.282  -2.7780 0 o I* |26.01 | %

4 | 0 0 1 o | o] |0 | 66

The eigenvalues of the square matrix, A, are -2.1 + j 3.72 and -.00451 +

j.0626. Corresponding to the first eigenvalue, -2.10 - j 3.72, the matrix

ejry’ is
00003 2.8218 .56345 -.00079 |
-§ .00011 -5 1.6526  +j .65658 -3 .00023
~.00001 .50001 -.00001 -.00007
-§ .00002 4§ 09074 45 .13445 -5 .00011
E1 = 1_.00006 .00062 . 50004 -.00035
-5 .00002 5 1.9207 -3 .09052 +j .00033
.00001 .39116 -.03921 -.00003
-§ .00001 +j 22153 +3.11229 +j .00011

The diagonal elements of Ej add to unity, and the first and fourth
elements are negligible. Ej, which corresponds to the second eigenvalue, is

the conjugate of Ej. Then A} + Ay = E{ A\ + Ep Ay =

[ 00034

- 12.083 1.2557 .00083
- .00007 - .71481 .49998 - .00025
Ay x = 2 . 00006 - 7.1431 -1.3888 .00198
- .00006 .00062 . 50004 - .00035
and By + B = (Ey + E2) B =
14.95 |
Bi* =2 .05253
13.01
-.978
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Similarly, corresponding to the third eigenvalue,

matrix ey r’s, is

!

+

]

+

Again,

are negligible.

conjugate of Ej.

and By + By

.50003
j .03599
.00001
j .00000
.00006
j .00000
.00001
j .00098

2.8218
+ 3 201.1
.00001
- j .0031
- .00062

+ ]
- .39116
-3

1

1

.02468

.03845

I

+

.56345
j 20.086
.00001
j .00031
.00004
j .00247
.03921
j .00215

.00451 j

.00079
j 256.7R
.00007

j .00396
.00035

j .0315]
.50003

j -04156 |

.1626 the

the diagonal elements add to 1, and the second and third ~lements

0
0

- .00451

.0006

2

L

-
- 14.95
.000368

Then A3 + A4 =

12.611
- .00019
.00155
- .00062

-

.00115
.978

1.2557
.00002
.00015
.00004

- 16.086 |
.00025
.00198
.00035

E4» which corresponds to the fourth eigenvalue. is the

Nulling the first and fourth rovs and columns of Ai* and the second and

third rows and columns of Aj* yields
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- .00902 0 0 - 32.18

0 - 1.430 1 0
Axx - 0 - 14.29 - 2.778 0

.00012 0 0 .00070

Similarly, nulling the first and fourth rows of By* and the <econd and

third rows of Bp* yields

- -

- 29.90
B¥x . = 2 .1051

26.01
1.956

The corresponding matrix equation is

g -.00902 0 0 232218 [u] [-70.90
o 0 -1.320 1 0 p .1051
= * | 8e
) 0 ~14.29 - 2.778 0 ) 76.01
) | 00012 0 0 .00070 | ) 1.956

Writing the decoupled equations separately, the short period equation is

@ - 1.430 1 « .1051

- . + 8¢ (5.63)
2] - 14.29 - 2.778 2] 26.01
with eigenvalues: - 2.10 + j 3.72; and the phugoid equation is
u - .00902 - 32.18 u ~29.90
. = + 8a (5.64)
0 .00012 .00070 © 1.956

wvith eigenvalues:

.00416 + j .0620

The state space equations corresponding to the approximations presented

in the reference are, for the short period,
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o - 1.430 1 o .1058
Sl o= ) 8e (5.65)
2} -14.18 - 2.778 2} - 26.01

with eigenvalues: - 2.10 + j 3.72; and, for the phugoid,
u - .0097 - 32.17 u 0 i
. = + 8 (5.66)
e .000145 0 ) - .1058

wvith eigenvalues:

.00485 + j .0681.

Comparison between the two short period approximations Equations (5.63)
and (5.65) shows them to be almost identical; but comparison between the two
phugoid approximations Equations (5.64) and (5.66) shows signifircant
differences, although the eigenvalues are in fair agreement. The =pecial
- decomposition method yields accurate results for both the short period and the
phugoid. But, as pointed out in the reference, the phugoid approximation by
the intuitive approach yields impulse responses with large ampliftude and phase

errors.

The transients responding to 8, impulses of magnitude .02 for Equation

(5.64) the reduced realization are easily computed to be

u = -20.3 e -00816t i 0620t

-.00416¢t

2] .0391 e cos .0620t

The corresponding phugoid responses computed from the 4 x 4 system,

Equation (5.62) are

u = -20.1 00431t i 0626t

.0393 ¢ -00431t o 0626t

D
n
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5.4 EXAMPLES

The two metnods discussed in this report are: (1) balanced
approximation, and (2) spectral decomposition. The balanced appro=imation
approach is better known,, having been thoroughly developed and discussed in
the technical literature since about 1979. The spectral decomponsitinn
approach was developed and used by Lockheed, beginning in 1974, during studies
that led to the development of the L-1011 Active Control System.

More recently, Lockheed has been examining two forms of frequency
compensation which supplement the balanced approximation approach: but these
topics are beyond the scope of this report. The first of the frequency-
compensation methods, developed by Honeywell, applies a balancing algorithm to
a full model which includes frequency-dependent weighting. The =erond method,
developed by the University of Southern California, truncates the mndel using
approximate balancing; then applies the balancing algorithm to rhe rruncated

model after bilinear frequency weighting.

Comparison of results from the U.S.C. method and from the two merthods
which are the subject of this report are illustrated in this section. It

comprises excerpts borrowed directly from Reference [22].
Two versions of the U.S.C. method are included in the Bode plots
(Paragraph 5.4.4) which follows the numerical examples. They are labeled:

"asymptotic balancing" and "pre-cleaned to 5th order."

5.4.1 Advanced Supersonic Transport Flexible-Body Model

The model used in this comparison is for the Advanced Supetzonir
Transport (AST) shown in Figure 5-3. It is a linear eighth orde: longitudinal
system which includes the two lowest frequency structural modes: the first

and second fuselage bending modes. The four inputs included in the control

vector are the elevator, throttle, canard, and elevon. The state space model

is given in Figure 5-4.
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CANARO

Figure 5-3.

where: i 3- r.-o.o1z7 -0.0136
a -0.0969 -0.4010
8 0.0000 0.0000
q| _| -0-2290 1.7260
%, 0.0000  0.0000
X 0.0000 0.1204
%, 0.0000  0.0000
x, 0.0000 0.1473
0.0000 0.0194
-0.0215  0.0000
0.0000 0.0000
. -1.0970  0.0000
0.0000 0.0000

~0.6400 0.0000

0.0000  0.0000

| -1.8820 0.0000

and C = 1 is the identity matrix.

Figure 5-4.

o~ THROTTLE"
‘/I

PROPULSION

o —ZLEVONS

Advanced Supersonic Transport (AST)

-0.0360
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
~0.0040
0.0000
0.3660
0.0000
0.1625
0.0000
0.4720

X = Ax + Bu
y = Cx

0.0000 0.0000
0.9610 19.5900
1.0000 0.0000
-0.7220 -12.0200
0.0000 0.0000
0.0496 -44.0000
9.0000 0.0000
0.3010 -7.4900

l M

0.0000 68
-1.7860 Gt
0.0000 éc
-0.0569 58
0.0000
-0.0370

0.0000
-0.0155_ L
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.0000
-0.
.0000
-0.
.0000
-1.
. 0000
~0.

1185

3420

2740

1257

0.0000 o.ooo: u
-9.2000 -0.1326 2
0.000gy, 0.0000 3
1.8420 0.8810 q
0.0000 0.0000 x,
-4.0300 -0.5080 %
0.0000 1.0000 x,
-21.7000 -o.aosoJ Lkz_

AST Longitudinal Flexible-Body Model




The eigenvalues of the unaugmented system show the short period to be

statically unstable.

Short Period

Phugoid

1st Fuselage
Bending Mode (X7)

2nd Fuselage
Bending Mode

0.6687
-1.7755

-0.0151
-0.7257

-0.3122

To illustrate these methods of model reduction,

model will be reduced to a fourth or

diagonal matrix with elements:

M = -0.7257
Ay = -0.3122
Ay = -1.7756
A, = 0.6687
As = -0.0151
A = -0.0151
Ny = -0.7257
Ag = -0.3122

der system,

+ 6.70181
+ 4.44851

+ 0.0886i
0.08861
6.70181i
4.44851

]
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The

(Unstable)
(Stable)

.08861
.70171

.44841

the original eighth order

eigenvalue matrix is a




The corresponding matrix of eigenvectors is:

[

-0

b

Vit - &) = }-o.

0.

0.

e.

~0.

0.

~0.

-0.

Columns

0002

2694

0079

2306

0630

-7980

.0236

2460

Columns

5991

1362

.4891

.1383

.0003

.0000

.0027

.0000

1 through

+0.

-0.

+0

+0.

+0.

+0

+0,

+0.

00061

15061

.03351

02881

11234

. 34061

03411

13351

5 through

+0

+0.

+1

+0.

+0.

.1935i

02731

.47721

0211i

000114

.0000i-"

.0005i

.0003i

8

0.0001

0.3879

-0.0504

-0.2826

0.0098

-0.1390

-0.1109

0.6586

~-0.5560

~-0.1299

0.7927

~0.1332

~0.0003

0.0000

~0.0026

~0.0001

5.4.2 Spectral Decomposition

.00081i

-18771

.067114

.245314

.03061i1

.03391

140314

-4497i

.31661

.05534

.36833

L0497

.00001
.00101

.0002i

.0017

.0659

.0597

.1059

.0001

.0002

.0010

.0018

.0007

.0180

.0275

.8649

.2285

.0085

.0862

L9291

.01421

.539°14

.48881

.86791

.00111i

.00191

.00814%

.01441%

.0022i

.54651

126114

.09311i

.42421

.2237i

12931

.48381

L0001

L0067

.onan

.002n

L2902

L0688

L0710

.0881

.

+0.

+0.

+0.

+0

+0.

Model reduction using spectral decomposition is accomplished by

separating the rigid body motion from the structural dynamics.
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03454

.28391%

.5455i

.36481

.0005i

.00041

.00651

.00441i

.23914

.3852i

.33244

0012i

23611

2307i

0309i

0133i




Calculating the spectral decomposition v4(v“1)4 for the unstable short

period of 0.668 gives:

T
[ 6.0357 +0.03451] [ 0.3338 -0.3227i]
-0.2937 -0.2839i ~0.9445 +0.9130i
-0.5643 -0.5455i ~0.0180 +0.0174i
vetv ly, = [-0.3774 -0.3648i ~0.5937 +0.5739i
-0.0005 -0.0005i -0.8696 +0.8406i
-0.0004 -0.0004i -0.3103 +0.2999i
-0.0067 -0.0065i 0.8037 -0.7769i
-0.0045 -~0.0044i] | 0.3829 -0.3701i]

0.0230 ~0.0652 -0.0012 -0.0410 -0.0600 -0.0214 0.0555 n.n2s4
-0.1897 0.5366 0.0102 0.3373 0.4941 0.1763 -0.15h4 n.217%
-0.3644 1.0309 0.0196 0.6481 0.9492 0.3387 -0.8772 n.1179
= |-0.2437 0.6894 0.0131 0.4334 0.6348 0.2265 -0.5867 0.2795
-0.0004 0.0010 0.0000 0.0006 0.0009 0.0003 -0.0008 n.noo¢
-0.0002 0.0007 0.0000 0.0004 0.0006 0.0002 -0.0006 0.0003

-0.0043 0.0123 0.0002 0.0077 0.0113 0.0040 -0.0105 0.0050

-0.0029 0.0082 0.0002 0.0052 0.0076 0.0027 -0.0070 0.0033

The diagonal of this matrix is used to identify the cross coupling
between the states and the unstable short period. This diagonal is:

' 0.0230
0.5366
0.0196
0.4334

Dy = 0.0009
0.0002

~0.0105%

~0.0033

—

The sum of the diagonal terms




It is seen that the unstable short period is primarily described by the

state of components a (angle-of-attack) and q (pitch rate).

Similarly, the spectral decomposition vj (u'1)3 for the stable

period at -1.77 gives:

Vi

(v-

.0006

.0221

.0200

.0355

.0000

.0001

.0003

.0006

L0117

.4443

.4022

.7142

.0009

.0015

-0067

.0118

.0000

.0004

.0004

.0007

.0000

.0000

.0000

.0000

-0.0094

-0.3579

-0.3240

0.5753

-0.0007

0.0012

0.005¢4

-0.0095

-0.

-0.

.0068

.2586

2341

. 4157

0005

.0009

.0039

.0069

.0084
3221
L2916
.5178
.0006
.0011
.0039

.0086

.0197

74391

.6782

L2043

L0015

.0020

L0117

.01239

-Nn

.005{
L2173
L1967
L3492
.0004
.nnos8
.n033

.nnsg

short

Identifying the cross coupling between the states and the stable short

period, it is again seen that it is primarily described by the states a

(angle-of-attack) and q (pitch rate).

[

-0.

0.
-0.
.5753
.0005
.0011
L0112

.0058
J

0006
4443

0004

5-55




Computing the spectral decomposition for the complex phugoid at

+0.088i gives:

Eg = us(u'l)5

56 = UG(V-I’G =

.1051
.1923
.1043
.0002
.0000

o o 0 © o o o

.0021

0.0305
0.0120
-0.5174
0.0141
0.0000
0.0000
0.0003
0.0001

L

4888

0.

0.1051
0.1923
0.1043
0.0002
0.0000
0.0021

-0.0001

0.0305
0.0120
.5174
.0141
.0000
.0000
.0003
.0001

o 0 O O © O

+

+

+

+

+

+

.4888 + 0.
.03021
.2095i
.035341

o o O = o

0.

Q9.
0.
0.
0.
0.
0.
a.
0.

0.
0.
1.
0.
.00014

0.
0.
0.
0.
0.
0.
0.
0.

0
0.
0
0

0814i

.00011
.00001

0007i

20914
04511
0717i
0448i
0001i
0000i
00091
0000i

0814i
0302i
2095i
0343i

00001

.0007i
.0002i

2091i
04511
07171
0448i
0001i
0000i
0009i
00004

[ Columns 1 through 4
0.
0.

-0.

-0.

Columns 5 through 8

o © o 0o o © o o

Columns 1 through 4

o o O O o

Columns S through 8

Q0 O O O O O O O

.0000 -
.0000 +
.0003 -

.0064 -
.0048 -
.3355 -
.0062 -
.0000 -~
.0000 +
.0001 -~
.0001 +

.0268 +
.0132 +
L7175 +
.0162 +
.0000 +
.0000 -~
.0003 +
.0001 -

.0064 +
.0048 +
.3355 +
.0062 +
.0000 +
.0000 -
.0001 +
.0001 -

0268 -
0132 -
7175 -
0162 -

o o 0 o o o o o QO O © O O O o o 0o o o o o O o

o O o o o o ©o o°O
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.2901i
.06291
.06091
L0627
.00011i
.0000i
.00131i

.1357i
.02961
.0132i
.0295i
.0001i
.0000i
.00061i
.00001

.29011i1
.0629i
.06091
.06271
.00011i
.00001
.00131
.0000i

.1357i1
.0296i
.01321
.0295i
.00011
.0000i
.00061i1
.0000i

-0.

-0.

-0.

-0.

-0.

-0.
-0.

-0.
-0.

-0.

-0.

.0006
.0049
.4904
.0069
.0000
.0000
.0001

.0361

0095

.1539

ot01

.0000
.0000

0002

.0000

.0006

0049

.4904

0069

.0000
.0000

0001
0001

0361
0095

L1539

0101

.0000
.0000

0002

.0000

S O O O O o o o o o 0 o O o o

o O O o ©o O o o

Q0 O O O O o o o

-0.N1%

.1784; 0.
.0435] n.
L0052 n.
L0438 n.
L0001 n.
.0000i n.
.00091 n.
.06201 n.
.01271% n.
.08801 ",
.0123i -0,
.00001i n.
.0000i n.
.00023 n.
.00001% N
.19841i 0.
.04351 n.
.0052; n.
.0435] n.
L0001 0.
.00001 n.
.0009i n.
.0009i n.
.0A201 n.
L0127 .
.08801i n
.0123) 0.
.00001i n.
.00001i 0
.00021i 0.
.0000i n.

n:s2
no72
1425
no79
nneoo
nnno

0002

0102
nnss
18372
no73
0000
0000
onol
nnol

0252
nn72
16295
nn7Ja9
nnoo
0000
0002
0000

o O o o o o o © o O O o0 O o o

o O O 0o o o o o

o O o O o o o o

.0656i
.0137i4
.0610i
.0135i
.00001
.0000i
.0003i

.1428i
.0310i
.0225i
.03101
.000114
.0000i
.00061i
.0000i

.06561
L0137
.06101
.01351
.0000i
.00004
.00031%
.0000i

.1428i
.0310i
.0225i
.0310i
.00011i
.00004
.0000i

.000014




Eliminating the imaginary parts

conjugate pairs:

- 0.2101 0.0264 ~0.

Egg = Eg + Ef = 0.2086 0.0324 -0.

0.9775 0.0535 0.
0.3847 -0.4351 0.

0.0004 0.0001 0.
0.0000 0.0000 0.
0.0042 0.0006 -0.

-0.0002 0.0002 -0.

0013

0098

9808

0138

0000

0000

0002

0002

of the matrices by

0.0503 0.
0.0144 0.
~0.3251 ~1
6.0157 0.
0.0000 0.
0.0000 0.
0.0003 0.
0.0000 0.

Identifying the cross coupling between the

the diagonal of this matrix,

Dsg

[-0.9775]
0.0264
0.9808
0.0157
0.0000
0.0000

~0.0004

-0.0007

0611

0240

.0349

0283

0000

0600

0005

0002

0.0125

0.0000

0.0000

0.0002

0.0001

.0000

.onnd

.nnno

-0

.7064

adding the complex

.0203

L0117

.0146
.0000
.0000

.0003

.0001

states and the phugoid using

it is seen that the phugoid is primarily described by the states un (velocity)

and © (pitch attitude).

The transformed system is computed by taking each matrix v;(v
multiplying each element by its associated eigenvalue X;. The sum E(XA; vy
(v‘l)i is then computed, including each state which has a signifirant

Thus,

influence on the dynamics of the modes of interest.

system becomes:
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])i and

the transformed




A -

0.0127 -0.
-0.0962 -0.
0.0004 0.
-0.2353 1.

A = |[-0.0002 -O.
-0.0003 0.
-0.0037 0.
-0.0009 -O.

Computing the eigenvalues of this system as a

534-544-;54-

0137
4192
0077
7397
0009
0032
0202
0155

-0.0360
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001

_ 6
Ag = I

i

0.0001
0.8633
1.0245
-0.7295
0.0017
-0.0019
-0.0043
0.0203

[ 1.7756
0.6687

o, O,
L

1

A ovi (V)i

0.0080
0.7972
1.0788
-0.3062
0.0015
-0.0012
0.0008
0.0173

~0.0151 +0.08861i

0, 0

-0.0055
-0.4490
-0.2789
1.0759
-0.0009
0.0021
0.0114
-0.0134

~-0.
-1.
-1.
1.
-0.
0.

0077
6375
8112
7440
nn32
Nn42

0.0129

-0.

0400

0.0028)
0.2350
0.0551
_0.8123
0.0005
~0.0015
~0.0092
0.0080

computational rheck gives:

Note that the eigenvalues of interest have been preserved, while the

other eigenvalues have been set to zero.

From this analysis, it is seen that

the important states to describe the rigid body dynamics are the first four

state components (u, «, 6, q).

gives the reduced system 511:

0.0127
~0.0962

0.0004
~0.2353

-0.0137
-0.4192
0.0077
1.7397

-0.0360
0.0001
0.0000
0.0000

0.0001 ]
0.8633
1.0245
-0.7295,

The transformation from B to B is computed as T’ B as follows:
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Extracting the upper left 4 x 4 submatrix




[ 1.0000 0.0000 0.0000 0.0000 -0.0057 -0.0002 n.nno 0.000J

-0.0016 1.0073 0.0000 -0.0062 0.2594 0.5080 0 2736 -0.4465
0.0003 -0.0019 1.0000 -0.0010 -0.3198 -0.0407 n.oinpn 0.0918

T = EGUilv—l)i = 0.0004 0.0077 0.0000 1.0245 1.0788 ~-0.2787 y.n112 0.0551
1=3 0.0000 0.0019 0.0000 0.0000 0.0005 0.0010 n nNnonA  -0.0008
-0.0002 -0.0009 0.0000 0.0017 0.0015 -0.00NnA n.nn22 0.0005
0.0002 0.0063 0.0000 0.0134 0.0157 -0.000F n.nxr1 -0.0020
-0.0037 0.0202 0.0000 -0.0043 0.0008 0.0111 n.n1rm"  -0.0092

P—0.0006 0.0194 0.0001 0.0000ﬂ

0.5003 0.0000 -0.1345 -1.8110

_ -0.1455 0.0000 0.0363 0.0037

B=1T8 = -1.0493 0.0000 0.3556 -0.0625

0.0010 0.0000 -0.0003 -0.0034
-0.0021 0.0000 0.0007 0.0015
-0.0107 0.0000 0.0038 -0.0119

0.0143 -0.0001 -0.0042 -0.0362

Retaining the upper four rows of 8, which correspond to the <tate

components of interest, gives:

-0.0006 0.0194 0.0001 0.0000

0.5003 0.0000 -0.1345 -1.8110

B, = -0.1455 0.0000 0.0363 0.0037
-1.0493 0.0000 0.3556 -0.0625

The final state equation describing the rigid body dynamics is thus:

-0.0127 -0.0137 -0.0360 0.0001 -0.0006 0.0194 0.1345 n.nooo be

i - ~-0.0962 -0.4192 0.0001 0.8633 : 0.5003 0.0000 -0.1345 1.8110 5t
0.0004 0.0077 0.0000 1.0245 -0.1455 0.0000 0.03A13 n.nox7 bc
-0.2353 1.7397 0.0000 -0.7295 -1..0493 0.0000 0.3556 n.ne62s da

where

xi
[
]
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Similarly,

1.0000
-0.0016
0.0003
= C'T = | 0.0004
0.0000
-0.0002
0.0002
-0.0037

(¢l

0.0000
1.0073
-0.0019
0.0077
0.0019
-0.0009
0.0063
0.0202

0.0000 0.0000 -0.0057 -0.0002 0.0030 0.0004
0.0000 -0.0062 0.2594 0.5080 0.2736 -0.4465
1.0000 -0.0010 -0.3198 -0.0407 0.1088 0.0918
0.0000 1.0245 1.0788 -0.2789 1.8112 0.0551
0.0000 0.0000 0.0005 0.0010 0.0006 -0.0008
0.0000 0.0017 0.0015 -0.000% -N.N032  0.0005
0.0000 0.0134 0.0157 -0.0006 -n.0221 -0.0020
0.0000 -0.0043 0.0008 0.0114 n.0129 -0.0092J

Retaining tne first four columns of C gives the output equation:

5.4.3 Balancing

;
.0000 0.0000
.0000 -0.0062

1.0000 0.0000 O

-0.0016 1.0073 0
0.0003 -0.0019 1.0000 -0.0010
0.0004 0.0077 0.0000 1.0245
0.0000 0.0019 0.0000 0.0000

0

0

0

X1

-0.0002 -0.0009 0.0000 0.0017
0.0002 0.0063 0.0000 0.0134
-0.0037 0.0202 0.0000 -0.0043

Calculating the reduced order model using balancing requires computing

the stable projeciton of the AST model from Figure 5-4. Removing the unstable

short period pole from the model results in the following first order unstable

and seventh order stable models:
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] linstable Projection

>
[
it

G (s):

[ O.

[-0.

O O O O O = O

.0633]
.5205
.0000
.6687
.0010
.0006
.0119
10080 |

6687]

1634 -0.0071 0.0908 -1.8846]
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Stable Projection G, (s):

0.0000 1.0000 0.0000 0.0000
-45.4405 -1.4513 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000
Ag = 0.0000 0.0000 -19.8865 -0.6245
0.000u 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.000
0.0000 0.0000 0.0000 0.0000
F -0.9031 0.0000 0.2286 ~0.0360
2.2821 0.0000 -0.5677 -0.2025
-1.5990 0.0001 0.4009 0.0323
Bg = 0.7315 0.0000 -0.1617 ~0.2178
0.9417 0.0007 0.2942 1.2568
-0.5125 0.0075 0.1112 2.5962
. 0.0016 0.0040 0.0007 ~0.0590
P 0.0000 -0.0001 -0.0004 0.0002
-0.3497 0.0056 0.5400 0.0180
0.0025 -0.0058 -0.0973 0.0076

Cs = 0.2655 0.0110 -0.1510 -0.1020
-0.0319 -0.0220 -0.0088 ©0.0087
1.0000 0.0000 -0.1723 -0.0142
-0.0147 -0.0070 -0.0314 -0.0503
L 0.3178 -0.0045 1.0000 0.0000

Using the AST model from Figure 5-4, the

.2036230E-01

0.1007108E+00
0.1065996E-01
0.5305186E~02
0.3492083E-01

.6318043E.03
.6901658E-02

-0,
-0.

-0
-0

7858880E-01
9248873E-02

.BB21540E-02
.5965348E-02
.2548000E-01
-0.
.4934998E-02

1368483E-02

-0

-0

.7396749E-02
.2168032E-02
-0.
-0.
.5439826E+00
=-0.
.9053631E-01

2255822E+00
4614011E+01

4369408E+00

.2084407E-02

0.8971239E-03
0.4181750E+01

.4391062E+400
.83968613E+00
.68€°701E+00

0.9063240E-01

.0000
.0000
.0000
.0000
.7756
.0000
.000

O O = O O O O

.0163
. 6221
.5632
1.0000
.0012
0.0022
0.0093
-0.0165

resulting

.1557507E-01
0.8634662E-02
.1347317E+00
0.7906792E+00
.1866259E+-1
.1408282E+01
0.1196825E+01

O O O O O O

O O O O ¥ O O

-0.

0000 0.0000]
.0000 0.0000
.0000 0.0000
.0000 0.0000
.0000 0.0000
.0000 1.0000
0081 -0.0301
L0657 4.5647]
.0042 0.9997
.0000 0.0000
.0000 1.0000
.0000 0.0020
.0000 -0.0001
.0000 0.0200
0002 -0.0006
balanced system is:

0.2265723E-02 0.
~0.1086C24E~02
0.4317310E-01 0.
0.1029887E+CC
0.2929760E+00
.1222905E+01
0.6535209E+01

1889674E-02

.7199143E-03

5369037E-02

.6150533€-03
.8364052E+00
.6684445E+01
.9803707€-01




with transformation matrix T,

M,

z

0.,2323941E+00
-0.2356257E+00
-0.8289538E+00
-0.1171844E+01
-0.8687418E+C0
-0.8848588E+00

0.1216242E+00

C.3936411E+00
0.1147306E+00
-0.1347486E+01
0.8156066E-C1
0.2310383E-CH
0.4221588E-04
0.1402238BE-02
0.9461917E-03

are controllability and observab

-G.2082414E-C3
C.6035055E~04
-0.3883044E-01
-0.5358829E-02
0.1607577E+00
0.1145134E+01
0.1081826E~02

0.1076423E-01
0.2880195E-C2
0.8390716E-04
0.8376537E-04
0.4592771E-03
-0.5661499E-04
-0.140130SE-03

0.5038438E+00
0.9237478E-Q1
C.7600453E+C0
0.1154051E+00
0.1996241E-03
-0.4880759E-04
0.2635938E-02
-0.5863078E-03

-0.859749%3E-C5
~0.7355415E-06
-0.3110237E-03
-0.9387191E-02
-0.1331345E-02

0.3550512E-01
-0.1688358E+00

-0.4590957E-01
0.5724683E~01
0.2126706E+00
C.2947332E~00
0.2709870£+C0
0.2171498E+00

-0.4328787E-01

-0.4706008E-02
0.1462935E+00
~0.2C96338E+00
0.5496500£+00
-0.2306706E-01
~C.1374297E+00
0.2172917E+00
0.5886990E+00

0.5C010647E-03
0.5061510E-04
0.3827676E+0C
0.7852067E+00
-0.5543575£-01
0.6771160E-02
-0.2005733E+00

obtai

-0.1390776E+01
0.8909944E-00
0.2197501£+00

-0,2198914E-01
0.1067235E+01

-0.1766557E+00

-0.2203461E+00

C.5285127E-03
9.5397737E+00
-0.4638257E-01
-0.3964C75£E+02
0.3324961E-01
-0.1012023E+CO
-0,1348816E+00
0.9901341E-01

ned as eigenvectors of the

-0.1779815E-01
~0.7535492E+00
-0.5585050E+00
0.1027327E+01
0.2696158E-01
0.1701929E+00
-0.1757253E-01
-0.4065918E-01

ility grammian

0.2002548E-03
-0.6234115E-04
~0.161108B4E+00
0.1083092E+.)
0.3214354£-01
-0.3542887£-01
-0.5798703E-02

0.8635179E-02
-0.5173666E-02
0.1438251E+00
-0.2315098E-01
0.8928460E+00
-0.1126888E£+00
0.2044477E+00

0.2385362E-02
-0.1919983E+CC
0.7292331E-C2
0.1044314E-CC
-0.3238327E-C1
0.844C623E+CC
-0.3678231E-22
0.3377923E-00

(WM)

~-0.4591832£-0
0.488%302E-0C
-0.3965853E-02
~0.1461919E-02
-0.1586629E-01
0.2131459E-02
0.3007044E-02

-2.9788920E~-01

-2.3026464E-C1

-0.6325808E-02

-0.1029357E-01

2.1191328E-32

2.5712261E-C1

C.1214753E+CO
C.182C389E+0C
0.4792444E-C1
C.3556501E-01

where W and

2.3550501E+02
0.6285399E+01

0.2621500E-02

0.1401021E-02
0.1218405E-03

The diagonal of the observability and controllability grammians are:

Diag.

It is desired to reduce the model to a third order system.

[ 48.8769 46.1411 1.7304 1.6631 0.5272 0.3522 0.3326]

Let Tnk

comprises the first 3 columns of T, and Syn comprises the first 3 rows of T'l.

The

n,

the reduced order system

P>
>
>>

(Skn A Tpkr SknBr C Tpy)




is given by

»

o XX
fl

OO0 OO0 OO

Appending

system:

.2036230E.01
.1007108E+00
.1065996E-01

.2323941E+00
.2356257E+00
.8289558E+00

.3936411E+00
.1147306E+00
.1347486E+01
.8156066E-01
.2310383E-03
.4221588E-04
.1402238E-02
.9461917E-03

the unstable

-0.7858880E-01 -0.7396749E-02
-0.9248873E-02  0.2168032E-02
-0.8821540E-02 -0.2255822E+00
0.1076423E-01 -0.4590957E-01 -
0.2880195E-01  0.5724683E-01
0.8390716E-04  0.2126706E+00
0.5038438E+00 -~0.4706008E-02
0.9297478E-01  0.1462935E+00
0.7600453E+00 ~0.2096338E+00
0.1154051E+00  0.5496500E+00
0.1996241E-03 -0.2306706E-01
-0.4880759E-04 -0.1374297E+00
0.2635938E-02 0.2172917E+00
-0.5863078E-03  0.5886990E+00

0.1390776E+01
0.89109944E+00
0.2197501E+00

short period results in the following fourth order

xre
#

[~0.2036230E-01
0.1007108E+00

0.1065996E-01 -0
| 0.0 0
[ 0.2323941E400 0O
-0.2356257E+00 O
-0.8289558E+00 0
-0.1634 -0

.0

5-64

.7858880E-01 -0.7396749E-02 0.0

.9248873E-02 0.2168032E-02 0.0 7
.8821540E-01 -0.2255822E+00 0.0

0.0 0.6687

.1076423E-01 -0.4591226E-01 -0.1390774E+01 de
.2880195E-01 0.5724683E-01  0.8909937E+00 8t
.8390716E-04 0.2126706E+00 0.2197501E+00 8c
.0071 -0.0908 -0.8846 8a




u 0.3936411E+00 0.5038438E+00 -0.4706008E-02 -0.0633
o 0.1147306E+00 0.9297478E-01  0.1462935E+00 -N.5205
-] -0.1347486E+01  0.7600453E+00 -0.2096338E+00 1.0000
q

y = - 0.8156066E-01  0.1154051E+00  0.5496500E+00  0.6687 7
X4 0.2310383E-03  0.1996241E-03 -0.2306706E-01 -N.0N10
il 0.4221588E-04 -~0.4880759E-04 -0.1374297E+00  0.0006
Xy 0.1402238E-02  0.2635938E-02  0.2172917E+00  0.0119
iz 0.9461917E-03 -0.5853078E-03  0.5886990E+00  N.0080 ]

5.4.4 Comparison of Methods

The frequency responses generated using the fourth order models from the
previous section are shown in Figures 5-5 through 5-8. The gradient fit
method and the asymptotic balancing method are described in Reference [22].

These are the single-input single-output responses u/de, o/ de, @/ 3e. and q/de.

As expected, the fuselage bending modes are excited by the elevator input,
and thus are seen in those frequency responses. Because of the frequency
separation between the rigid body modes and the fuselage bending modes,
spectral decomposition provides a very good approximation to the high order
system. For those "rigid-body" responses excited by an elevator input,
spectral decomposition matches the high order system up to the fuselage
bending modes. It does deviate from the high order system at lowv frequencies

for a/ e, although the amplitude is very low in this region.

5-65




AMPLITUDE (dB)

180i .
135~ J

PHASE (DEG)
o

-13%
-180 L L Tt
0.01 Q.1 1.0 10.0
FREQUENCY (RAD/SEC!
FULL ORDER MODEL S8ALANCING
— SPECTRAL DECOMPQSITION _5_ ASYMPTOTIC BALANCING
GRADIENT FIT -—E— PRE-CLEANED TO 5TH ORDER

1
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SECTION 6
HYDRAULIC ACTUATOR EQUATIONS FOR AEROSERVOELASTIC MODELING

6.1 INTRODUCTION
A fly-by-wire (FBW) actuation system has two major tasks: (1) ton convert

an electric command signal into a hydraulic command signal, and (2) to amplify
that signal into a powerful output which can operate on the intended control-
surface load. These tasks are performed by the "secondary" and "pnwer"

actuators respectively.

The secdndary actuator drives the control valve in the powe: actuator
system. Its power requirements are not very important, because the driver
needs only to provide sufficient force to overcome friction, powe:r wvalve flow
forces, and emergency jam-breaking forces. Therefore, both hydianlic and

- electric drive actuator systems are candidate approaches.

On the other hand, in the case of powver actuators, the hydraulic type is
the accepted standard for flight control applications. Its advantages over a
corresponding lightweight electric power actuator (designed with the new
lightweight magnetic materials) are its high force gain and stiffness and its
ease of configuring into redundant systems; e.g., no rotary gear=z which can be

a single point failure.

The power actuator requirements depend on the characteristic nf the load.
As dynamic pressure increases, control-surface hinge moments increase. As
vehicle size increases, control-surface areas increase. At low dynamic
pressure the control surfaces must be capable of large deflections with
relatively high angular velocities. At high dynamic pressure, cnrresponding

small deflections and high stiffness are required.

The power actuator piston is sized by the maximum torque, whirh occurs
during a high-speed run at sea level. Maximum actuator rate of travel is
required at high speed at high altitude. Maximum actuator stroke is defined

by a low-speed landing.
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Aside from the usual specifics of maximum hinge moment and velocity, the
requirements unique to actuation systems for large, high-speed aivrrraft are
related to static and dynamic stiffness, frequency response, availability in

redundant configurations, weight, and relative power consumption.

The ideal actuator characteristics would be linear, without nffset, and
having exactly the prescribed gain. This is a reasonable assumption for
secondary actuators, but primary actuators under load are significantly
nonlinear due to the square-law valve flow characteristic of a hvdraulic
orifice. The equations which yield the flow and pressure functinns of the
selected valve (four-wvay or three-way) should be included in a computer

simulation for comparison with corresponding results for a lineaiized system.

Among the specifications for a linearized model of a power =ervo are
pressure gain and flow gain. The pressure gain is specified on the hasis of
stiffness requirements and of the prescribed position error. The flow gain is
specified on the basis of the prescribed artuator frequency response.
Specifications relative to thresholds and hystereses are determined by
computer simulation, such that their static and dynamic effects are

negligible.

Input signals to the secondary servos originate at various sensors and
are processed by a computeir (analog or digitai). The dynamic charvacteristics
of most sensors are of sufficiently high frequency bandpass, that they can be
neglected, except that typically in accelerometers, a first-order cut-off is
designed for noise attenuation inside the force-balance servo loop. The

effective transfer function of the accelerometer is

1

Ln 1
on.” T, s + 1
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Although the resonant frequency mode of an accelerometer or i1ate gyro is
typically neglected, the real transfer function includes second «ider poles.

This factor

1
s .2 S
= + 2 =) + 1
o Ao

must be included when the sensor is used for controlling a strurtmral mode,
uniess the natural frequency w, is at least one decade above the fiequency of

the structural model.

the aerodynamic flutter frequency requires that the "fluid spring” he as stiff
as possible for a given surface inertia. The bulk modulus of the wvarking
fluid, in combination with associated structural compliances. de«fines the

actuator stiffness.

As with sensors, the dynamic characteristics of secondary =er7os (series
or parallel) are of sufficiently high bandpass that they usually ~an be
neglected. If a_structural mode is to be controlled, then the dvnamirs of the
corresponding servo, up to one decade above the controlled structural mode,

will be included in the model.

6.2 ACTUATOR SYSTEM MODEL

A mechanical schematic used for analysis of a particular single hydraulic

actuator is shown in Figure 6-1. The indicated coordinates repr««ent motion
at (1) the servo input Xy, (2) the valve Xy, (3) the actuator Xp. and (4) the
load X;. The additional coordinates are: (3) Xg to represent the input
system dynamics coupled from the pilot to the servo input through the cable,
(6) X, to represent motion of the feedback linkage pickoff point. and (7) X
to represent the cylinder dynamics against the backup support. 1t is assumed
that the valve module is at the reference position. All coordinates. except
at the valve, are chosen conveniently to represent motion referensed with
respect to the piston. Therefore 8X7/8X, = 1 and &X,/8Xy = -8X, &%, . Gp. the

feedback linkage ratio.
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Figure 6-1. Hydraulic Servo-Dynamic Model

Hydraulic flow from the valve is shown divided into four components
representing (1) piston velocity, (2) fluid compressibility, (3) load-pressure
attenuation and leakage bypass due to load, and (4) bypass flow through the
pressure modulated orifice for stability compensation.

6.2.1 Hydraulic Model
The schematic details of the hydraulic system are shown in Figure 6-2.

It is represented as an equivalent electrical circuit in Figure 6-3. The
pressure elements, analogous to voltage sources, are: (1) Pg, the pressure
source, (2) AP, the load-induced pressure across the act: . itor piston, and

(3) Py and Ppg, the two differential pressures across two small pistons in the
pressure modulating dev