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SECTION 1

INTRODUCTION

In the past, tne effect of structural flexibility of an airplane has been

accounted for by modifying the rigid-body stability derivatives. However,

modern highly maneuverable fighters like F-15, F-16, F-18, and high

performance large transport airplanes, operating at subsonic, transonic, and

supersonic Mach number, have the frequencies of their structural motion

sufficiently reduced by increase in both airplane flexibility and dynamic

pressure. This has caused an ever increasing interaction between

aerodynamics, structural dynamics, flight dynamics, and control disciplines.

This necessitates the development of a theoretical foundation for synthesizing

an aeroservoelastic (ASE) model to be used in the stability ard control (S&C)

analysis.

The objectives of this study are:

" To develop a theoretical foundation for synthesizing an ASE model to
be used in the stability and control analysis of a flexible airplane.

" To provide a better understanding of the equations, underlying
assumptions and interactions among different disciplines from first
principles.

The report is divided into six sections including a summary for the

reader to gain an overall understanding of the subject. The report has

achieved these objectives by accompiishing the following tasks:

Formulation of the equations used in each discipline from first
principles whenever convenient.

" Integration of the equations into a set of governing nonlinear
equations and definition of bounds for the assumptions and
linearization effects associated with each step.

Linearization of the nonlinear equations.

" Provision for time domain and frequency domain representation of the
flexible aircraft.
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" Provision for model order reduction methods that are compatible with
control synthesis.

" Approach for computing the quasi-static and higher order static and
dynamic stability and control (S&C) derivatives of flexible aircraft.

" Method of state space formulation for the design of active controls.

" Adequate documentation for the theoretical formulation and analysis.

Completion of these tasks resulted in:

" Enhancement of the analytical capability to deal with the active
aeroservoelastic (AASE) problem by means of improved models and
computer programs.

" Development of a method for obtaining stability derivatives of a
flexible airplane, such that "rigid-body" techniques can be applied.

" Inclusion of the complete six degrees of freedom motion, the flexible
modes and the actuator dynamics to account for coupling effects.

" Provision for the effect of simplification on the accuracy of the
results.

" Accommodation of different levels of detail and definition of the
structure, aerodynamics and servos, especially during the preliminary
design.

" Provision for means of grid and coordinate transformations used in
different disciplines.

* Provision for different levels of frequency content in calculating the
S&C derivatives (e.g., flexibility effects derived from steady or
unsteady aerodynamics).

Provision for obtaining ASE modeling data suitable for designing
flight control systems.

The scope of the investigation included consideration of flexible

airplanes operating in the low subsonic to high supersonic flight conditions.

Only "clean" configurations are studied; landing, takeoff, ground effects.

stability augmentation are not included. The dynamic equations are developed

for a flexible airplane having arbitrary configuration and undergoing

arbitrary maneuvers, utilizing a hybrid coordinate system to describe the
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motion of the aiiplane. The development of the equations of motion follows

the approach suggested by P. W. Likins in his paper entitled, "Dynamics and

Control of Flexible Space Vehicles" (Reference 1).

Two mathematical models of an elastic airplane are considered; "rigid

model" and "three lumped mass one dimensional model." The "rigid model"

admits no structural deflections from the shape in the reference motion. The

"three lumped mass model" idealizes the aircraft as a collection of linear-

elastically, interconnected, and discrete rigid subbodies.

The notations employed for stability derivatives in Section 3 follow the

standard pattern. A list of airplane stability derivatives with their

meanings is given in Appendix A. Appendix B covers the definition of the

axis systems used in the derivation of equations of motion. Appendix C deals

with the aerodynamic equations in the three degree-of-freedom longitudinal

maneuver. Appendix D contains the listing of computer programs P-107, P-137

and DRSD F-72 for the fixed longitudinal stability derivatives, free

longitudinal stability derivatives, and the fixed and free lateral-

directional flexible stability derivatives, respectively.

Matrix notations and methods have been used in developing and presenting

many equations. A glossary of the terminology used is provided on Page G-1.

1.1 SUMMARY OF DISCIPLINES

The task of the flight control system has been traditionally to provide

control for the vehicle motion with improved stability and handling qualities.

In the past, it was proper to design the system using rigid-body equations of

motion with the stability derivatives adjusted for the effects of structural

flexibility. Lower airframe weight is now made possible by the application of

active control technology to compensate for more structural flexibility.

Because the simply adjusted stability deriv3tives are no longer adequate, it

is necessary to analyze much larger systems of equations to accomplish that

traditional role. Furthermore, with the advent of new technologies aimed at

controlling the structural modes of large flexible airframes, a synergism of
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integrated disciplines is needed to expand the control theory domain to

combine rigid body and flexible body modes.

When control engineers first recognized the need for an expanded control

theory domain, they adopted a more extensive use of linear algebra - vectors

and matrices - the basic analytical tools for structural dynamics. Adoption

of these methods in control theory led naturally to the development of multi-

loop optimization processes which utilize state-space models and which are

covered under the broad discipline known as "modern control theory." Powerful

digital computers are essential tools for this work because of the large

matrix sizes.

The state-space approach is little more than a method of accounting. It

is equally applicable to time-domain (differential equation) or frequency

domain (Fourier/Laplace transform) models of dynamic systems. Some advantages

of state-space models approach are:

" A large number of scalar equations can be expressed as a small number
of vector-matrix equations.

" First-order differential equations, for which mathematical techniques
are highly developed, represent the entire system.

" The linearization of aircraft equations, which are inherently
nonlinear, is straight forward via computation of Jacobians.

" Appropriate reduced-order models can be generated easily.

In order to benefit from the above advantages, in addition to those of

the classical methods, control theory applied to the design of airplanes is

based primarily on linear analyses. Traditionally, rigid-body data in the

form of stability derivatives from the wind-tunnel curves are used to compute

response to small perturbations, the related output data characterizing the

flight dynamics. A set of these linear models, each representing a particular

flight condition, is used to study airplane control in the total flight

envelope. The rigid body input data may also include stability derivative

corrections to represent airframe flexure influences upon the aerodynamic
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forces. This is, however, not sufficient when the dynamics of the lowest

structural mode couple with the short period of the rigid body model.

Similarly, the lowest structural mode will couple with the next higher mode,

ad infinitum; so that the correct model for some handling quality studies must

include the dynamics of rigid body and several structural modes.

In case :he model (designed for flutter analysis) does not include

accurate rigid-body characteristics, a good representation can usually be

obtained by inserting rigid-body coefficients in the appropriate aerodynamic

matrix locations. This approach "estimates" the coupling between the short-

period and the lowest structural mode. If this is not acceptable, then the

original model must include accurate representation of the rigid-body modes.

A large aaroelastic model of the type commonly used for loads or flutter

analyses must be reduced to relatively low order before it can be used in a

practical setting for control system studies; e.g., a real-time flight

simulator. Since structural dynamics models are practically time invariant,

the required simplifications can be done conveniently by exploiting the

fundamental attributes of linear algebra: eigenvalues, eigenvectors, and

superposition. After the aeroelastic model has been reduced to an appropriate

order, it can then be superimposed upon a rigid-body total-force model if

desired. An alternative to the total-force model, sometimes used for "take-

off" or "landing", is one which utilizes time-variable interpolation of

stability derivative increments between sets of stability derivatives. In

most cases, however, linear models with constant coefficients are adequate for

the study of stability and control characteristics, including handling

qualities.

The methods required to develop and evaluate an aeroservoelastic (ASE)

modeling capability necessitate the integration of many disciplines that are

difficult to tie together and hence have been neglected in the early design of

an aircraft. The difficulty of implementation is usually attributable to

technical and organizational reasons. Another obstacle lies in the nature of

the organization including the different disciplines which employ rigid
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compartmentalized boundaries. As a result of these difficulties, there has

been no universally accepted approach to develop a comprehensive ASE

methodology.

Thus, ASE itself must now become a new discipline. It involves nonlinear

partial differential and integral equations which require a great deal of

computer power to solve even simple cases.

The aeroservoelastic equations can be divided into four categories:

. Flexible Airplane Equation: This is a matrix equation in terms of
degrees of freedom that describe the overall motion of the airplane
and its deformation due to flexibility.

• Actuator Equation: This equation relates control command input to a
control surface deflection; i.e., it provides the relation between
control command, actuator force and actuator extension.

. Control System Equation: This is the equation that generates control
commands from the stick force and sensor outputs. The task of the
control system designer is to synthesize physically realizable
equations such that the airplane has the desired characteristics.

. Output Equation (Sensor Equation): This equation relates detected
motions (e.g., acceleration, rate of rotation, angle-of-attack) to the
degrees of freedom in the airplane equation.

f
The chairman of a typical ASE project might assign a sequence of tasks in

terms of the required equations:

Flexible Airplane and Actuator Equations

" Represent the structure of the model in sufficient detail to obtain

the desired objectives.

Write the set of differential equations defining the structural

dynamics of the system.

" Modalize the set of equations, thus reducing its number to selected
dynamic modes.

• Write the expressions for the forcing functions, including the
aerodynamics and actuator dynamics, and convert them to generalized
loads corresponding to the modalized structural model.
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" Convert the model to a state-space format for application of digitally
computed optimal control techniques.

" Reduce the order of the state-space model to one that is sufficiently
accurate and amenable for control-law synthesis and laboratory
simulation.

Actuator and Control System Equation

" Define the control system actuator models and interfaces.

" Define the criteria for an optimal control law.

• Compute the control law.

" Reduce the complexity of the control law to one that is sufficient and
compatible with the original model.

Output Equation

. Transform the output state back to the original coordinate system,
thus locating the sensor positions.

. Evaluate and iterate the improvement obtained (as indicated by the
simplified synthesis model) on more detailed loads and flutter
analysis models.

An overview of the interfaces between the technical disciplines is

presented in Section 1.2. Amplification of detail follows in the subsequent

sections. Topics concerning the control-law equations are omitted, because

the scope of this program is limited to open-loop systems.

1.2 INTEGRATION OF THE TECHNICAL DISCIPLINES

Figure 1-1 is a flowchart of various theoretical topics included in the

documents resulting from this study. The legend points to topics that

comprise the interfaces among the technical disciplines. The development and

flow of information leading to the ASE model is described in the following

paragraphs.

1.2.1 Structural Dynamics

Translation and rotation of each sub-body is described relative to a

hybrid-coordinate system. This set of sub-bodies are defined as discrete

representation conforming to the stiffness and mass distribution of the
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Figure 1-1. Interfaces Between the Technical Disciplines

1-8



flexible body. Mathematical operators allow translational and rotational

displacements, velocities, and accelerations of the set of the force and

moment equations to be represented in matrix form.

The orientations of the coordinate references are selected to minimize

resulting products of inertia; nevertheless, some do exist even in fixed

coordinate systems. These, along with the gyroscopic effects resulting from

rotating coordinate systems, introduce significant nonlinearities.

The aerodynamic forces are generated by the airflow over the deformed

structure which in turn affects the deformation of the structure. This closed

loop is represented by an Arrow 2 from the structural dynamics discipline

into kiie aerodynamics discipline indicating that each individual panel

influences the airflow, and Arrow 1 from the aerodynamics discipline into the

structural discipline representing the aerodynamic force that drives the

deformation activity among the discrete elements of the structural model.

Small perturbations are universally accepted in structural dynamics, thus

permitting linear approximations at an appropriate stage in the procedure.

The corresponding arrow from the structural dynamics discipline into the

aeroelastic modeling discipline represents the structural and aerodynamic

influence coefficients that are used to formulate the basic equation of the

aeroelastic model.

Arrow 4 from the structural dynamics discipline into the flight dynamics

discipline indicates the effects of dynamic pressure, downwash, and others

that produce the flexible-airplane stability derivatives. Under the

traditional approach, this arrow would represent only those influences which

add flexibility increments to the rigid-body stability derivatives.

1.2.2 Aerodynamics

The physical characteristics of the atmosphere and the airflow relative

to the aerodynamic surfaces results in the aerodynamic forces and moments
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applied to the airplane. Conservation principles are applied to determine the

equations of the motion of the fluid particles comprising the airstream.

Various approaches to the formulation of these equations are described in

Section 1.4. The Laplace equations which describe the kinematics of incom-

pressible flow and the Bernoulli's equation, which converts the kinematics in

to pressure distribution over the aerodynamic surfaces yield the resultant

surface loads.

These. loads act on the corresponding individual elements in the discrete

system (structural dynamics model) or at the center of lift and drag on the

airplane surfaces (rigid-body model).

1.2.3 Flight Dynamics

The rigid-body equations of motion are written traditionally ill the

stability coordinate system (moments defined relative to body axes and forces

defined relative to wind axes). These axis systems are defined on page 1-17,

Section 1.3.2. The motion of the airframe is defined in terms of body axes:

translational velocities u, v, and w in the directions of x, y, and z

respectively; and angular velocities p, q, and r about the x, y, and z axes

respectively. Although the reference coordinate system is instantaneously

aligned with the body axes with its origin at the airframe center of gravity,

it does not move with the airframe.

The body axes fixed to the body are related to an inertial coordinate

system fixed to the earth by a sequence of body axis rotations. This

sequence, called the Euler coordinate system, is first in yaw (rotation about

the z axis), then in pitch (rotation about the y axis), and finally in roll

(rotation about the x axis). The corresponding product of the three

transformation matrices defines the Euler coordinate system in to'rms of

trigonometric functions of the three rotation angles: IF (psi). 0- (theta), and

* (phi).
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The wind axes are obtained from the body axes by a sequence of two

rotations: first in pitch with angle "a" about the y axis, and then in yaw

with angle "" about the z axis. The corresponding product of the two

transformation matrices defines the wind coordinate system relative to body

axes in terms of trigonometric functions of c and 0.

Even though the trigonometric functions are nonlinear, small perturbation

angles in sine-cosine products permit linear approximations at an appropriate

stage in the procedure. Flexibility increments due to steady loads have an

influence on the static angle-of-attack and on the sLatic moments, which in

turn influence the stability derivatives. The arrow from the structural

dynamics discipline into the flight dynamics discipline in Figure 1-1

represents these influences. The corresponding stability derivatives and

state-space formulations are used in the linear analysis and synthesis of the

flight control systems. This interface is represented by Arrow 6 from the

flight dynamics discipline into the control system discipline.

Obviously the stability and control requirements determine the control

system design; and, in control-configured vehicles, the control system

capability influences the airframe design. This loop is represented by Arrows

7 and 8 from the flight dynamics discipline into the control system discipline

and visa versa.

The dashed Arrow 5 from the aerodynamics discipline into the flight

dynamics discipline represents the aerodynamic forces which are generated by

the air flowing over the surfaces of the rigid-body model of the airplane.

This interface does not exist under the ASE approach to modeling. Typically,

it would indicate the aerodynamic effects on the rigid-body: dynamic

pressure, downwash, stability derivatives, etc. The stability 41'rivatives are

usually derived from the wind-tunnel data fitted-polynomials.

Arrow 9 from the control system discipline into the flight dvnamics

discipline represents the effect of the control surfaces on ;i,',:ff dynamics.
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Arrow 10 from the flight dynamics discipline into the aeroelastic

modeling discipline is dashed because it does not exist under the ASE approach

to modeling. Under the traditional approach it would represent rigid-body

coefficients in the state-space model where the structural dynamics model does

not contain accurate rigid-body mode representation (short period, phugoid,

etc.).

Arrow 7 (control system requirements) from the flight dynamics discipline

into the control system discipline includes the loads on the actuators.

Usually these loads are small compared with the actuator capability, thus

permitting the actuators to be represented by linear models. There are,

however, designs (e.g., spoiler blowback) where, under heavy load, the

actuator operates in its nonlinear region. Furthermore, with large control

surfaces, the surface dynamics might be reflected back into the control valve,

thus creating a dynamic instability.

1.2.4 Aeroelastic Modeling

The development of a reduced-order aeroelastic model begins with an

intermediate sized model having more modes than those intended for the actual

analysis; then it is reduced in such a manner as to preserve certain residual

effects of the eliminated modes. The intermediate model results from

modalizing and truncating a larger model.

The initial equations define the larger system in terms of the structural

composition and the aerodynamic forces which act upon it. The structural part

of the model represents all main airframe components (wing, fuselage, tail, et

cetera). Discrete elements of these airframe parts are represented by Arrow 3

from the structural dynamics discipline into the aeroelastic modeling

discipline.

Standard procedures, using small perturbation dynamics lean to the linear

style space equation. Its state includes the rigid body variahlos. control

surface deflections, or gust variables as well as structur l m-,,- 4hapes.
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As indicated by Arrows 3 and 11 in Figure 1-1, elements in the equations

of dynamics are obtained mainly from two of the technical disciplines:

Mathematical models representing structural deflections and total airframe

motions are from the structural dynamics discipline, and models lepresenting

actuator elongations and forces are from the control systems discipline. If

the traditional approach is used, then rigid-body elements of the state vector

(e.g., the six degrees of freedom of the c.g. - incremental pitch angle, pitch

rate, angle-of-attack, air speed) might be obtained from the flight dynamics

disciplines. The influence coefficient matrices, Aerodynamic Influence

Coefficient (AIC) and Structural Influence Coefficient (SIC), arp from the

aero and structural dynamics disciplines. Likewise the mass and stiffness

matrices and the modalization matrices are from the structural dynamics

discipline.

Arrow 11 from the coitrol system discipline to the aeroelastic modeling

discipline represents either or both of two types of interface: actuator

displacements and actuator forces. Where the actuator loading is negligible

as compared to its capability, the displacement transfer function is used; but

where the surface dynamics significantly load the actuator, the actuator-force

interface is used.

1.3 SUMMARY OF COORDINATE SYSTEM METHODS

The motion of a body is described by considering the trans-ation of its

center of mass under the sum of the forces acting on the body and the rotation

about its center of mass under the sum of the moments. Traditionally, the

motion of a flexible airplane, under suitable assumptions, can be defined as

the translation and rotation of an axis system for inertial reference, and the

deformations relative to that inertial reference. Current assumptions are:

the deformations must be relatively small and, if the overall motints of the

airplane are large, they must be relatively slow compared to the first natural

structural frequency.

The airframe, in an inertial reference system, moves under the influence

of total aerodynamic force and moment, and the force of gravity, as if it were
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rigidized in its zero external load shape (no elastic deformation). For the

deformations relative to the inertial reference, the small perturbation theory

equations for stability and flutter apply.

Thus, the equations of motion can be categorized as follows:

Maneuvering equations

These equations relate the total aerodynamic force and moment on the
flexible airplane, and the force of gravity, to the overall motion of
the airplane, defined by the inertial reference. The flexibility
effects will include that of a maneuver load alleviation system, if
present.

Stability equations

These equations describe the small deflections of the aitplane
relative to the inertial reference. They cover stability in the
flight mechanics sense and flutter. The effects of stability
augmentation, flutter suppression, gust load alleviation, and ride
control are included.

1.3.1 Hybrid Coordinates

The complete dynamic equations of motion for flexible aircraft (of

arbitrary configuration undergoing arbitrary motion and experiencing an

arbitrary load) using hybrid-coordinate system are derived in Section 2. The

approach utilizes two reference frames: one inertial and one vehicle fixed.

This permits the assumption of small elastic deformation while allowing large

vehicle motion. Thus, the total and flexible body dynamics are linear in

structural deformation variables, but nonlinear in rotational parameters,

e.g., e and w.

1.3.1.1 The Hybrid-Coordinate Assumptions

The use of hybrid coordinates begins with the following asslmptions

relative to Figure 2-3.

The aircraft, Body A, is composed of finite rigid sub-bodies. As, that
are interconnected by linearly elastic members. Therefoie. the
deflection of any of these elastic members yields a restoring force
that is proportional only to the corresponding deflection (K is
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constant). Thus, q is limited to deflections which do not produce any
cross-coupling stiffness effects due to the geometry changes.

The aircraft, Body A, is attached to a massless Body B for all six
degrees of freedom at one Point Q. The sum of the loads at Q is zero.
This auxiliary relationship is used to define the stiffness matrix of
the flexible aircraft. Prior to deformation, when us ard 0 are zero,
and origin of Body B, Point 0, is coincident with the vehicle mass
center.

The overall matrix equations of motion are written in terms of the
sub-body deformations. However, the coefficients of these equations
are in terms of the overall vehicle motion and the direction cosine
matrices all of which are also unknown. Thus, 3n +9 additional
auxiliary equations are required to uniquely describe the matrix
equations of motion.

1.3.1.2 Review of Hybrid-Coordinate Dynamic Equations Development

The work by P. W. Likins for flexible spacecraft was rederived for an

aircraft of arbitrary configuration undergoing an arbitrary maneuez using a

hybrid-coordinate system. Vector bases are defined relative to an inertially

fixed reference frame, the vehicle, and each rigid subbody. Direction cosine

matrices are defined describing the rotation of the vector bases to each

other. Vehicle deformation is defined by the motion of the rigid subbodies

relative to the vehicle center of mass. The motion of each subbodv is

described as a series of vectors which are resolved relative to the

appropriate vector bases.

Special operators are defined to facilitate the matrix algebra necessary

in using a hybrid-coordinate system. Translational vehicle deformation is

considered first. The motion of the vehicle mass center relative to the

massless body reference point is described in terms of the rigid subbody

translational deformations. Separate Newton-Euler equations of motion are

written for translation and rotation for each rigid subbody in tems of the

hybrid-coordinates. The resulting equations are combined into two' sets of 3n

equations, which are then written as one matrix equation of ordei 61). The

Newton-Euler equations are then developed for the vehicle, which yields two

sets of three equations each; for translation and rotation.
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These 6n+6 equations have 9n+15 unknowns. Auxiliary equations are

developed to uniquely specify the problem. 6n equations describe the n

subbody direction cosines matrices as a function of the subbody'' rotational

deformation. Six more equations result from the vehicle's rotation: three

associated with defining the direction cosine matrix and three defining

rotational as a function of rotational velocity. For a free-free vehicle, the

vehicle stiffness matrix allows the motion of the massless Body B to be

described in terms of the deformation variables. This allows the deformation

variables to be reduced to 6n-6. The remaining three degrees-of-fteedom

result from the choice of hybrid-coordinates: The vector base assoriated with

the massless body is defined to always be coincident with the vehicle vector

base.

1.3.1.3 Linearization of Hybrid-Coordinate Dynamic Equations

All time dependent variables are assumed to be composed of quasi-static

and perturbation components. The quasi-static component allows for large

amplitude, but slowly time varying deformations. The perturbation component

allows for small amplitude rapid fluctuations about the quasi-static solution.

All variables are expressed in terms of their quasi-static and

perturbation components. The resulting equations are expanded. All purely

quasi-static terms are collected into a set of quasi-static equations. All

first order perturbation terms are collected into a set of perturbation

equations. All higher order perturbation term- are assumed negligible. The

resulting quasi-static equations are non-linear zero order (with re:,ect to

time). The resulting perturbation equation is linear second order (with

respect to the perturbation variables).

1.3.1.4 Inclusion of Aerodynamic and Gravitational Loads

For the aerodynamic loads, a deformable panel method is assumed that

allows for large vehicle deformation. The deformation of the panpl-' is a

function of the deformation of rigid subbodies. Aerodynamic loads are assumed

to act normal to the panel surface at the panel load points and at" functions

of the angle-of-attack at the panel normal wash points. The specifi
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relationship between load and angle-of-attack is discussed in Sertion 4. A

vector base is defined at each load point and each normal wash point. The

orientation of these vector bases relative to the vehicle's vector base is

derived as a function of the vehicle deformation. The angle-of-attack is

defined as the angle between the relative velocity and the plane of the panel

at the normal wash point.

The results are linearized using the above described procedute. The

perturbation components are highly non-linear. To facilitate th( description

of the perturbation angle-of-attack, an additional vector base is defined that

has one base coincident with the quasi-static relative velocity, and one base

remaining in the plane of the panel. Perturbation aerodynamic loads become

linear functions of the perturbation angle-of-attack, which become a linear

function of the perturbation relative velocity, which become a linear function

of the structural deformations.

Since gravitational acceleration acts in a constant direction with

respect to the inertial vector base, gravitational loads are directly

implemented into the hybrid-coordinate dynamic equations.

1.3.2 Stability Coordinates

The equations of motion commonly used for analysis of transient maneuvers

involving all six degrees of freedom of the rigid airplane, employ four

different axes systems; these axes systems are designated ground axes, body

axes, stability axes and wind axes. The definition of these axes and their

functions are as follows:

Ground Axes - Ground axes are a set of orthogonal axes fixed with
respect to the ground. The z axis is coincident with th' weight
vector. The x and y axes are arbitrary but the equationz ivr

simplified if either the x and y axis is chosen to coin'ido with the
horizontal component of the wind relative to the ground. (uotind axes
are required to define components of weight and ground winds in the
other axes systems.
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Body Axes - Body axes are a set of orthogonal axes through the
airplane c.g. which remain fixed relative to the body. The y axis is
chosen normal to the plane of symmetry (for most airplanes there is a
plane of symmetry and this plane is designated the xz plane). The x
axis is usually the horizontal reference axis. The moment equations
are in the body axes system because inertia properties remain fixed
with respect to these axes.

" Stability Axes System - Stability axes system is nothing but a special
case of a body fixed system where the orientation with respect to the
body has been selected with respect to a steady state flight condi-
tion. With origin at the center of gravity, x-axis points in to the
direction of the relative wind. y-axis is orthogonal to the x-axis
and z axis is defined in such a manner that right hand rule holds.

" Wind Axes - Wind axes are a set of orthogonal axes through the
airplane c.g., the z axis of which is coincident with the z axis of
the stability axis system. The x axis is coincident with the airplane
velocity vector. Again, the velocity is the airplane velocity
relative to the air. The force equations are simplest when written in
the wind axes system.

The relationships between ground, body, stability, and wind axes, are

shown in Figure 1-2.

In each set of axes, the x, y, z axes are orthogonal; i.e, mutually

perpendicular. One set of axes can be made to coincide with another set of

axes by rotating through Euler angles. Since the axes about which Euler

rotations take place are not orthogonal, the order in which the rotations take

place must be specified. The Euler angles and their order for transferring

from one axis system to another are specified in Table 1-1.

Vector components in one axis system can be related to vector components

in another system through the use of transformation matrices which are

functions of the Euler angles. Transformation matrices applicable to the four

axes systems used in transient maneuver loads analysis are pre:nted below:
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TABLE 1-1. RELATION BETWEEN EULER ANGLES AND AXES SYSTEMS

Rotating

Order of Rotation
From To Rotation Euler Angle Axis

Wind Axes Stability Axes 1 -1 z Wind = z Stab

Stability Axes Wind Axes 1 a z Wind = z Stab

Stability Axes Body Axes 1 -t y Stab = y Body

Body Axes Stability Axes 1 a y Stab = y Body

Wind Axes Body Axes 1 -0 z Wind = z Stab
2 -C y Stab = y Body

Body Axes Wind Axes 1 = y Stab = y Body
2 a z Wind = z Stab

Ground Axes Body Axes 1 I zG
2 e Y'G
3 x G = xB

Body Axes Ground Axes 1 -# ("G = xB
2 -, Y'G
3 - ZG

Transformation Matrices

" Wind Axes to Stability Axes

j(xe' =F[cos 0 -sin 0 01 j(xw

Ys = sin 0 cos 1 0]z s  0 0 1 zW )

" Stability Axes to Wind Axes

Yw} = [cos 0 sin 0 01 fYAs
w sin 0 z
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* Stability Axes to Body Axes

(xBl =co [CS 0 -sin al (x5

B [0 1 0 J SzB) Lin a 0 Cos cc zs

* Body Axes to Stability Axes

jrx~ rcos a 0 sin (z] (X B I
zs  L-sin o: cos0 CzB

" Wind Axes to Body Axes

B sin cos8 01
zsn =[ cos 8 -sin o sin 1 Cos

" Body Axes to Wind Axes

{ xw = [ Cos 1 Cos a sin 8 cos 8 sin a' (XBI
Yw= [-sin 8C0 co COS co -sin 8 sin J 1YB)

z w  L -sin cz 0 C c c z

" Ground Axes to Body Axes

.Cos IfCos e) sin Tf cos E9 sin9
XB cos T sin e sin * cos T cos 0 cos e sin * xG

YB -sin C os9 +sin T sin E sinY
ZB [sin T si] sin l' sin E cos cos e cos G

L+cos ' sin 9 cos * -cos ' sin

" Euler Axes (zG, Y'G, x"G) to Body Axes

o-sine

= L o os e) sin
ll= 0 -sin cos e) cos

" Body Axes to Euler Axes (x"G, ylG, Zg)

I *'= [1 tan 9 sin tan G cos * p (P'

=Cos 0 -sin

sec 0 sin * sec e cos *J lrJ

1-21



1.4 CONTRIBUTIONS FROM THE TECHNICAL DISCIPLINES

In the following, development of each discipline is discussed as it

evolved from first principles. The goal is to state clearly the simplifying

assumptions required to resolve the complete nonlinear system into a set of

equations that satisfy a predefined level of accuracy in the computation of

flexible airplane characteristics.

The formulation of equations for each discipline leads to a statement of

the complete nonlinear equations. Nonlinear terms are resolved without

explicit line, surface or volume integrals. After linearization, the unsteady

aerodynamics is converted from frequency to time domain representation. The

quasi-static flexible aircraft stability and control derivatives, with the

option of including higher order terms, are obtained from the linearized

equations.

Equations from First Principles

The basic principles governing the dynamics equations of a flexible

airplane, the equations that lead to a formulation of the flexibility

characteristics, and the forcing functions are discussed.

Analyses concerning the motion of a continuous system begin with the

statement of four basic physical laws: conservation of matter, Newton's second

law of motion, first law of thermodynamics, and second law of thermodynamics.

Additional equations such as equation of state, etc., are necessary to

form a complete set upon which the complete analysis of airplane dynamics in

particular, and dynamics in general, may be constructed.

The formalism of describing a dynamic system in the lumperl parameter

representation is most demanding when the system contains body and inertially

fixed reference coordinates. It is identified as the hybrid coordinate

approach. The key to describing dynamic systems is the retention of the full

nonlinear terms during the development of the equations. Thi- ii,,ach
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permits the complete accounting of the second order terms during the

linearizing process.

Nonlinear terms are retained in the equations for those disciplines that

successfully resolve the volume and surface integrals from first principles

without the need to linearize. There are closed-form solutions of some force

terms, such as unsteady aerodynamics, which require the dropping of the

nonlinear terms early in the development from first principles.

The following sections outline the procedures that were followed in

developing the aeroservoelastic equations for synthesizing the ASE model. The

presentation is based on the assumption that the external forces in Newton's

second law of motion are only functions of the state variables, their

derivatives and history. This assumption permits the independent derivation

of the internal structural forces, the aerodynamic forces, the thrust and drag

forces, and the control surface actuator forces.

The governing equations for a flexible vehicle can be formulated by

Newtonian methods using a framework advanced by Likins. A feature of the

approach which sets it apart from many approaches in current use is the

introduction of two reference frames: one inertial and one vehicle fixed.

This permits the assumption of small elastic deformations while allowing large

vehicle motions. The resulting equations are nonlinear. Several of the

coefficient matrices multiplying the displacement q and its derivatives in the

rotational equation are functions of rigid body rotation w and &. Also since

the direction cosine matrix H is nonlinear, the translational equations are

nonlinear, as are the kinematical equations. The equations are, however,

linear in the deformation variables. This permits modal descriptions of q

which will be important for subsequent coordinate reductions.

The nonlinearities in the structural dynamics are mainly d it to the

interaction of flexible dynamics and the rotational motion. Tf ,ot.tional

rates are small, these nonlinearities can be neglected. F , fl It-, I

development (i.e., flutter, stability derivatives, state spac: ,-l,,alions)

these nonlinear terms are neglected.
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Grid and Coordinate Transformations

Several coordinate systems are generated as a matter of convenience and

expediency. In unsteady aerodynamics, the downwash is measured at an aft

collocation point on the aerodynamic panel chord while the aerodynamic force

is placed at the quarter chord or centroid of the panel. The stiffness grid

is usually different from these and the mass grid. To compound the problem,

different disciplines view the analysis grid and the number and type of

degrees of freedom differently. The solution to the problem of different

grids is called grid transformations.

There are two types of grid transformation procedures commonly used. The

first is based on a simple interpolation procedure. This procedure is based

on a rigid plate of 3 or 4 points for surface interpolations. The 3 point

plate is a unique solution while the four point plate (washed) is really a

sequence of two point interpolations.

The second type is a multi-interpolation where a beam, plate, etc., is

used to interpolate for points once the deflection of the plate (here it is a

continuous plate) is known at all the known grid points. This is called the

spline technique and there are many numerical procedures which do this type of

interpolation.

The primary difference between the first and second type of grid

transformation is the number of nonzero elements of the transformation matrix.

When applied to an actual vehicle, the developed dynamic equations would

result in hundreds of second-order scalar differential equations which are

nonlinear and highly coupled. If these equations are to be of any practical

value to synthesizing the aeroservoelastic model for use in the ,Ontrols

analysis, transformations must be generated that will provide some telief by

uncoupling the equations and reducing the number of differential -quations.
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There are two distinct and different objectives that will drive the

resolution of the equations of motion into manageable sets. The first is the

reduction of the equations of motion into a set of linear, constant

coefficient differential equations that may be used in the flight control

synthesis and linear analysis.

The second is the reduction of the full set of nonlinear equations to a

form that is suitable for time domain solutions. Within this set are two

other objectives, time solutions in real time (like motion simulators), and

time solutions in non-real time.

The practical mechanization constraints associated with the final use of

the set of equations will force the analyst to estimate the most significant

terms. Currently there is no one transformation that will address the best

solution of all possible numerical forms that the full nonlinear equations

will assume.

The objective of the full nonlinear system of equations, then, is not so

much to include all nonlinear terms in the equations for analysis and time

domain solutions, but to offer a reference to the analyst for numerically

evaluating the consequences of one transformation over another. or to

establish the domain of application for a transformation or linearizing

procedure.

1.4.1 Structural Modeling

The step from a rigid airplane to a flexible airplane is made by the

introduction of the flexibility of the structure depicted symbolically in

Figure 1-3. The flexibility of a given structure is defined by means of

structural influence coefficient (SIC) or a stiffness matrix.

1.4.1.1 Simplified Structural Model

The Simplified Structural Modeling Program (SSMP) develos',d ,rider Task 2

of this contract is an interactive program with the sole pmp,,' i f helping

the user create a simplified finite element model of an aitcraff
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configuration. The model will be analyzed using the ASTROS program. All

interactive input is entered in an "input steering file" that can be re-run in

a batch mode enabling the user to edit the FEM model while rerunning the

program. When used under the Modeling Flexible Aircraft Program operating

system, the SSM program will usually be operated in the batch mode.

Figure 1-4 shows a flowchart of program interaction. Aircraft

configurations are described by several components (i.e., wing, fuselage,

engine, etc.). The planform geometry and cross-sectional shape are defined in

either the SSMP or the CDMS program. The grid points for each component are

also defined in either one of these programs. The user must then define how

each component is connected to the others. He must also define the structural

and mass properties of each component. Information for running CADS is

entered and the output of CADS is processed to get the data into the correct

format for ASTROS. The executive control deck for ASTROS is then defined and

ASTROS is run. ASTROS input and output may be plotted using CADS, hut the

documentation for doing this is not described under this contract.

1.4.1.2 Structural Static Analysis

In the case of the flexibility matrix the basic equation is:

[u) = [E] (P)

where:

[u) = structural degrees of freedom: discrete structural deflection,
translations and rotations

(P) = concentrated external forces and moments corresponding to the
structural degrees of freedom

rE] = a symmetric matrix of structural influence coefficien,°:.

Although there are ways to define an "effective" flexibilitv matrix for a

free structure, when the flexibility matrix is used, it i:: m- , i,ticable to

define it for a structure that is supported in a statical1y d--',iiate way.
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!* CDMS GEOMETRY *
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INPUT !

I I CDMS GEOMETRY INTERFACE
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CONNECTION AND !<---! ---------------------------------

STRUCTURAL DATA
! ! INPUT I !

##################

# FEM DATA SET # ! ! SSM PROGRAM
##################

!**** ** * ***

* * EXISTING PROGRAM

DEFINE CASE *
(DATA SET, FUEL)

ADD CADS EXEC I + + CADS PLOT CAPABILITY

......... *****..........

: DIRECT * * + GRAPHICS +
: INPUT :-->* CADS *-->+ GEOMETRY +
: ........ * * CHECK +

ADD ASTROS EXEC. I
DATA IN ASTROS FORMAT!

! *

• ASTROS V PLOT OUTPUT +
• * + + +

CONTINUE

Figure 1-4. Simplified Structural Model Program Flouwhatt
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The deflections are then measured relative to a structural reference defined

by the support.

In the case of the stiffness matrix the basic equation is:

[K] (u) = {P)

The stiffness matrix, [K], can be defined for either a supported structure or

an unsupported structure. In the case of the unsupported structure, the rank

of [K] is its size minus the number of rigid body degrees of freedom. In

contrast, for a supported structure, [E] and [K] are positive definite, in

which case [K] is the inverse of [E), and K has full rank.

Two main approaches to modeling the structure for computing [EJ or [K]

are recognized: finite element theory and simple beam theory. In the finite

element approach the structure is divided into many small structural elements,

that interact with each other at the nodes of a structural grid where internal

and external forces are defined, and where deflections are continuous. In the

simple beam approach a lifting surface, or a fuselage, is represented by a

simple beam with bending flexibility in two perpendicular planes, and

torsional flexibility.

With the advent of powerful finite element programs (e.g.. NASTRAN),

finite element models have become commonplace. They are needed for accurate

prediction of the internal stresses. The finite element model is also used

for the calculation of [E] or [K]. Typically, a finite element model for a

complete airplane contains a thousand or more finite elements and associated

degrees of freedom; usually more degrees of freedom than are practical from a

dynamics analysis point of view. Reduction of the number of ztiir,tral

degrees of freedom number is the first model reduction the aiiplhne dynamicist

must apply. It should be noted that in the case of a finite PI mon, model,

the dynamicist chooses as his reduced set of degrees of freedom m,,tly

translational deflections along the major axes of the str,,t,,, : on a

wing, perpendicular to the wing suLface.
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In the early design stages, a finite element model may not be available.

In that case major airplane components are idealized -s beams with a bending

stiffness defined by EI and a torsion stiffness defined by GJ. The resulting

degrees of freedom are translational and rotational deflections at selected

nodes on the beam3. Typically, on a wing, a structural axis is defined and

the degrees of freedom are: translations perpendicular to the wing surface and

in the plane of the wing perpendicular to the structural axis, and rotations

about the structural axis. The number of degrees of freedom associated with a

simple beam model is usually small enough to be acceptable for dynamic

analyses.

Both approaches to structural modeling assume a linear stress strain

relation when the airplane is represented in a normal flying condition. In

addition, deformations are assumed to be sufficiently small, such that one

geometry defines the structural characteristics under all load conditions.

This means that in the above equation, rE] and [K] are independent of fu}.

(Nonlinear force-deflection relations are considered only for crash

conditions).

The structural analysis consists of obtaining internal loads, internal

stresses and displacements for a set of external loads. To obtai-n these in a

finite element model, which consists of many discrete finite element members

representing the load carrying structure, the principle of minimum value of

the total potential energy is used to obtain basic displacement equations.

This principle may be stated as follows:

Of all the sets of displacements, that satisfy prescribed constraint
conditions, the correct set is that which makes the total potential
energy a minimum.

The total potential energy consists of external work and inrnal strain

energy.

PI = Uintcrnal - Wexternal
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For any linear system the total potential energy for one clement(i) can

be expressed in terms of displacement degrees of freedom associated with that

element as:

1

pIj = , {uf T [k] (u) + (u]T (q) (1.1)

Where (u) displacement matrix,[KI is the stiffness matrix and q is the

external load. PIi is expressed in a convenient local coordinate system.

The strain energy comprises potential due to thermal effects and

distributed loads applied to the elements.

The following assumptions are made to obtain Equation (1.1).

. The material properties are assumed to produce linear and elastic
stress-strain behavior.

. The "small" displacement theory is applied.

. The external loads do not change directions while undergoing

displacements.

• The superposition principle is valid throughout the analysis.

The adequacy of these assumptions have been tested by deflection analyses

of typical military aircraft to limit load.

Equation (1.1) can be transformed into a reference coordinate system

using transformation matrix it].

(u) = [t] (ur) (1.2)

where furl is matrix of displacements at the reference coordinal- '.vstem.
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Substituting Equation (1.2) into (1.1) yields:

Pi. -1 (u )T I ]T [ ] t]fr + u )T i ]T (q1 2 T +]Pi = g fur) T (ti [kj [ti fur) + ur} T (tJ fq

The total potential energy of the complete system of M elements and N

degrees of freedoms can be written as follows:

M

PI 1 furT Ifur
i=1

M T T N T
+ r furl [t]  fq) - r fur) IP (1.3)

i=l j=1

Where (P) is a vector of concentrated applied loads and moments.

Equation (1.3) can be reduced to the following form:

p, =1 (UT [K] (U) _ (U)T {O}

Variations of PI with respect to the reference degrees of freedom will

yield:

P, = U)T f(K (U) - (0)) = 0 (1.4)

From Equation (1.4), the following well known finite element equation is

obtained for the unconstrained structure.

(K] (U) = (Q)

After application of prescribed displacement boundary condifinns, the

-constrained stiffness matrix is inverted and post-multiplied by the external

load vector to obtain unknown displacements as follows.
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(Ua} = [Kaal - (Oa - Kab (Ub}I (1.5)

Where

[Ua) is a vector of unknown displacements.

[Kaa] is a constrained stiffness matrix.

Element internal stresses and forces can be obtained from (Ua}.

1.4.1.3 Mass Distribution

In the classical analysis of beams and plates, the mass is considered to

be a continuous quantity, expressable in term of pounds per unit length or

pounds per unit area. In the early analyses of practical airplane structures

the mass was still considered a continuous quantity. In the typical

Lagrange's equations/Rayleigh-Ritz approach to vibration analysis the product

if assumed deflection shapes and the mass was integrated along the span of a

wing. With the advent of the digital computer around 1950, new computational

techniques emerged, based on matrix notation and matrix algebra. The

description of airplane structures became discretized: the deformation is

defined only at discrete points. The flexibility of the structure is defined

by force-deflection relations only at discrete points. A natural step was to

define the mass at the same discrete points. Although there is a mathematical

approach to replacing a continuous mass distribution by discrete (lumped)

masses at these points, usually a heuristic approach is followed. The

heuristic approach is justified, because the accuracy implied by the

mathematical approach exceeds the accuracy of the data available.

Although for the vibration analysis it is necessary that the mass

characteristics of the structure are described by a matrix bas=,d on the same

degrees of freedom as the structural model, it is often conveni-nt to do the

basic mass discretization in a different grid system. This is P!7pecially the

case when a finite element model is used. To avoid the need of lhiig to carry

along moments of inertia of the discrete masses, the mass riI i. ,1ther

dense. To avoid computational singularities, there must be a' -.i:, as many
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mass points as there are structural grid points. By expressing the deflection

of the mass points in terms of the deflections at the structural grid points,

a transformation is obtained that generates a mass matrix consistent with the

structural grid.

In the case of a simple beam model, the same mass discretization may be

used as for a finite element model. In early design stages, however, it may

be more expedient to define the mass, chordwise center of mass position, and

radius of gyration of strips of the wing, in a direction perpendicular to the

beam.

In addition to the distributed masses, discussed so far, large masses of

"rigid" bodies are recognized. A rigid body, in this context, is a body, such

as an engine, or a store, of which its own lowest natural frequency is

considerably higher than the highest frequency of interest in the flight

dynamics analysis to be performed. Such rigid bodies are represented by their

total mass, center of mass position and radii of gyration about three axes.

Correspondingly, in the structural degrees of freedom, such masses are given

three translational and three rotational degrees of freedom.

With the subset of displacement equations established in its particular

reference frame in accordance with Equation (1.5), it can be related to other

subsets, which might be rotating, by use of the hybrid coordinate approach.

1.4.1.4 Dynamic Degrees-of-Freedom

The usual approach to a flutter analysis is that the dynamics equations

are formulated in dynamics degrees of freedom. The dynamics degrees of

freedom are discrete displacements in which the flexibility of the airplane

can be expressed by a suitable reduction of the stiffness mattii de, ived for

all structural degrees of freedom. Typically the number of dynamirt: degrees

of freedom for half an airplane is 100 to 500. The structural degrees of

freedom may number several thousand. The dynamics degrees of f,"edom are used

in a vibration analysis to determine the lowest 10 to 50 nt,,,I llfquencies

and natural modes. The natural modes are used to "modaliz" ti,. 1i,,tter
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equation, i.e., the number of degrees of freedom is reduced from the original

IO to 50 riscreute dis-lacements to 1O to 50 modal coefficients. T 2

solution of the flutter equation at a selected speed consists of damping and

frequency of in-flight vibration modes and associated eigenvectors of modal

coefficients. The modal coefficients determine how much of each vibration

mode participates in the flutter solution.

Because flutter may occur at frequencies considerably above the lowest

one or two vibration modes, the modalized flutter equation must include

several modes above the lowest structural modes. For control system

synthesis, however, a reduced order model may be sufficient. Obviously, the

control system designer would like to reduce the number of degrees of freedom;

he must include to a minimum and include only those modes that affect his

design.

1.4.2 Aerodynamics

The emphasis in this study is on low angle-of-attack, high dynamic

pressure flight, the region of greatest aeroelastic effect. The scope of the

work includes methodology applicable to Mach numbers from low subsonic to high

supersonic, and dynamic pressures up to the "never exceed" speed.

Fighter aircraft have experienced stability and control problems in the

high dynamic pressure range due to the fading of controls effectiveness as

aeroelastic reversal approached with increasing equivalent airspeed. This

phenomenon can be accompanied by an opposite effect: increased sensitivity to

disturbances, measured by lift curve slope amplification as surface divergence

simultaneously approaches. So severe can problems associated with these

phenomena become that even robust controls techniques may be ineffective.

This situation has been exacerbated by the use of aerodynamic methods that did

not correctly model the physical flow.

Section 4 discusses currently employed aerodynamic method',Jgy. This

should make the effect of aerodynamics on static aeroelastiril :,,,,I stability

derivatives clearer. Improved understanding should permit ont,, -.ystem
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designers and aeroelasticians to jointly make more efficient solutions to

control system-structural design problems and eftect these earliet in the

aircraft design cycle.

1.4.3 Control Systems

Except for the use of nonlinear equations in simulations, mwzt control

theory applications (modern and classical) are restricted to lineai systems.

This is justified, because a linearized representation of system dynamics can

be considered to be a superimposed small amplitude part of a more accurate

model which would include the important nonlinearities of the system. For

example, an airplane flying through changing flight conditions is described

mathematically by a set of nonlinear aerodynamic curves from which linear

stability derivatives are normally derived. A simulation of the exact

equations would not include the stability derivatives per se; nevertheless,

the derivatives would be represented in the simulation by the slopes of the

aerodynamic curves. The resultant dynamics of the simulation would closely

approximate those of a linear model, for small motions.

The nonlinear equations of motion can be written as a single vector

differential equation

x= f(x(t), u(t))

where x(t) is the state vector, and u(t) is the control vector. The aircraft

is trimmed in unaccelerated flight if the state is unchanging, such that:

2 = f!o(t), Uo(t))

Perturbations from this trimmed condition are characterized by q 1inear model

which is obtained by a Taylor series expansion of the original no"nlinear

equation about the trimmed state values. The linearized dynamic equation is:

dx(t) = A(t) dx(t) + B(t) du(t)
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where A(t) and B(t) are Jacobian matrices of derivatives evaluated at the trim

conditiron. All elements nf these Jacobian matrices are real scalar variables.

In general, the matrices are time varying; but, in keeping with the

assumption that the aircraft is trimmed, the matrices are usually assumed to

be constant (over the time scale of the dynamics). Any incremental equations

of the above form will hereafter be written with the increment indicator d

deleted.

The desired input from the aerodynamic and structural disciplines to t1'e

control system engineer are the A and B matrices for all trim conditions

representative of the entire flight envelope. If relaxed static stability

(RSS) applications are intended, then variations in speed/altitude/weight

conditions are expanded to include variations in center-of-gravity conditions

to be used in the control law synthesis process.

The elements of the state vector x include all of the variables of the

flexible model and of the control system, including the actuators and sensors.

Those of the control vector u contain all of the control commands. If the

model is reduced from a larger one, then the extraneous variables of the state

vector are removed and the A and B matrices are modified accordingly.

Control Law Synthesis

Although the feedback system, per se, is not a part of the basic

airplane, the nature of the control laws in a modern airplane has an important

impact on the airframe configuration design.

For example, an airplane with extreme relaxed static stability and an

automatic control system can fly successfully with the center of gravity as

far aft as 60 percent mean aerodynamic chord (mac), thus permitting a very

small tail. The specifications require that the longitudinal rinrtol

characteristics fall within certain demanding specified bounda, ior on the

appropriate plots: (1) short-period and phugoid frequency ind 1;~mpig, (2)
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column-force gradients, and (3) blended normal-acceleration/pitch-rate

response histories.

The math model is the state-space equation of the system, including servo

and sensor dynamics. A reference eigenstructure (prescribed eigenvalues and

eigenvectors) is used for each flight condition to specify the control law by

application of the modern control technique called eigenstructure placement.

A reference-model for each baseline flight condiLion (the one ith the c.g. at

25 percent C) is used to define the desired eigenstructure for each of the

other corresponding c.g. conditions.

The control math model in state-space form is shown in Figure 5-1. With

the feedback loop closed, the control synthesis method produces the set of

feedback gains. The closed-loop state-space equation becomes:

= (A + BFC) x

The eigenstructure placement procedure produces the feedback matrix F for

each c.g. condition, such that the eigenstructure of the matrix (A + BFC)

approximates that of the corresponding A for each baseline condition.

The feedback gains are adjusted to compensate for the nonlinearities in

the mechanical part of the control system which is designed to match feel

characteristics to the flight condition.

After obtaining the feedback control laws, the synthesis procedure closes

the feed-forward paths (Figure 5-1) to obtain a force-gradient transfer

function. This is combined with the feel-spring characteristics to obtain the

resulting set of feed-forward gains.

Servo and Sensor Dynamics

The behavior of a typical single-stage hydraulic servo op-,,1tiig within

its linear range (lightly loaded) 'an be represented as ha,,irW , fi,st-order-

lag response characteristic. Although the transfer function (if ; p,,wer servo
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and its corresponding input series servo should be expected to have real

poles, they are qometimes coupled such as to yield a complex pair of poles

(damping less than critical). Representation of the higher frequency

characteristics (second-order) of electro-hydraulic valves are typically

neglected, but might be required when used to control structural modes.

The frequency characteristic of an accelerometer is typically first-order

because of a first-order filter inside a high-bandpass force-balancing servo

loop which attenuates the response of the seismic element. The servo loop

constrains the seismic element within a very small range of displacement. The

seismic natural frequency can be neglected because it is well above any of the

control modes, including those for controlling structural vibrations.

Rate gyros are second-order at frequencies that can be neglected when

controlling the lower structural modes, but must be included for the higher

ones.

Actuator Force Equations

The structural dynamics of a control surface couples into the main

structure as a function of the applied actuator forces. If the surface is

comparatively flexible, then special equations which reflect tile servo load
must be represented as:

Fa = Hc(s) xc - Ha (s) xa

where Fa is the actuator force; xa is the elongation of the actuator; and xc

is the commanded elongation. The above expression takes into account all

static and dynamic loads applied by the actuator to the connecting points

between the airframe and the control surface. These points at' included in

the state vector of the structural model.

The computation of the above force includes effects due t, ,he hydraulic

flow and pressure characteristics of the control valve and -f ill 1,1,1d

stability compensating device. Fot example, the linearized a, f,,;,,, model

used for the analysis of the L-1011 horizontal stabilizer was:
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2(alIs + bl x - (s 2+ a 2s + b 2 )  xa

F a (d2s2 + d d )

where the coefficients (a's, b's, and d's) are computed from the servo

characteristics.

Servo Nonlinearities

As mentioned previously, the hydraulic servos can usually be represented

with linear models. In order for this assumption to be acceptable, however,

care must be taken that excessive flow rates not be commanded such as to

exceed the saturation level corresponding to the maximum valve stroke. If

rate saturation does occur, it sharply lowers the rolloff frequency of the

linearized first-order model.

Other nonlinear valve effects are due to the parabolic characteristic

(flow versus pressure) of an orifice. A trim condition with the quiescent

design load near stall is unusual. It occurs only in cases where load

limiting is required, such as for spoiler or rudder blowback, or in cases

where parallel systems have failed. If operation requires high inertial loads

at high frequencies, then the valve's parabolic characteristic becomes very

significant; and the model must include some linearized representation, such

as a describing function, whereby frequency and phase characteristics are

functions of actuator displacement amplitudes.

1.4.4 Aeroelastic Modeling

In this section, a summary of the derivation of a simplified aeroelastic

model will illustrate how the equations (structural, aerodynamic. and

actuator) are interfaced. Simplifying assumptions are starod A: ne,,ded; e.g.,

a particular lumped parameter representation of the structure i: s.s:umed.

The development of a reduced-order aeroelastic model begin- ih an

intermediate sized model having more modes than those finil1- i,,l'-,,ed: then

it is reduced in such a manner as to preserve certain residual O'ir-'ts of the
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eliminated modes. The intermediate model results from modalizing and

truncating a larger model.

The initial equations define the larger system in terms of the structural

composition and the aerodynamic forces which act upon it. The structural part

of the model representA all of the main airframe components (wing, fuselage,

tail, etc.).

1.4.4.1 The Modalized Equation

Standard procedures, in which the small perturbation dynamics of the

airplane are defined in terms of rigid body displacements and natural

vibration modes, lead to equations of the following type:

[T] ([ 2 K] pV2

[T I ([MIs 2- [K] - -- [A)) IT) {q} =

22[T] (( [~ 2 +  P_2 PV2
{TI( -[l A]) [D] [d) + - I [a)) (1.6)

The mass matrix (M], the stiffness matrix [K], and the aerodynamic

matrices [A] and [B] are coefficients of displacements of discrete structural

nodes.

By means of the modalization matrix [T] and its transpose ITT!. the

rigid-body degrees of freedom and the natural vibration modes are accounted

for by the modal coefficients of (z). Control surface deflections are shown

separately as [d) and each column of [D] defines a shape corresponding to the

associated element of (d).

1.4.4.2 Modalization

In anticipation of modalizing the system equations, the diff-ro'ntial

equation of the structural model with n degrees of freedom arp ,i jt en in the

matrix form:
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(M] (Y) = -[K] {z) - Z {Zk) (1.7)
k

where E [Zk} includes all forces, except the inertial and stiffness forces,
k

which are shown separately.

Modalization begins by finding the n eigenvalues of [M-1 ) JK], which are

all real and positive. The the m eigenvectors corresponding to those m

frequencies which are considered essential to the intermediate model are

computed, and an nxm modal transformation matrix [T) is formed from the set of

eigenvectors. The equations are then transformed to modalized form, having m

generalized coordinates of mode shapes (q), which are the new variables. The

transformation is:

{z) (TI {q} (1.8)

Substituting Equation (1.8) into Equation (1.7) and premultiplying by the

transpose of IT]:

[TT (MI [ [T] {4) = -[TT ] [K] (T] {q) + ITT] Z (Zk} (1.9)

k

In a passive flexible system, the inertia and stiffness matrices each are

symmetrical; so, with appropriate scaling of its columns, IT] is scaled such

that (TTI (MI IT] = [I. Then [TTI [K] (T] = [A] is a diagonal matrix of

eigenvalues. This reduces Equation (1.9) to:

(f} + (Al (q) {Q} (1.10)

where:

(Q) = ITT] Z (Zk) (1.11)
k

is the generalized force.
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1.4.4.3 Forcing Functions

The expression for the forcing functions E {Zk } includes steady and
k

unsteady forces due to mode dynamics in smooth air, aerodynamic forces in

turbulent air, aerodynamic and inertial forces due to the control surface

dynamics, and mechanical forces due to the actuator coupling between the

control surface and airframe structure.

Aerodynamic Forces

Steady and unsteady aerodynamic forces due to node dyna, cs are:

V2

{Z11 = -- [A) [z) (1.12)

where:

[Ar = [AIC(ik)] (d +  V L )

[AIC(ik)] is a matrix of aerodynamic influence coefficients, functions of the

reduced frequency k = ax/V.

The derivatives represent the set of element angles at each mode and the

set of angle-of-attack increments due to the vertical velocities at each mode.

The operator [A] is sometimes denoted as [A(p)], where p (- sc/V) is the

nondimensional equivalent of the Laplace operator, s = a + iw.

Gust Induced Forces

Forces in turbulent air are:

2 2
=Z1 ( B] { 1

where:

-ik F$/c}

}= 1~ e ik FS(1.13)
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and, [B] , sometimes denoted as [AIC (ik)], is a matrix of aerodynamic

influence coefficients, functions of the reduced frequency k = cWc/V.

Control Forces

Forces due to control surface deflections include both inertial and

aerodynamic forces. The revised set of aerodynamic forces is denoted as:

[A] 2 z PZ3  _2  {-(zi + = Z-- = [A] l } ( .4

2 [Al 2 [zd)+ [R) d]

where (zd) is the subvector of state variables in {z), at whose locations the

control surfaces [d) are located. The set of deflections [RI (d) are

superimposed on the motions corresponding to (Zd). [R] is a diagonal matrix

of radii from the surface hinge lines to the nodes on the surfaces. In the

above equation, if the aerodynamic matrix [A] is partitioned, the equation

leads to an expression which separates (z3}, the control surface aerodynamic

forces, from those of the main body:

A21 (A12 ) {d] = [Al (z) + [Al [DI (d)

where:

[ I [[RI]

Therefore,

v2
{Z3 V- 2 [A] [D] (d) (1.15)

Similarly, the inertial forces due to the control surfac A,,relerations

are separated from those due to other accelerations by paJ itl.ill the mass

matrix.
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[MI (z) - (Z) = =M ] [M] {z ) (M+ (D J dJ

(Z41 = - [M] (D] [d] (1.16)

Collecting the forces in the summation from Equations (1.12) through

(1.16), and transposing such that the terms which are functions of [z) are on

the left hand side; then modalizing in accordance with Equation (1.9), yields

Equation (1.6).

1.4.4.4 Actuator Interface

The control surface interface in Equation (1.6) is based upon the

assumption that loading effects do not delay any actuator, i.e., actuators

provide whatever force is required to generate [d). If this assumption does

not hold for any actuator, then that particular actuator is excluded from (d}

and an additional force expression instead is added to the right-hand side of

Equation (1.6).

A lightly loaded hydraulic actuator can usually be represented by one

pole (first-order transfer function) per servo stage. This is not so in the

case of a heavily loaded actuator. Both interface types are explained in the

following subsections.

Actuator Position Coupling

A particular control surface angle di (an element of (d) in Equation

(1.12)) usually is related to the corresponding command signal dci as a first-

order transfer function:

1

di - 1s+ 1 dci 1 < i < k (1.17)1

With the load force on the hydraulic actuarr, ,egligil'-. ,ib m" ,,,ion of

the piston is simply the integral of the servo eiioi; so the Itairuali function
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is a first-order lag with its time constant equal to the loop gain of the

servo.

Actuator Force Coupling

The actuator force driving a control surface is computed from a hydraulic

servo model which includes the dynamic loading from the aeroela,i, model of

the surface. The actuator force Fa is related to the actuator dil:placement Xa

and the actuator command xc by:

Fa = Hc(s) xc - Ha(s) xa (1.18)

Equation (1.18) makes it possible to account for the statir and dynamic

loads on the control surface due to its own motion and also due tn the motion

of the main surface to which it is attached. The transfer functions Hc(s) and

Ha(s) are computed from the servo characteristics. The force Fa iH applied by

the actuator to the connecting points zf and zs on the fuselage And control

surface respectively. The points are included in the degrees of freedom (z)

of the structural model and are related to Equation (1.18) throitah the

actuator displacement:

Xa = zs - Zf (1.19)

Figure 1-5 illustrates the meaning of the above equation. The figure

shows interface between one of four activators and the dynamic inp, tial load

model of a symmetric flexible control surface.

The vector {zl) is partitioned further, such that:

(zl) [{zJ where (Z (1.20)
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Figure 1-5. Simplified Load Dynamics Model - Actuator Interface
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1.4.4.5 Equations in State-Space Form

When Equation (1.6) 'is changed to the state space format, it is necessary

that [A(p)] and [AIC(ik)j (e- ik FS/cj be approximated by algebraic functions

of p. A third-degree polynomial approximation might be adequate for the lower

part of the frequency range of interest. The usual approximation, however,

recognizes the presence of aerodynamic lag by the inclusion of p/(p+b) terms.

Real and imaginary values at discrete frequencies of all terms vhich

include [AIC(ik)J are used to determine the coefficients of each third-order

polynomial approximation.

Applying the third-order polynomial approximation, the aerodynamic force

and gust force in Equations (1.12) and (1.13) reduce respectively to:

2

P2- [A [z) = ([AO I + [Al]s + [A2 ]s
2 + IA3 ]s

3 ) {z) (1.21)

and

Z- [BJ (a) = ([BO ] + [Bljs + [B2 Is2 + B3Bis 3) (0) (1.22)
2 +

The [Ail's and [Bil's are computed least-square fits to the desired functions.

Dryden Gust Representation

In this illustration a 2-D gust is assumed. It has a Dryden power

spectral density. Then the expression for the gust angle {&) is obtained by

considering white noise n(t) with a unit power spectral density to pass

through a second-order filter whose transfer function correspond!, to the

Dryden power spectral density for vertical gusts.

In Equation (1.13), f}) is defined as Iw {e-ik FS/c). Het, the

definition is changed to:
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f } = (e-ik FS/c} 9/V

where V is the scalar RMS intensity of the gust.

The transfer function of the second-order filter is converted to state-

space form by the same method that will be shown to convert that of the

heavily-loaded actuator. The resulting state-space equation is:

s( ) = [W] {Vj + (N) n (1.23)

The vector (w) is included in the force expression Equation (1.22) as

2 0 12 3
.2L [] ~)= (B]+ [Js+ BJs+ [B3Js3) [G] fJ(.4

(124

where (G] is an nx2 matrix whose first column is all l's and whose second

column is all O's, because the two elements of [2) are a and a dummy variable.

Lightly-Loaded Actuator Displacements

The state-space equation for the set of control-surface transfer

functions, Equation (1.17), is obtained by cross multiplying each individual

transfer function and forming the k-vector.

s~d) = [d - 1I (- [d) + [dc)) (1.25)

where [Td] is the diagonal matrix of time constants.

Heavily Loaded Actuator Forces

The expression for the actuator force coup]ing is expressed in state-

space form using the coefficients of the expandedI versions of the transfer

functions in Equation (1.18).
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(l b )  c  (s2  s

(a1s + b) x - 2 + a2 s + b2 ) xa
a d2s

2 + d s + do

Cross multiplying and separating out the zero-derivative terms, let:

d2Fb = -dFa + blx, - b2xa

After integrating the remaining terms,

d2Fa = diFa + alxc - Xa - a2Xa + d2Fb

Recalling from Equations (1.19) and (1.20) that xa = [-1 1] (za), then the

actuator force is represented by the state-space equation:

(f) [F1] (f) + [F2] (ia} + (F3] (Za) + (F4) xc (1.26)
where:

{f} = , [F1 ] f d ] I d2 , [F2 ) [ /d2

IF3 1 2 -] 21/d 2 , and {F4) = /d2F3 b 2 -b2 21

The matrices in Equation (1.26) are made compatible with the rest of the

system by fitting them into matrix coefficients of the n vector (z) as

follows:

(f) = [Fl] (f) + [F2 ] (zI + [F3] (z} + (F4 1 x, (1.27)

where:
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(z2) 1 F2 1 = [o IF2] O]

(z) a1  IF3 1 = [[01] I 3  1[0]]

.{Zd}]

(z2)
zf

The force acting on points (za} in (z) = is (Fal (f}-

(Zd}l

where:

r(0) (0) 0

[Fa = [1 ] 0 so [F I M F (1.28)

0) (0oj L(0)1

This force is added into Equation (1.6) which then becomes:

[TT] [MI (T) (q) + ITT] [K] IT] (q) - ITT] o [A] [T] (q)

ITT] (R (B) ({) + [A] [D] (d)) - IM] ID] (d)) + ITTI IFa (1.29)

Control Surface Deflection in Expanded State-Space Form

In a form similar to that of Equations (1.21) and (1.22), the polynomial

representation of the actuator forces due to the surface deflections is:

[A] [D] (d) = ([CO) + [C1ls + [I1s
2 + [C3s) {d, (1.30)

2 + "

Then from Equations (1.29), (1.9), (1.11), '1.21), (1.24). (128), and

(1.30), the generalized force is:
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[01 = [T'T1 ([A0] + [Ails +[A 2 ]s2 + [A3 Js3) ITI (q)

" ITT] ([B0] + [B1]s + [B2 Is
2 + [B3 ]s3) [G] (19)

" ITT) (IC0] + [C1Js + [C2 Js2 + [C3JIs3) {d) - ITTI [M) [DIs 2 (d)

" ITTI [Fal (f)

where from Equation (1.27), with ITTI [M] ITI] I (1.31)

(i) = [F,] (f) + [F2 1] [ q) + [F31 [TI (q) + (F4) xc

The notation is simplified by:

[TT] [Aol [T] . [A0], [TTI [B0] [B0], [F2 1 (T] = (F2 1, etc.

Substituting Equation (1.31) into Equation (1.10), then transposing and

collecting some of the coefficients of (q) yields:

(-[3 S3+ ([I) - [A2 1 )s
2 

- AjJs + [A]) [A0]) (q) =[Fal If)

" ([B3IS 3 + (B2Js 2 + [B1js + [BO]) [G] )

" ([C3Js 3 + IC21s 2 + [DIS 2 + IClis + [Col) (d) (1.32)

and

s(f) - [F2 1 s(q) + [F3J (q) 4 iFj] ff) + [F4) xc (1.33)

The complete set of equations describing the system in state-space form

comprises Equations (1.32), (1.33), (1.25), and (1.33).
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With each of the above equations written with only the highest order of

s, along with its coefficient, on the left hand side, the set is expressed as:

C~x) = [A]{x) + [BJu) (1.34)

where [x) is the vector of state variables and (u) is the vector of control

variables.

Since the matrix coefficient on the left-hand side must be inverted, it

is necessary that it be nonsingular. Therefore, an expression must be found

to define higher derivatives of (w} and (&}. This is accomplished by adding

additional lag terms in the transfer function for &/n. Additional lag terms

need not be physically justified but can be chosen easily if it is desired to

represent any known characteristics in the higher frequency ranges.

The third-order polynomial representation of unsteady aerodynamic

influences permits good accuracy only through a certain frequency band; but at

higher frequencies, the model is not correct. Indeed, some of the extraneous

poles resulting from the polynomial might be on the right-hand-side of the s

plan (unstable). These must be removed from the transfer functions in a

manner that will retain their residual influences in the lower frequency range

where the model is considered to be accurate.

1.4.4.6 The Output System

Any control law which is based upon a modalized system must be reflected

back to the original coordinate system. Assuming that "sensors" of the

dynamic modes (q) are the only signal sources in the control law, then the

vector of feedback signals IF] [q} would be computed as follows. Let [H] be

an mxn matrix of l's and O's used to select the fz) elements at 4hich the

sensors will be placed.

Now since:

(H [z) = [HI [Ti {(I
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then,

[F] (q} = [F] ([HI [TJ)-IIHJ [z)

In the matrix of feedback gains, ([F] ([HJ [T])-I[H) all the elements

are zro except from the selected sensors. The best locations of the sensors

is determined by observation of the mode shapes.

1.4.4.7 Model Order Reduction

It is common practice to reduce the order of Equation (1.6) by excluding

the high frequency modes from [q). Usually the required accuracy of flutter

related analyses dictates the number of modal degrees of freedom to be

retained.

The state-space model, if obtained directly from a structural dynamics

equation of sufficiently large order to properly represent fluttet modes,

usually is of very large order, say 100 or more. Once the large-order model

is available, it can be reduced to a significantly smaller order by one of

several available methods.

Two entirely different approaches to model reduction of linear time-

invariant systems are summarized here. They are: 1) balanced approximation,

and 2) spectral decomposition. The balanced approximation approach is better

known, having been thoroughly developed and discussed in the technical

literature since about 1979, at which time the importance of mode] reduction,

as applied to multi-input/multi-output systems, had barely been recognized

(101. The spectral decomposition approach was developed and used by Lockheed,

beginning in 1974, during studies that led to the development of the L-10l

Active Control System [5], [6].

More recently, Lockheed has been examining two forms of fretlitenry

compensation which supplement the balanced approximation approach: bit these

topics are beyond the scope of this report. The first of the fe.juer-!y

compensation methods, developed by Honeywell, applies a balancing algorithm to
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a full model which includes frequency-dependent weighting. The second method,

developed by the University of Southern California, truncates the model using

approximate balancing; then applies the balancing algorithm to the truncated

after bilinear frequency weighting.
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SECTION 2

LINEARIZATION OF FLEXIBLE AIRCRAFT HYBRID-COORDINATE

DYNAMIC EQUATIONS AND INCLUSION OF AERODYNAMIC

AND GRAVITATION LOADS

2.1 INTRODUCTION

2.1.1 Scope

The complete dynamic equations of motion for a flexible aircraft (of

arbitrary configuration undergoing arbitrary motion and experiencing an

arbitrary load) using a hybrid-coordinate system has been derived by this

author. The effort here is to examine these results in light of practical

applications.

Specifically, the complete hybrid-dynamic coordinate equations will be

linearized and expanded to include the effects of aerodynamic and

gravitational forces. The former is done by keeping track of a judicious

choice of assumptions. The latter is not a detailed aerodynamic development,

but rather a relatively general method in which aerodynamic forces (which are

functions of the structural motion) may be directly accounted for.

Gravitational forces are accounted for directly and completely. In addition,

several examples are investigated to test the validity of these results.

2.1.2 Development Overview

Since the development herein is a continuation of that of Reference 1 the

variable notation used is followed as closely as possible. Figure 2-1

summarizes the notation used in this report. Specific variables and operators

unique to this report are defined as needed in the text (mostly in Paragraph

2.1.4). A summary of the basic symbol notation used is listed in Figure 2-1;

and summary of the vectors and vector bases used is listed in Fig,,,o ."-2. For

a complete list of symbols see "List of Symbols" at the end of thi' report.

This section will present a summary of the development ,,f ,I- . plte

hybrid-coordinate dynamic equations. The first part is a detailI ,,.:cription
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V Capital or lower case: scalar quantity, or identifies a
point or body.

Vj Subscripted: matrix element, or identifies a point or sub-
~body-

V Underlined: vector.

_Vj Underlined and subscripted: vector component.

D Double underlined: dyatic.

(e) Underlined and braced: unit orthogonal vector base.

V Bold: column or square matrix.

(I Braces: colum matrix, or additional parentheses.

[ ] Brackets: square matrix, or additional parentheses.

T Superscript T: matrix transpose.

-l Superscript -1: matrix inverse.

' Prime: Matrix expanded to j partitions of Q, (j-n,n-l).

S Over-bar: Matrix associated with reduced variable.

Double subscript: Matrix representing result on j due toinput at k.

i Subscript o: quasi-static component of variable.

SLeading a: perturbation czmponent of variable.

a! Pre-superscript a: variable associated with aerodynamic
model.

Any operator superscripting a closing parenthesis acts on
the contents of the parentheses as a whole.

Figure 2-1. E ic Symbol Notation Used
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FRM SJRAL MEL:

(i} inertial reference frame.
(5) reference frame fixed to body a.
(a) reference frame fixed to body A.
( sl reference frame fixed to rigid sub-body As.

0 direction cosine relating [b) relative to fi).
C direction cosine relating (a) relative to (5}.
Cs  direction cosine relating (~s relative to T!).

r rotation of fb} relative to (i}: defined in {b}.
0s rotation of (a) relative to (SI: defined in (5).
-3 rotation of (is) relative to Ta): defined.

in {(s)

X defined in {i}.
~ defined in {5}
~ defined in (5).
r5  defined in
23 defined in (a).

FM THE AEFCOM4A/IMCDEL:

a(!a01 reference frame fixed to panel load point.
a(sl} reference frame fixed to panel normal wash point.

a Cs direction cosine matrix relating afas0i to (b}.
aC., direction cosine matrix relating a([sl} to {5}
aC;., direction cosine matrix relating relative

velocity to afasoj.

as0  rotation of a(asO) relative to (b):
defined in afa0oJaes1  rotation of aTas relative to fb}:
defined in a(as1).aeSao rotation of reative velocity relative to
a-as0 }: defined relative to relative velocity.

au defined in (b).
a r defined in (§I.

Figure 2-2. Vectors and Bases Summary
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of the vehicle model. The second part is a list of the important steps in the

developed of the equations.

Linearization of the general dynamic equations of motion is considered

first. This will be done in two steps: First, the coordinate transformations

are examined more closely and approximated (Paragraph 2.2.1). Then, the

independent variables are broken down into two parts: quasi-static and

perturbation components (Paragraphs 2.2.2 and 2.2.3 respectively).

In Paragraph 2.3 two external loads are investigated. The aerodynamic

forces are considered in Paragraph 2.3.1. First, a generic aerodynamic

element model is conceived. Then, this model is set up so as to be

incorporated into the dynamic equations of motion. A similar procedure is

used in Paragraph 2.3.2 for the incorporation of the gravitational forces into

the dynamic equations of motion.

In the first part of Paragraph 2.4.2 the hybrid-coordinate equations are

evaluated under rigid body assumptions. The simplified results are then

compared to classical developments for the rigid body stability derivatives.

In the second part of Paragraph 2.4.2 a simple test case is evaluated. Each

variable is tracked so as to bring a better understanding of how they affect

the hybrid-coordinate equations. Dynamic equations are also developed

relative to a Newtonian reference frame for the same model using classical

techniques and these results are compared with the hybrid-coordinate results.

2.1.3 Hybrid-Coordinate Definition

Consider a flexible aircraft, Body A, attached to a massless rigid Body B

at a Point 0 (See Figure 2-3). The aircraft is idealized as a collection of

linear-elastically inter-connected (such that the component inte~nal restoring

force, stress, is proportional to the component structural defot,,nlio,,.

strain), discrete rigid sub-bodies, As, s=l,...,n. Body B, being masfless,

can be any arbitrary shape - internal and/or external to Body A.
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It is convenient to describe the motioi, of each rigid sub-body, element,

As, relative to a set of dextral orthogonal unit vectors al, a2 , and a3 fixed

in reference to Body A prior to deformation. Likewise b1 , b2 , and b3 are

fixed to Body B and i1 , i2 , and i3 are fixed to the inertial reference frame.

These unit vectors are written as:

(a)= = fb ' -- } { }1 (2.1)

These arrays are related to each other by direction cosine matrices C and

e such that:

[b)=Ifi} or { f}_e
(2.2)

(a)=C(b) or [b} T=(a) TC and {i T=a) TcO

where

Ckl= (ak / ak 'bli k,1=1,2,3

and,

(b / Ibklb ill k,I=1,2,3

The inertial position vector, Ps, of element A. (the translation from

Point Os to Point Ps) can be described as a summation of the deflection from

the undeformed state, us; the undeformed position relative to the constraint

Point 0, rs (See Figure 2-4); Point Q's position relative to the tpfeence

Point 0 of Body B, R; Body B's position relative to the center of mas:- (CM) of

the vehicle, c; and the vehicle's CM inertial position, X (See Fi,,-' 2-5).

As shown in Figure 2-4 the inertial position vector, Ps, may be ',,,ilton as:

P=X+c+P, +t+u s  (2.3)
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Figure 2-4. Rigid Siib-Body Local Coordinate!3
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where it is obvious to describe X in terms of }i), c and R in terms of {b),

and rs and us in terms of (a). This series of position vectors can now be

represented as column matrices premultiplied by the transpose of the

appropriate vector base:

X=(i { i i3})={}Tx (2.4a)

c=fb1 ,b2 ,b3) {c2}{b)TC (2. 4b)
3

R={bl ,b2,b3 } $ }=(b}TR (2.4c)

3

r 21

1!,=faaa 3  s5 (,a) TU5  (2.4e)

In addition, a set of dextral orthogonal unit vectors asl, as2, and a.3
are defined fixed relative to its corresponding rigid sub-body, A.- As was

done for (a), (b), and {i) in Equation (2.1), write this new vector base is

written as:

ta 51={aS2 (2.5)

-s3

This new vector base, [as}, is related to the (a) vector basp ,ia

direction cosine matrices, CS; as are (a) to (b) and (b) to {i) -iq C and e
=~Spec t !2ly:

[as]:C..ra1 (2.6)



The rotational deformation of each element, Os, can be defined relative

to [as) and be represented as a column matrix of as component magnitudes

premultiplied by the transpose of (as); as was done for the vectors defined in

Equations (2.4):

( 0S1 ' T
\s={jsl s 3s =(as) T (2.7)

13)

The position of any differential mass element, dm, relative to the

vehicle center of mass, p, is expanded as (See Figure 2-6):

p=c+R+r s+Us+P s

=C+p (2.8)

where c, R, rs, and us are as before and Ps is the vector from the center of

mass of sub-body As to the differential mass, dm, in As.

Likewise, the inertial rotational velocity of each sub-body. s, is

expanded as:

+s=gs Qa+w (2.9)

where _S=(as)Tgs is the angular velocity of the [as) reference frame with

respect to the [a) reference frame, a=(a)Tga is the angular velocity of the

(a) reference frame with respect to the (b) reference frame, and w=(b)TO) is

the inertial angular velocity of the (b) reference frame. The angular sub-

body deformation, Os, and the angular element velocity are defined relative to

the same vector base, [as). Thus:

Ssd6 T-]
-_s- s= [as) } (2.10)

where the superscript on the derivative operator implies diffei-illi,ition with

respect to the (as) reference frame (See Paragraph 2.1.4)
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2.1.4 Operators

Before summarizing the development of the dynamic equations it is

necessary to define the operators and operations that were used. The most

common fundamental identity used is that of the vector/dyadic differential

calculus identity:

fld  f2d  fl f2
dv-dv _ ~XV (2.11)

fld f2d fl f2 fl f2
--. = D-DX (2.12)

where V is any vector, D is any dyadic, fl f2 is the angular velocity of any

reference frame f2 relative to any other reference frame fl, and the

superscript preceding the derivative operator indicates the reference frame of

differentiation. Equations (2.11) and (2.12) require the cross product of two

arbitrary vectors, V and W, be expressed in matrix terms:

VXW={e) TVXe) TV=(e TVw (2.13)

where:

V3  k 3 ]  - 2 V1

where the tilde operator (-) over a three by one matrix represents the

corresponding skew-symmetric three by three matrix, as expanded in Equation

(2.14). A tilde operator over a closing parenthesis implies the tilde

operation on the contents of the parenthesis as a whole.

Next, a set of Boolean operator matrices are defined to facilitate

combining all the degrees-of-freedom into a single matrix equati-1- These are

the carrot operator ('n), the sigma operator (En), and the pi '1'1 (in )

defined as:
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AiO...0' 'AO0...O0

0A 2 ... 0 OteA..

. n (A (2.15)

iXi ... An. ixi 0o...A
i'nXi'n i'nXi'n

and,

MEi EMi ... EMi)

E(i) 
I M . EM

(i) E ... E()J
i nXi"n

(i)

E(i) I T

rE (M M .. E JEi ) (2.16)

i-nXi

vhere

i)= "I iXi

is an iXi unit matrix.

Finally, vector components (including that of the independent variables)

may be combined in a manner similar to the Boolean operator matrices. These

column matrices are denoted by a superscript ':

3l -Iqn 72 i s (2.17)

3nXl 2
: ' q i is the ith

q n2 component
q'is 3X1 of q
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2.1.5 Development of Hybrid-Coordinate Dynamic Equations

The development of the dynamic equations is in four parts: First, the

flexible vehicle equations; Next, the total vehicle vehicle equations; Then,

the auxiliary equations; And finally, the complete dynamic equations. In the

first two parts the development begins from first principles - the Newton-

Euler equations:

F s d(msis) msis and F= dMVMa

(2.18)
d d id .

!=-==S and T=-_= _

where ms is the mass of the s rigid sub-body, MA is the vehicle mass,!s and I

are the s rigid sub-body and the vehicle moments of inertia matrices

respectively; Fs=(a)TFs and Ts=(a1TTs are the resultant external force and

torque applied to the s subbody; F=(b)TF and T={b}TT are the resultant

external force and torque applied to the vehicle; and P., Y, a, Hs  and H are

the inertial sub-body location, total vehicle velocity, total vehicle

acceleration, and angular momentum of the s sub-body and total vehicle,

respectively; all with respect to the corresponding body's center of mass.

By allowing the origin of Body B to coincide with the vehicle center of

mass prior to deformation, (c is initially zero) c may be expressed as a

function of u:

= T (2.19)

s=1

where

Us = Ms / MA

is the sub-body mass ratio.
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It is desirable to express time derivatives of c such that the direction

cosine matrix C does not need to be differentiated with respect to time. It

can be shown that:

C T *CTusCT!a n)JsUs (2.20)

s=1 s=1

and:

T n n n (2.21)(:_1 [Eus~s+ a . sUs+2?a ZUs~s+ a~aZUsUsI 2.1

s=l s=l s=l

2.1.5.1 Flexible Vehicle Equations

For any rigid sub-body the translational and rotational equations of

motion are developed independently. From Equations (2.3) and (2.18), the

translational vector equation becomes:

f5=m5
4 d(X+c+R+rS+U (2.22)

d t

or, expressing all variables with respect to the {a) vector base yields the

following matrix form:

sjsn 
T n

FS=m Us-Ikk}s{ ( s~~>-2 (CWTCa Euk}
,k=l ) k=l

+ms {[(ia+C~) +(Ci)(Co$)+2 (C. -a+ a~aI us

- (C;6C +2a+2CI C ba+Qaga+c C 0 ) .kUk

(223k=l
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From Equations (2.9), and (2.18), the rotational vector equation becomes:

Ts=Is. (_Qa+ ga+(s)+(W+a+gs)Xs. (A)+ a+ s ) (2.24)

where ps=d(0s)/dt. Or, in matrix form relative to the (a) vector base:

Ts=C'Is~+C~Iss ((CwS~2a5)' ((CwS4-a+CSICSC-( ICCQa} '

+C Isc S (C+ ia+ (C&c.5 2a) , (CO a)aCTISCS (C(O+ a) (2.25)

Using the Boolean operator matrices defined in Equations (2.15) and (2.16),

the n sets of Equations (2.23) and (2.25) are combined into a single matrix

equation of motion for the flexible aircraft.

Mq+Dq+Gq+Kq+Aq=L (2.26)

where.:

1
q= f (2.26a)

M(A (2.26b)

to] % 0)C T) MRJ

D= note: DRT T (2.26c)

ROT R

G= (2.26d)

1o G'J
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(2HT([Sa+C1)n[E(3n)_ R=!(E( 34"M] [oJ1

AM ,(2.26f)

[101 s s (wJa S

[M(+(o+(-- .)2Cc "4Q~)[~) -(E(3) ,,T] 101,K= K+ +R noe: T(2.26g)

%T=

STn

A= A+ (10c2.26]

In the above equations, note:

0 and K are the free-free structural damping and stiffness m iri,'es for

the flexible vehicle.

f and t are column rinatrices of load components applied ext'-inflLv to the

sub-bodies, resolved -elatve to the (a) reference frame.

Subscripts T and R refer to translation and rotation, +espe, f ely.
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[ i... 0
MT 2 ... 0 m j 0 0

m-and *j= M l 0 (2.27)

71 0 ... ' j[ 0 0]

0 12 .. 0 3 m

MRr and (2.28)

0.. i. 0 0 j33

2.1.5.2 Total Vehicle Equations

In the previous section, equations of motion were presen.ed that relate

the motion of all the rigid subbodies to each other. In this section,

equations of motion for the total vehicle are presented. As was done for the

flexible vehicle equations, the total vehicle equations were derived from

first principles, the Newton-Euler equations (Equation (2.18), rewritten here

for convenience):

id
F=d(MAV4

=MAi (2.29)

and:

id

= dI.4+WXI_,AJI. W c+ - Xpdm (2.30)

The final form of the total vehicle equations is written ii ,-,m: of the

{b) reference frame. Also, use is made of the sigma and pi opeiln,ts.

Equation (2.16), to obtain:

F=MAeX (2.31)

2-18



and:

(E(3)'l{ [KYT MVR] q+ [G VT GvR]q-[AVT AVR]q}=T- (E(3)5 T {LVT+LVR} (2.32)

where:

MVT=MT4f[R+CT(sr31 RA(3)j N, [(CTu II j}(CT) (2.32a)

MVR= (C T)n% 
(2.32b)

GVT=HT{[ 4+rsC+usC)290 (R-C rCTuJ)E(3)+ (4 R+CT(US+r s)])+

+ [R+CT(uS +rs)] (w.2CTgal)] RAI j(3 'MqT[ (CTus)CTQaC]})(CT)n 23c

GVR={- ([cTT iscsC (WC.+Tga)])n+ (CTC7Jfl [CSC (WC.-Tga+CTCTj 
n

+ )~c]n~ C3 )}(c n~ (2-32d)

2-19



AV.,= Mr{[2,o(RT+2rCuJ (CS) s ~ (R+CTr +CTUS) rc~) (w~)Cr

-(R+CTrS+CTUS w T (CT~a)_ [T (CT QajCTrs]E3) T + T S Tw

~[(RCTJ]( 2RT+2TsC+C)-(R CTr.+T> w [w(R+CTr)]E(3)

+ rw4R+ CT (us+ rs)]j (cToj+ [R+CT (us +rs)] [(T + kT g

+ (CTga) (WCTga)]-[(CTOa)CTrs]~- ([(CTja+kTga)

+ (CTOa) (oW4CTQa) ]CTrs) [ (CTSa) CTuS,] (CT~a)]

MA+ NE)JI(crQa+Qa~a)us])}j(cT)n (2.32e)

A VR= 101 (2.32f)

LV=~-[R~rCw+(Tr (R+CTrS>wT [R'+ (CT)fl]

+MT42ci(RT+rsC (C ) J(R+CTrs) ] (CTa) - (R+CTrsJJCw a

+ roxR+cTrs)l (cTga+ (R+CJrs) [(cTja+oT a)+ (CTOaj (WjcTa)]

+ [(CTga)CJrs] (CTa)} (CT) nrf (2-32g)

+ .CaCTT1. (C.C)nU (TS) n% [CSC (CT ga) n l[w, + (CT)flSp,

+ { c~c~ ~ (~c~ '~}(c'] 2a'(2-32h)
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These dyihamic equations ,Equations (2.26), (2.31), and (2.32), parallel

the work of P. W. Likins in his treatment of flexible spacecraft (Reterence

1). However, this in not sufficient to be used for practical applications as

will be discussed in more detail in the next section.

2.1.5.3 Auliliary Equations

The overall matrix equations of motion,(Equations (2.26), (2.31), and

(2.32), of dimension 6n, 3, and 3 respectively), are written in terms of the

sub-body deformations, q. However, the coefficients of these equations are in

terms of the overall vehicle motion (c, Qa, and X; 3 unknowns each) and the

direction cosine matrices (e, C, and C.; 3, 3, and 3n unknowns, respectively);

also q represents 6n unknowns. Thus, there are 9n+15 unknowns with only 6n+6

equations. Hence, 3n+9 auxiliary equations are required to uniquely describe

the system.

There are three auxiliary equations associated with each C., which is a

function of 0s. This is best be shown by expanding Cs into its component

Euler angles:

(as})=Cs 3Cs2Cs [a) (2.33)

These Euler angle components are expressed in terms of the rotational

deformation components of IS:

COS3 sO53 0' ircS 2 0 Os 020'
Cs 3 CS2 Cs = [sS 3 cOs 3 010 1 0 1 s0 COs sl1

0 0 1 Ls 5 2 0 Cs 2 J - sOsl cOs 1 J

[ cOs3COs 2  cOs 3 ss2Ssl+SOs3c0sl -C0s 3 s'3s2esl Ss3SS1

= -s3 3 cs 2 -s 3 s 5 2 Ssl +cOslc S 3 -s 3Ss 2 cOs 1 +cO 3 sOs1  (2.34)

Ss2 -s2S2sl 22S
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where c(*) and s(*) are abbreviations for the cosine(*) and sine(*),

respectively. Thus, C. is now resolved in terms of the desired 6n+6 unknown:

specifically, N.

There are six auxiliary equations associated with e and C, which are

functions of w and ga, respectively. New angular vectors are defined: _3B

which relates the rotation of reference frame [b) relative to reference frame

(a), and r which relates the rotation of the inertial reference frame {i}

relative to reference frame (b). _B is resolved relative to the [a) reference

frame and r is resolved relative to the {b} reference frame. C and 9 are

expressed in terms of _B and r, respectively, by expanding the Euler angle

components as was done for C. in Equation (2.33):

cOB3cOB 2  cOB3sh 2s 3B1 -c'B3s0OB2cOB I

+S B3cI 1  +S B3SOB 1

C= -sOB 3c'3B2 -s OB3SB2SBI -s OB3sOB2cOB 1  (2.35)
+C %IcO3  +C O3sOB1

SOB 2  -COB2SBI cBBcfBI

and : cr~c2 r3s 2s1rlS 3 cr 1 -c 3s 2 1l+Sr 3 Srl]

[-r3 3 s -sr 3sr 2sr +cr c r 3 -sr 3 sr 2 cr 1 +cr 3 sr l1 (2.36)

sr2 -cr2 sr1 cr 2 cr 1

C and 9 have been accounted for, but there are six new unknowns: B and r.

The composite internal force applied at all nodes, LA, riue ,n th,

st-uctural stiffness, KA (Note: this is not the same K as in the I l:.:ible

vehicle equations), Equation (2.26) is written as:

)-q( X Lqq KLq11S Lq6 % I-

LA= B=KF B U' K FBO HIB =KA_1A (2.37)

,TB) _Bq KTBUB kTB -
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where Lq represents all 6n loads acting on all n rigid sub-bodies due to the

vehicle's structural stiffness, FB and TB are the forces and torques acting on

Body B due to the vehicle's structural stiffness, and KA has been partitioned

relative to these three variables.

Since Body B is massless, the sum of the loads acting at Point 0 must be zero.

With FB and TB zero UB and OB are extracted from the lower two rows of

Equation (2.37), resolved relative to the (a) reference frame:

Thus, uB and OB are now functions of q. Equation (2.38) is substituted back

into Equation (2.37), solved for Lq=Kq, and extracting K (this is the K in

Equation (2.26) yields:

-Kq U KTqBq

KF BUBKFBOB3 [KTB-BTBUBK IUBKFB0B] "KrBqJ

AIi 1 -

- KBUK 1UB FB BI_1JT (2.39)

Now 0 (the first time derivative of OB) can also be expressed as a

function of q by taking the first time derivative of the lower poitiot of

Equation (2.38) (note: OR was chosen to be resolved into the {al ,iference

frame):
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(a) T (a=_( Tad

-1(T T-1 -

+ T~B '1UTKBq) q (2.40)

The vehicle is not attached to ground. By definition, w is the time

derivative of C. However, it is preferable to express r in terms of W (note:

r and w are resolved relative to the {b) reference frame):

t
r=o wdt~r* (2.41)

where r* is the initial rotational orientation of the [b) reference frame

relative to the inertial reference frame, (i

In summary: Cs has been expressed in terms of 0s; C and 9a have been

expressed in terms of h; UB and OB has been expressed in terms of q; and e
has been expressed in terms of r, which has been expressed in terms of W.

Thus, the 3n+9 additional auxiliary equations required to describe the system

have been produced.

There are only n nodes (6n degrees-of-freedom) with mass being described

by 6n+6 equations. OB describes the rotation of the (b) reference frame

relative to the (a) reference frame. All the undeformed sub-body position

vectors, r., are time invariant with respect to the (a) reference frame and

must rotate as a rigid body relative to the (b) reference frv-e. Vith rs as a

reference for the sub-bodies it is apparent that this "rigid body'" ,oation,

13B, can be arbitrarily defined.
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As the vehicle deforms, for a finite OB, rs rotates about Point 0 from

its initial position, r (See Figure 2-7). Subsequently, the rigid sub-bodies

deform from this new position us. Therefore, us is a function of rs. If B

is set to zero, then r is always coincident with rs, the reference for us

(Shown as u in Figure 2-7). This also implies that (a}u[b) and that C=E(3).

Point Q is treated as a node that can deform uB relative to the (a) reference

frame. For this point rB is zero. Since all rs traverse with Point 0,

including rB, 2B is always zero. These observations are substituted into

Equation (2.38), which defines uB and OB (now set to zero) as a function of q:

[O}=K qBqq

=[Kq-Bq K qq]{L} (2.42)

or:

q =- K (2.43)qBqn qBq

where qn can be any six deformation degrees-of-freedom associated with Point 0

through the stiffness matrix, and 4 is the remaining 6n-6 deformations.

This leaves only 6n unknowns for 6n rigid sub-bodies (the other six being X

and .

2.1.5.4 Complete Dynamic Equations

In the previous section auxiliary equations were developed which reduced

the total number of independent unknowns to the number of inertially possible

degrees-of-freedom. In this section these auxiliary equations are

incorporated into the dynamic equations. Specifically, the inclli'ion ot two

sets of auxiliary equations will be presented:

First, the dynamic equations will be simplified using the oberl'ntion that UB

and _% are zero. And then, the resultant dynamic equations -,ill 1- ,,'written

in terms of the reduced deformation variable, q.
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It was shown in the previous section that (a) being unique from [b) was

unnecessary. The development is equally general under this observation.

Fortunately, this greatly simplifies the results: 2a={o} and C=E(
3 ) This is

substituted into the flexible vehicle equations, Equation (2.26), to yield:

Mq+Dl+Gq+Kq+Aq=L C.44)

where:

M= [ A(E3jHT[0

,][E(3n) I

[01 T(.~[(f I3 1 0 1

MAs10s (244bMG= T~nMR Cs- s)n+ ( T" - T~nM(24a

A 1 R

[ 01 Gj j 1 01(C sW[ T ~ C T jn\ ,L (CsIsCsW) ]CsJ

A= M A (2.44b)

to [1 [01

L= ~ ~ M -K ,n1lr)+ (2.44c)

and q, M, D, and K are as defined in Equations (2.26a), (2.26b), (2.26c), and

(2.26e), respectively.

Similarly, the total vehicle equations, Equations (2.31), and (2.32),

become:

F=MAei (2.45)
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and:

(E(3) T{[HVT KVR ]q+[GvT GvR]q+ AVT AvR] }T-.(E(3)j'T {LVT+LVR} (2.46)

where:

KVT=HT{1[(R+US+rsJ 1(E(3"MT.(US)n} (2. 46a)

MVR= CS" 
(2.46b)

GVT=H.(T +r+UsJ-2a(R~r,+us)E(3)+ [w(R+US+r SJ]+ (R+u,+r ) (2.46c)

+ kjl%(,n (C~ (2.46d)

AVT=MT{-(R+r+U W T~(R*( +2su (R+r,+u JJ

coT(R~r)]E(3) (2.46e)

AvR=[OI (2.46f)

~nT) T_(R~s)*T(2.46g)
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From Equation (2.43), six deformation variables, qn, can be determined in

terms of the remaining 6n-6 deformation variables, 4. For purposes of

discussion, it will be assumed that these six variables are the last three u.

and N (s=n). Specifically, Equation (2.43) becomes:

{Ul}qf=~~ KB~~ ~ui K u (2.47)1Zn = q n = - K q Bq n Kq B q  i n K n

where the overbar is used to denote a concatenation of (n-l) 3xl columns.

The variables and coefficients of Equation (2.44) are partitioned

accordingly and the notation of Equation (2.47) is employed; for example, the

second derivative coefficient becomes:

-- M- M- __ uuu uun  ua n

M - M K - M K -u.K -
Mq= Unl nun U n Unh unu Ufn. (2.48)

On Anun n OnOn n

where, from Equation (2.26b):

Un M[unun ] -nT  MA )MT]

_[[(E3n-3 ) A _ - E(3) (2.48a)

AA- Mn] Mn MA mn]

Un-A Un On  "Nu M nUnJ=to- 
(2.48b)
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Ont 101 CTn 1n

and:

0... 1
0T m2 and- 0 j 0 0

and m .= a nj 0 (2.48d)

1 0 L. 0

a t2 ... 0ndl
R= . and j22 0 (2.48e)

L0 ... 1'~ 10 I 3

The same procedure is repeated for the remaining coefficients.

Partitioning accordingly and using the same subscript notation yields:

from Equaticn (2.44a):

rG-
nu Un =2j n ,(n--( 3

[uii Un n]
[2unr (n1 [E3n-3) ! (]O] (2.49b)[T 0)) ~ 1mf] _ I HTE(3)~ ln

R 1A (2.49c)

_, T T E 3

[0] 'uInn '16 =,.CnInT n(2.49b) ,
101 G , [ G -0
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from Equation (2.44b):

[% uun]M C )[ (n- !E( 3 )IT
- U u Unn + [ MA NT

.l+ a~ n - 1 [E (3n -3 )_ - -_l (E (3 ) n - 'T j  -1,T (E ( 3 ) C *- . + W)m n "
FqT CW ;z) MA ]T MA (2.50a)

6I-RT ( ;j;n mnM C WW ) - A

AUnA -A0 ILOu AN, n1 A A =[O (2.50b)

and, from Equation (2.44c)

L Un_. 4+ (W+; ) (R+ r)]+ fn
- jn - (-T flL n-1- (2.51)(CTnl sc I _:rn-1_, (C Wn-1_

TL n -4TnCn"-JInCn Jtn
The first and third rows of these coefficients are multiplied through and

combined into one matrix equation, the complete flexible vehicle equations:

Mq+Dq+Gq+Kq+Aq= L (2.52)

where:

, -,r+M -- K u M uunKUnIj (2.52a)
: UU n UUnUU D&K

ID uu n Un U uu,, un6 (2.52b)

+D- K - +D-KKS- D- +D- K -nun +D-K-]
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r-+G- K - G- K -, UU UUn UnU (2.52c)
[01

FK- K- - .- K- K-+K-K -+K- K -
U+KunKunu +K nKnU K- +Kun KunO Uf6 A (2.52d)
K- +K-P- K -j +K-013Kon- K-1 +K-On K -n' +K- ,3K n-

A= ruu +A- K - A- K (2.52e)
UU Unu U1 U n u% fljJ 5e

L{-) (2.52f)

and is as defined before.

It is important to note that through this variable reduction the

resulting flexible vehicle equations, Equation (2.52), does not contain any

rigid body modes.

For the total vehicle equations the variables and coefficients of

Equation (2.44) are partitioned accordingly and the notation of Equation

(2.47) is employed; for example, the second derivative coefficient becomes:

K] -u+K -6 1
[Kv NVRVq MZjjj nvj U

-u_.- -0

UnU MVu nun MVn- MVlnOnn
K1n U +K n0

where, from Equation (2.46a):

Sn~ 1' 2.35VU-uKT M un [R+r5+u5JJ' - (IE') MT(us)J(254
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Mv-=IHr{((R+rS+Us]-_ I (E(34"n.RT (,I53fl} (2.54a)

Mv-uun=--- (E(3)jMn (2.54b)

_ W T  
2 5 =

MVu=mn [R+rs+us- gmnUn] (2.54d)

and, from Equation (2.42b):

[H M=[3( J) MR o1 (2.55)

vnKV Mv 1J 01 C In J

The same procedure is repeated for the remaining coefficients.

Partitioning accordingly and using the same subscript notation yields:

from Equation (2.46c):

GV=MT2(+r +u )-20 (R+rS+su4(3)

+ [;(R+US+rs)]+ (R+us+r ) (2.56a)

G(nfGV 01 (2.56b)

2c(RT T~) 2T +rU)E(3)

GVU nun= +(R+us 2rs (R't

+[(R+US+rs)]+(Ru~.Ii (2.56c)
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from Equation (2.46d):

swin-I l -l -- [(s IsCsj n-+ R CsCwsS -

+ [(w+Cs) ]l1(Cs) n- }(CT)l 25aT"s~ "n- T n -l 5"n-i

GV-- n=GV 0 [ O (2.57b)

T0 (2.57c)

GV a 3={ +C T aC~n I c)CTInCn}Cn 25c

from Equation (2.46e):

AV=u-=MT(-;(R+rS+US w-04J (R+rs)]+(2RT+2r +us)

- (R+rs+us>-_[T(R)]E(3)} (2.58a)

AV- =AVU 4 01 (2.58b)

AV~{-c(Rrn~n)T[ T (R+r) ] 42RT+2rn n~

A v n n = ( ;( ~ r +- ()] + rn u T  [ T ( R ) ] E ( 3 )} ( 2 .5 8 c )

and, from Equation (2.42f):

SAVON ]-0 (2.59)

[A - V 0.n]

Sigze qn does not appear on the right hand side of Equation (7.46) this

p;rt of the total vehiKle eqution ,jil! ro'y ." a- is. The 1-f, .f ic _yf

the equation is multiplied through making use of the coefficient pai itioning
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in Equations (2.53), (2.56), (2.57), (2.58), and (2.59) and combined into

matrix coefficients for . This results in the complete total vehicle

equations:

Mvq+Gvq+Avq=LV (2.60)

where:

pv ((3 V +V-K IP' +v- HVK - IvIM U1u UuUn Ufll lUfnhUn

[nnVu UnUnn UnU nun un (2.60a)

;V_- (E(3) l-T[GV-'GV-

+ [GV ununK un +GvI3nI~nKl .l'GVunuKun-0 +GV,3n,3nKon -0 (2.60b)

AV=-(E(3)~" [AV.-UIOJ0]+[AVU nun K (2.60c)I Unun UnUl unun Un-$]

T

LV=T- (9E(3) LVT+LVR} (2.60d)

and, for completeness:

MA i=F (2.61)

By substituting r(w), Equation (2.41), into e(r) in Equation (2.31), and
substituting this and Cs(3s), Equation (2.30), into Equations (.5?. (2.60),

and (2.61) these complete dynamic equations represent 6n eq,,wti,,,, il, 6n

unknowns ( , X, and u), for 6n rigid sub-bodies. These equatioir: .,, -

nonlinear with respect to the unknowns.
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2.2 LINEARIZATION OF THE DYNAMIC EQUATIONS

2.2.1 Variable Linearization

The resulting dynamic equations presented in Paragraph 2.1.5 are

nonlinear in . Worse off, the coefficients are also a function of X, w, e,

and C. which are also time varying (most being somewhat a function of 4). The

dynamic equations have been formulated such that is to be solved for

assuming that the coefficients are known. With this in mind, the dynamic

equations will be linearized in j.

It is reasonable to assume that there will not be any large amplitude

high frequency deformations. Thus, the motion of the vehicle can be divided

into two components: quasi-static and perturbation. The quasi-static

corresponds to motions that vary relatively slowly. The perturbation

corresponds to small amplitude fluctuations about the quasi-static position.

Thus, 4 is approximated as:

q~qo+Aq (2.62)

where:

4o=quasi-static deformation. It is, the part of the
deformation for which time rate of change of the
deformation is negligible, i.e.,

(K+A)-1 '<<q and (K+)-(D+G)qo<<qo (2.63)

h4=perturbation deformation. It is, the part of the
deformation for which amplitudes are small; thus
nonlinear terms are negligible, i.e.,

(K+A)-Iq', (K+A)- (D+G)&q, and q~q

<< (K+A)- M , (K+A) (D+G)A ! , and Cj (2.64)

Likewise, the coefficients of & Pan also be decomposed int, -static

and perturbation components. As was done for , quasi-statiP ompneits will
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be denoted with a subscript o and perturbation components will be denoted with

a leading A. These components will be expanded as needed in the following

sections.

The total vehicle variables, X and o, will take exception to the quasi-

static definition; the time derivatives of Xo and wo are not zero. The quasi-

static motion of the vehicle is such that at any instant of time the maneuver

is maintained such that the vehicle does not translate or rotate, but has

total vehicle velocity and acceleration; about which only the transient

deformations are allowed to subside.

2.2.2 Quasi-static Equations

For the quasi-static equations all terms that are "highly" time dependant

and of small amplitude (See Paragraph 2.2.1) will be eliminated. Therefore,

the coordinate approximations developed in the previous section witl not be

used here. In the following sections the auxiliary equations, Equations

(2.34) and (2.36), flexible vehicle equations ,Equation (2.52), and total

vehicle equations, Equations (2.60) and (2.61), will be approximated, in this

order, with respect to the quasi-static assumptions.

2.2.2.1 Auxiliary Equations

With the full nonlinear nature of the dynamic equations being retained,

the auxiliary equations change very little. The coordinate transformation

matrices, C, and e, Equations (2.34) and (2.36), respectively, are rewritten

using a subscript o to indicate that they are evaluated under the quasi-static

assumptions (See Equation (2.63)):

Cso3 So2 cS03SOs02SS01 0CS3S s02 01Sol
+ s S 3 C Os 0 1 + S S 3 s  OS 0 1

CSo= -S~so3c O2 -s13ssso2Sso I. -SS3Sso2c1Sol (2.65)
+C s3SSol +C~so3 SS~O

so02 -C0Oso2S caSo2"s(1
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and:

cr cr cr sr sr +sr cr -cr sr cr +sr sri
0302 03 02 01 03 01 03 02 01 03 01

e,= -sr cr -sr sr sr ocr ocr0 -sr 3sr 2cr 1cr 03srol (2.66)

sr -cr sr cr cr0202 01 02 01

Likewise, r is expressed as a function of w in Equation (2.41). Under

the quasi-static assumptions r* does not change. Thus, Equation (2.41)

becomes:

t

ro=Jo%dt+r* (2.67)

e0 is found by substituting Equation (2.67) into Equation (2.66). For many

applications ro and e0 may be input as a known initial condition: t=O, thus

eliminating the integral in Equation (2.67).

2.2.2.2 Flexible Vehicle Equations

Without the time derivative terms, Equation (2.52) reduces to:

Kqo+Aoqo=Lo (2.68)

where:

[A °  +AoK A°uKJun n (2.68a)
101 101

10, _00 } -
MT (00 X0'+ + R+r (2-8b

(CT n-_1 (C50) n-1: T n-_ n-l_ 40j -so) ii o %- S) RCo) 012o3
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and:

A~ )+()n-1 [3-3)_. -1 (E(3) p, (2-8c
0Ouu=i (3 MA

note:

To and To are column matrices of quasi-static load components applied
externally to the n-I subbodies, resolved relative to the [a) reference

frame.

X0 is the quasi-static inertial position of the vehicle center of mass.

wO is the quasi-static angular velocity of (bi relative to [i).

HT, MR, K, and 4o are as before.

2.2.2.3 Total Vehicle Equations

The quasi-static component of the total vehicle equations are also

simplified. The time derivative terms in Equation (2.60) are neglected as

stipulated by the assumptions imposed in Equation (2.63). In keeping with the

quasi-static assumption, the total vehicle acceleration terms are not
neglected: that is, the first time derivative of wo and the second time

derivative of Xo are retained. All that remains of the total vehicle

equations ,Equations (2.61) and (2.60), are:

Fo=MAOdXo (2.69)

and,

AVoqo=Lv°, (2.70)
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where:

Ave (E - [AVo- 01][AVourVun VU K (2 .70a)tU Unun UnUl Unun Un-0J

LV=o(E(3) T{LVOT+LVOR}I(-7b

and from Equations (2.58a), (2.58c), (2.46g), and (2.46h) respectively:

){ T_ - T(R+ [ s ] -o (2RT+2T uT

AVOu mmn{-% (R+rn+Uno)-% [c (R+rn)]+ (2RT+2r +uo)

-(Rrn T_>&-T a(R+r]E(3)} (270c)

(R+rn+o)RI(RIJ)](3 (2.70d)

LVOR= so)K~(S).+(c) n% (C5J1 4 (2.70f)

note:

Fo and To are column matrices of the quasi-static load compn1-,it': applied

to the vehicle relative the the vehicle center of mass. LeS,,',-d relative

to the (b) reference frame.
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2.2.3 Perturbation Equations

In the previous section (Paragraph 2.2.2) the quasi-static dynamic

equations were developed. In this section the corresponding perturbation

equations will be developed. Here, the aircraft deformations are assumed

small in amplitude, thus the equations will be linearized (See Equation

(2.64)). As was done for the quapi-static equations in Section 2.63, the

perturbation dynamic equations will be presented in three parts: au;liary

equations, flexible vehicle equations, anG total vehicle equations.

2.2.3.1 Auxiliary Equations

In keeping with the perturbation assumptions it is assumed that the

deformation of the structure is limited, that is Aus and A1s are limited.

Specifically, A1s will never achieve magnitudes greater than 10 to 15 degrees.

With this assumption some of the auxiliary equations are reduced.

By making the above assumption and assuming that (as) for the

perturbation analysis coincides with (a) prior to perturbation deformation,

A~s is approximately represented in the (a) reference frame. In so doing,

however, note that Is (the inertial element dyadic) will not, in general, be

diagonal. With A~s redefined, Aws becomes (See Equation (2.9)):

A. 69Qa +(a5 T- (2.71)

Likewise, the element mass inertial dyadic, Is, is now defined as (See

Equation (2.28)):

ISll 1s12 s13 5S1

~5 ~~} 51 1  1 2 1 52J
ls31 1s32 s33- -s3

=(a)T Isias }  (2.72)
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It is desirable to keep Is time independent. This is done by allowing

(as) to rotate with the rigid sub-body. The direction cosine ,C s , relating

(as) and (a), is expressed in terms of 60s . With the small 81s assumption,

this relationship between [as} and (a) ,Equation (2.33), is approximated as:

[ 61 -&OS 21 T
(a5)- _AOS3 1 0slJ C5O(a)

6OS2 -s s 1

f~iOO]_613S3 _6132 B.T
1 0 0Loo [ 0 -1s, s2~

=1[0 0sl 
0

=[E(3)-* ICT (a}=ACsT o(a) (2.73)

Note also:

(as) = ([(E(3)_A3s I so}(a))
TT

=[a)}TCso [E(3)_-13sjT

=[a) TC[
T s (3)+jT (as { TsoCS (2.73a)

=()Cs'E(3n)+ s)' (2.73b

(AC ) ;E(3n), ( jfl (2.73c)

Likewise, the perturbation coordinate transformation relatin7 the

vehicle's inertial orientation, Ae, is expressed in terms of Ar (' Equation

(2.36)). The same approximation used for As in Equation (2.73) i-: ised for

Ar 1 ar3 -ar2 = l [1 o -) 6r3  6r2

e -ar3  1 1 = 0 1 0 - Ar3  0 -6r1 =E(
3 )-sr (2.74)

ar2 -ar1  i o 1. L-6r 2  6r1  0
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also:

oT-=E(3),r + I" (2.74a)

=,i (3,)_ (,)' n  (2.74b)

(1T - E(3n)+ (Cr) (2.74c)

Finally, Ar is found by substituting Aw for the perturbation component in

Equation (2.41):

t
Al= O &adt (2.75)

For A" to be expressed as a linear function of A, and hence AO also to

be expressed as a linear function of 6w, then &A as a function of time must be

known, the integration of Equation (2.75) performed, and the result

linearized. The functional form of Aw will not be assumed here. Instead, all

tr terms will remain on the right-hand side of the dynamic equations as an

apparent forcing term.

2.2.3.2 Flexible Vehicle Equations

All the previous approximations are implemented into the nonlinear

flexible vehicle equations (Equation (2.52)). The following rational is

utilized: any linear terms in bs, AO, and Am are retained; any time

derivative quasi-static deformation terms are neglected (See Paragraph 2.2.2).

Using the quasi-static/perturbation notation of Equations (2.63) and (2.64),

the perturbation flexible vehicle equation is written as:

RO/ +Dh4+Go +Kh4+ Cho 64= CL- b9qo  (2.76)
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where:

(2. 76a)

j =Fiu+N 0 nK Un OW nK ] (2.76b)

UU O u u u n G~ J Un] (2.7 6c)
101 G -I

n n n n (2.7 6d)

n- ( + COOn- AxR 5 )n +i

andT from Equtins62.8)

~~Hojjij ~ Hjiu iRt (n) I(3)"]

(G4Esn-3- MA(OOj- +a

to] i []02.7a

and, rom quatins 2-48)



0 O M6A ] (CT0 :

= -'M~) R 0O [~~ (2. 77b)

[0oln~ n~nl

from Equations (2.49):

[ (3n )_, - (E3) RT

2H F2R (E,) n -3 -( T l MjT d. (2.77c)

R(rT ni RA

[01 Tqg -C T C

3)IC (CO TOjn 1 101((2.771

frmEutos( I0 and (2.51]

[(1An.. AA

"T~~M Iia;) AM
6FT(B %aO;D nj C%+(2.77e)
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[Ao 0 AA°q [ T n (C I ,+ T 7 ) n

&Ao- A0 nO (RC Tso) MR Cs S C.oSoJJ to) R(s
- - [ .. -

"(CTjeso) )no J- [ (CT soIsCSo" ) n - 1

+ ( iCTO)~' jk(C 50 ) [; IsCs oo)]nI (2.77f)

to]CnoO- (c 0 Ionno) + CTno-nCno- (CTnolnCnobtoo

AAu A + n [E(3)__ (E (3)j' (+3&)
°on- (Foo I  -

[E(3n-3) -1 -(E(34 T]

(2.77g)

Remarks:

1. A and AT are column matrices of perturbation load components applied

externally to the sub-bodies, resolved relative to the (a) reference

frame.

2. MT, MR, HT, NR, D, and K are as defined before.

2.2.3.3 Total Vehicle Equations

The perturbation total vehicle equations are developed in a manner

similar to the development of the perturbation flexible vehicle in tip

previous subsection: The approximations derived in Paragraph 2 '.' I are

implemented into the nonlinear total '-hicle eq,,ations, Equal i'I ,,() and

(2.61). Only first order perturbation terms are retained; zero oder terms
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having been accounted for in the quasi-static total vehicle equations,

Equations (2.69) and (2.70), and higher order terms assumed negligible (See

Equation (2.64)). This yields:

MAO AX= AF-MA A o  (2.78)

and:

MVoq+Gvob+ AAVo -- &V- A-qo (2.79)

where:

ivo= (E(3) I M- 1 T  +Mvo - MVOT +KijcK-]

u n Vo +MVoU n un]

+ UU +MVunKun' I V nn (2.79a)

+ MVo on An K k I +MVIOlnI3nOln~

Gv0 = (E(3) I! -1 [GVo IGVO

+ [GVouuK + VOSnK IGyuK +GVOlSnlNKl"] (2.79b)

T

ul O

AVo= (E(3) [AAO- l T VO

+[MAVoUunKun +VOlAn 3nKln AVOunKuna +AAVolnlnKIln'] (2.79c)

T

LVo=T- (E(3) T {ALVOT+ +ALVORI (2.79d)

[A = (E(3) [AAV[uM + [O]KAVu nK i n] (2.79e)
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and, from Equations (2.54) and (2.53):

V~uu (k~kS*oJJ MA(E(3)MT J (2.80a)

My0 U =En[R+rs+uso- '-Imnuno] (2.80d)

MVOTO=jCsJ K (2.80e)

Tv~~I (2.80f)

From Equations (2.56) and (2.57):

G;VOiUi=IS 2, (RT+rs+us. -2 (R4rs+us)E(3)

+ r% (R+r,+u5 s)]+ (R+rS+US) o} (2.81a)

GVO=%xj2 RTr S.-o(R 3

+ [wo (R+ r5+u5 o j]+ (R+ r,+u So"} (2.81b)

GV0O={f [(ClS IScS 0%3l 1  SO0) 1 ,(cso 0ojn-

+ lsrI 1 H )f.1(T jf (2.81c)
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GV n+n -Cn n~o ionCniA~O+%bCnIrCn}o n (2.81d)

From Equations (2.58a), (2.58c) and (2.77f):

MAVO-=KiT{-w (R+r +Usc % o]_ b[ T~[ (iR+rs +2w% (RT+r T+u T)

-+Us )wo~~] ~(R+r,)]E()F28a

AAVou n~un{-%(R+rn+uno % [cuno]- [%(R+rnj]+2% (RT+rn+un)
- ~ T (rnu -[u]-[(rJ]E(3)} (2.82b)

LVT=MT{-&.[ (RTor )%]-o)O [(RTOrR) &)

+&a)(T~rsJ (_(CTiT(R~rJ 2.3

&AVOIW (CT0 ~ (c 0 %i + (&I -'h (C5 0)W*6+ (jn)- c1 ~a'(.8
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From Equations (2.58):

MvT{~.)(~rs~ s) _- (R~r+usj ) W[W (R+rs)]-_o [uT (R+rs)]

'n-1

+A(2R T+2r T+11T ) - (Rr+us)J-T [&JT(R)]rE(3)} (2.84a)

AAvu n Cw (R~+ rn+U no) T_ R+ rn+un.)A '-Z[Wo(R+ n) ] - [AT (R+ in)]

+AiI2R +2rn +u~I n )R+rn+uno)I~r- IAco&R~rnIE 3  (2.84b)

2.3 AERODYNAMIC AND GRAVITATIONAL LOADS

2.3.1 Aerodynamic Loads

2.3.1.1 Introduction

In the preceding analysis, all non-structural and non-inertial loads

acting on the structure have been assumed to act as an external forcing

function, independent of structural motion. Aerodynamic loads, however, are

dependant upon the movement of the structure. This interaction of

aerodynamics and structural dynamics - more commonly known as aeroelasticity -

encompasses much more than will be considered here.

Usually, aerodynamicists calculate aerodynamic forces for the rigid body

motion of the aircraft. These forces are then put into the equations of

motion as external loads. The resultant structural motion (time dependant) is

then fed back to the aerodynamicists. They, in turn, calculate a new set of

aerodynamic loads. And the cycle continues (hopefully to converz-nce).

If the aerodynamic loads can be expressed as functions of th stiuctural

variables, then a more empirical solution is possible. Many as',imptins are

needed in order to account for the aerodynamics directly. TI,= .,".Ic,,amic

force acting on a panel is assumed to be a function of the angle ,I attack of
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Figure 2-8. Discretized Aircraft
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all panels; a-s, s=l,...,m. The angle-of-attack is a function of the relative

panel velocity, Vs, and the orientation of that panel. The next sections will

detail one possible approach for modeling the aerodynamic forces.

2.3.1.2 Aerodynamic Panel Orientation

For an aerodynamic analysis, it is assumed that the surface of the

aircraft is modeled using a panel method (See Figure 2-8). One such panel is

shown in Figure 2-9. In general, this panel is curved. The curvature of the

panel is approximated as a surface which connects all four vertices with

straight lines and linearly varies in both directions. This allows the

modeled surface to remain continuous, even for large vehicle deformations.

The mean span chord line is defined as the straight line which connects

the mid points of the leading and trailing edges. Points 0 and I are defined

along the mean span chord line. These points are chosen anticipating that the

resultant aerodynamic force will be expressed at Point 0, and that the angle-

of-attack is defined, and the downwash boundary condition will be satisfied at

Point 1. Both points are expressed in terms of the vectors which locate the

vertices of the panel by using weighted averages:

a a [ ) a u+(2.85)!so*-xO (so= S2+ s2 + £3+ s3)+x0 s4+as4 +  s5 ) 85] (.

and:

a a ( a a ra a a a (2.86).ESl* USl=[lj) Is2 s2* s3* us3)+1 Es4 us4+ rs5 +  s5)] 2.6

where a pre-superscript a indicates that the variable is associated with the

aerodynamic model, and x0 and x, are the percent distances aft of the leading

edge of the panel for Points 0 and 1, respectively.

Associated with each of Points 0 and 1 is a vector base a[A,,l) arid
a(asl), respectively. The orientation of these dextral orth,,'0,.,I .... toL

bases will follow standard flutter sign convention: the firs, ,i, --tot lies
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along the mean chord line from trailing edge to leading edge (this unit vector

is same for both points), the second unit vector lies in the plane of the

panel "out the right wing," and the third vector is perpendicular to the other

two "down" or away from the wetted surface. These vector bases are related to

the [b) vector base through direction cosine matrices:

a aso=aCsOfb )  and a (as}=aCsl{b] (2.87)

Since the orientation of the aerodynamic panels is a function of q these

direction cosine matrices are also functions of q. This functionality will be

discussed in Paragraph 2.3.1.3.

The location of the panel vertices relative to Point Q, aps-arsjaqs

(j=2,...,5; s=l,...,m), are related to the structural degrees-of-freedom via a

grid transformation matrix, DQ:

a '=au+aI'=ar'+D (2.88)

where ap, is a column of all non-redundant panel vertex locations, Do is

dimensioned accordingly (in general not square).

Likewise, the resultant aerodynamic loads acting on the rigid sub-bodies

at Points QS are related to forces acting at the panel vertex points via a

grid transformation matrix, Df:

{aero Df (afv, (2.89)

taero)=

where faero and taero are the resultant aerodynamic forces and m-,nt':,

respectively, acting on the rigid sub-bodies, afv is a column of ;;If non-

redundant forces acting at the panel vertices, and Df is dimnS-i,,I

accordingly (in general not square).
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The weighted averages in Equations (2.85) and (2.86) are incorporated

into the transformations in Equations (2.88) and (2.89) to yield two new

matrices, Dq and DL, relating the defolmation of all panels at Point I to q,

and sub-body faero and taero to forces acting at all Points 0:

aui=Du ( +D3c )n-I 1 1Dqq= [ -D *q K - (2.90)

and:

faero =DL ac (2.91)
Itaero)

where Dq is 3mX6n, D and Dqn are the appropriate extractions of Dq (See

Equation (2.51)), DL is 6n-6X3m, and af is a column of all m resultant

aerodynamic forces at Point 0.

2.3.1.3 Panel Coordinate Transformations

In Paragraph 2.1.5.3 auxiliary equations were developed which expressed

the direction cosine matrices, C., as a function of q: specifically, a unique

function of only the corresponding Os (See Equation (2.34)). This was

possible because each rigid sub-body has its own N which are independent

degrees of freedom. Such is not the case here with aCsO and aCsl for the

aerodynamic panels. The motion of each panel, and hence the direction cosines

defining the rotation of the related hybrid-coordinates, is a function of all

aus . In this section the direction cosines will be defined.

The direction cosines are order dependant. In Paragraph 2.3.1.2 this

order was defined as: 1 forward, 2 out the right wing, and 3 down ()r away

from the wetted surface). The three successive rotations of ea'i, ;,nd the

intermediate coordinates generated are shown in Figure 2-10. Sic,, the motion

of the panel (in ihree-space) is defined by the translation of th- ',tices of

the panels, the rotation of the panel at Points () and 1 will h- , iid by the

relative difference in motion of the~r points. To demonstial, ,li locedure
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additional points are identified which lie on the edges of the panels (See

Figure 2-9). Points 6 and 9 define the leading and trailing edges of the mid-

span of the panel. Points 7 and 11, and 8 and 10 define the x0 and x1

percent-chord lines of the panel, respectively. As was done for Points 2

through 5, the location of Points 6 through 11 may be expressed as weighted

averages of Points 2 through 5:

a a +a -1(a a a a ) (2.92a)1s+Us6=7k Ls2 + Us2 +  s3 Us3)(.9a

a r +a u =(l-X ) (ar au +x0 (ar +a (2.92b)

as9 0 aEs 3+ us3) (s 45 us4) (2.92c)

a a a aa a (l-X) (a+ (2.92e)

a i+a usil x) (ars+a Us2) +X0 (aN 5+a us5) (2.92f)

For the first direction of rotation the deformations are resolved into

the y-z plane (Directions 2 and 3, respectively) as shown in Figure 2-10.

Points 8 and 10 translate to induce rotation of the xI chord line about Point

1. This direction cosine angle, a0sl, is defined as the arctangent of the

difference in the vertical deformations divided by the initial chord length

plus the difference in the horizontal deformations:

a a

aOi=tan -1 u83-_ u 103 (.3l al a a a (2.93)
r82' u82 - r 102- u102

The direction cosine matrix, aCsl, associated with the angi' d-fined in

Equation (2.93), defines the first rotation with respect to the Ah.ll vector

base. The new axis is identified with a superscript '. The q-,, direction

cosine matrix is found using the sam' prt:edure! the defoim;,i- .. . ie,;lved

Into the z'-x' plane (Directions 3 and 1, respectively) as showii ii, Figure

2-10. PQints 6 and 9 translate to induce rotation of the mid-span line about

Point 1:
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-Iau _a-u9 )-

a-1 N 3 3aa ) -1 N 3 4a3)
asi =tan a a ' a I a tan a a a a (2.94)

r61+ u6 - r91- u91 r6 u6 - r9 - u 9 1

Since the previous rotation was about the x axis the prime and no-prime

values for the x direction are equal. The new axis defined by this rotation

is identified with a superscript ". The final direction cosine matrix is

found using the same procedure: the deformations are resolved into the x"-y"

plane (Directions 1 and 2, respectively) as shown in Figure 2-10. Points 6

and 9 translate to induce rotation of the mid-span line about Point 1:

a it a to a' a'
a =tan-1 u6 2- u 9 2  -1 U6 2- u9 2  (2.95)

OSl3 a a"a"a" a " a " a " a i
r6l+ u61 - r9I1- u9 1 r61+ u61 - r9I1- ug 1

Since the previous rotation was about the y axis the double prime and

single prime values for the y direction are equal. With all direction cosine

angles defined, the direction cosine matrix for Point 1 is evaluated as:

a _aC  aC  a
S= S13 CSl 2  

cS
1 1caosl13 saosl13 0- caOs 12 O -sa Osl 2 ] [ 1 O0 O0

-sas13 caos1 3 0 0 1 0 0saosll
0 0 1. Saos2 0 casl JL .- saosl caosll.

11ca s -cas 5 3sa 6s1 caosl"ca~lcas2 a l~ a ~ l s ~ s la  
+ 5a "a z11

+Sas 13 ,Sl 1  +S a 6s13 S a 1Sl 1

-saosl13 ca3sl12 -sao sl3 sa s12 sao3sz11 -sasa13 sas12 caosl (2.96)

+ca s 11ca s 13 +cas13s a s I 1

sa s 2 -ca sl sa s l ca sl ca sll

In a similar manner the direction cosine angles are forrntil.,,, .111d used

to define the direction cosine matri fnr the _ vecto 1t
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aaaa

a sltn (a a a U7 - 13 a 'a (2.98)

a u ' au

r6 l+ u61- r91- u91 a a aa61 ~j u

a a-1 u2 g2 = a a u62 " 2 (2.99)
a a a 61 g -a 9 r6 l+ u61 -ar9 1 -aU91

Equations (2.98) and (2.99) look identical to Equations (2.94) and

(2.95), however the prime and double prime quantities are dependent upon the

first rotation which, in general, is not equal at both points. The

deformation angles described by Equations (2.97) through (2.99) are now used

to formulate the direction cosine matrix for Point 0:

cas OSa0 3 0] [c a os5  0 -sa S2 0 0

= os 3 OO 0~ 0 1 0 10 cao So sao SoI. 0 0 1. Lsa a0 0  0 ca o0 20  ao s caa0 l

ca OS03caos0 2 ca 0 3 ao 0 2 aos -cao 03 ~So 2 caosl

+SaoS03 20 ol + ao03 s o o

-= Osa0  ca130 2 -Sao0 3 Sao0 2 saoo -Sa 03so cao0o (2.100)

+Cao ol aOS03+Ca O03sa o50

SaOs2 ca O02 saos5 0  ca Os5 0 caos5 0

For completeness, the following relationships define the lo(-;t ion vectors

for Points 6 through 9 in the intermediate reference frames as ;4 finoon of

their values relative to the initial panel reference franw:
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ar a a_(a" +au

rsjk + Us k =a C S33 ( r sk + uskl
aaa a'

a aC  2 (arsk + usk)

aC aC  aC  (ar k +ausk=aCs (r aU* (2.101)-s3 sj2 -k SO , Sk * sk) 211

where j=O or 1; k=6,...,l1, and the asterisk indicates the initial value

(before transformation) which is the value evaluated with respect to the (b)

vector base.

2.3.1.4 Panel Relative Velocity

Each panel may be subjected to a gust, Vgs" Other than the gust velocity

there is no contribution to the panel relative velocity other than the motion

of the panel (See Figure 2-11). Relative velocity of the panel will reduce

the velocity of the panel, Vs. The velocity of the panel at Point 1 is found

by using the vector differential calculus identity in Equation (2.11) on the

inertial position vector of Point 1:

id X+c+R+ a s+ id+ bd bda u c+R+a rs+ausl) (2.102)

If Equation (2.102) and the gust velocity, Ygs, are expressed in terms of

the a(asI} vector base then the relative velocity, VS, of the panel vehicle

becomes:

vs=VgS-csje[8+ + S1 +(d(c+R+ar S J+u 1] (2.103)

The expressions for c and its time derivative, given by Fq,,it'in,: (2.19)

and (2.20), are repeated here for convenience (recalling that C i. F-CO):

1n

c=- AAsUs  (2.104)
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and (recalling that ga is zero):

Equations (2.104) and (2.105) are substituted into Equation (2.103):

V g.- - _Cms Us+ u + -+R+r+u (2.106)
Vs=Vgs-as1 MA- n * . 1 M.-- E.mus + +J

A1 s=1

Substituting for aul form Equation (2.90) into Equation (2.106) yields,

v g- -m u +A q m u +Rd-rad-.q. (2.107)aS=1  E " s s s1 qs

where di, is a 3X6n-6 extraction of Dq beginning at row 3s. Using the pi

operator of Equation (2.16) and the auxiliary equation expressing un as a

function of 4 ,Equation (2.47), the terms in Equation (2.107) are rearranged

and combined according to the order of the unknown:

V =g._CS1[6+ ;(R+a sl);(--i m .u A+ q)- -;- Emsu.+d- q

M s=l i S - s=l "qS=sgs-acsl [O+ (R+ars (E(3) -1 T + A [K ] - d s q

V s ,4rl 1011+ [K u u q

MAl (E 3 0]+ N KniKn0 sq (2.108)

2.3.1.5 Panel Angle-of-Attack and Aerodynamic Loads

Angle-of-attack, as, is defined as the angle between the rl]aip

velocity and the projection of the relative velocity that lies in 'lie plane of

the panel at Point 1 (See Figure 2-12):

as=tan (2.109)

2 2
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Figure 2-12. Aerodynamic Panel Angle-of-Attack
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It is assumed that an aerodynamic force, afsk, proportional to the angle-

of-attack of the k panel, ak, is induced on the s panel, and acts orthogonal

to the s panel surface at Point 0. This proportionality is expressed as:

afsk=GAMskxk  (2.110)

where GAMsk is the s,k element of a General Aerodynamic Matrix: a function of

the panel areas, panel chord, relative panel position, singularity type and

strength of the k panel, and the local dynamic pressure of the k panel,
1/2 P~k'Vk.

The total aerodynamic force acting on the s panel, afs, is the sum of all

afsk; k=l,...,m. These total panel forces are arranged into a single column:

occupying every third element, the other two being zero, by premultiplying

each row by a 3X1 shuffle matrix, Cshuf={O 0 1)T. This results in af (See

Equation (2.91)):

af (Cshuf) GA I' (2.111)

where [GAM| is a mXm matrix of all GAsk and ' is a mX1 of all ak .

Now the aerodynamic loads, faero and taero, can be expressed as an

explicit function of the independent structural variables X, o, and 4:

Equations (2.97) through (2.101), and Equation (2.111) are substituted into

Equation (2.91) to express aCsO as a function of X, w, and 4, and af' as a

function of '; Equation (2.119) is substituted into Equation (2.111) to

express a' as a function of V. (s=l,...,m); Equation (2.108) is sobstituted

into Equation (2.109) to express V. as a function of ; and Equati,,m7 (2.93)

through (2.96) and (2.101) are substituted into Equation (2.108) t,, e:press

aCsl as a function of X, &), and 4.

This form of the aerodynamic loa, - i- consitr'nt with tl, 1 ,i,, ,olls in

Paragraph 2.1 and is suitable for use in the flexible and total --x'hi,'Ie
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equations, provided by Equations (2.52f), (2.60d), and (2.61). For the

reduced flexible vehicle equations, Taero and Taero are the upper 3n-3Xl sub-

columns of faero and taero, respectively. For the translational total vehicle

equations, Faero is the sum of all faeros; s=1,...,n:

T

Faero=(E(3) faero (2.112)

And, for the rotational total vehicle equations, Taero is the sum of all

taero s and the matrix components of the cross products of rs+u s with faeros,

s=l,...,n:

T

Taero (E(3) ' [taero+ ((rs+us )nfaero] (2.113)

In the next sections the aerodynamic loads formulated above will be

simplified using the assumptions in Paragraph 2.2 for quasi-static and

perturbation (linear) analysis.

2.3.1.6 Quasi-static Aerodynamic Loads

To formulate the quasi-static aerodynamic loads: first, all time

dependent variables are expanded into the quasi-static and perturbation

approximation of Equation (2.62); then, all terms negligible with respect to

the purely quasi-static terms are dropped (See Equation (2.63)). The

resultant quasi-static aerodynamic loads as functions of the quasi-static

aerodynamic panel forces are extracted from Equation (2.91):

faero - DL (aCSOo) af (2.114)

Ouasi-static deformations may be large enough to warrant .. ..... :liation

of the grid transformation matrices V1 Aind Dq. Fot the di''. i . ie
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matrices associated with Points 1 and 0, the quasi-static components are

extracted out of Equations (2.93) through (2.96) and Equations (2.97) through

(2.100), respectively:

a S 10= as13o aS12 oa S1 0

cas130 sas 130  ca S120 0 -sa 5  1 0 0

-- 3 0 ca s 3 0 1 0 0 ca Sl sa s 10j

0 0 1.1 Ls aOs12o 0 cas 1 2o
j  -saosllo caoslloJ

- ca o.scas13o0as12 °  1as3o0aOsl2oal ° -c 13 s 1S12°  10o

+S S3 o  oa 1 +sas 13 oSa sllo

-sa 3ca - sa~ sl sas sasl sas8 caosl (2.115)

+capsllocaos130 +co 30So S1i o

sas2 0  -cas 12 SaOs5 ca 51 caos

where:

a a

a a aU a a (2.115a)
1or82+ u820- r 102- u102o

1 (a -a1 ( ' a'
aOS2 = ta n  a u63° --u93° =tan - a a (2.115b)

Ur6 j u6 1o- r9 1 - u9 1 0 r61 + U6 1 -r 9 1 - U9 1 0

a " a " a' a'
a =an- u62, - u920 =tan-1 U620- 9 20 (2.115c)sl3oa a a a " " aa a

r6 1+ u6 1  r91- u9 r61+ u61 - r9a- Ua
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and:

a CS 0a.C 0 a 0 a O1
.s ca Cs 0  Cs0  s 0 0- as20 s O 2 -1 00

0 S Os3 0 O sO 3l o 01 0 a s lo s js

a0 a0  0. sa 0-s 0 0 s2 L sasl a~~

+Sa Os 0 ca s l +,a 0 cO3 0  s a85

+Ca so SQ 2
3 +C S 10  10~s j

ca 0 2a0 -ca sO2 ssas 0  caa0 5 0 5 aO 5 0 as 5 0

a 0 as sa1 u73- u13 (2.116a)

a a a a

(a' a' P _(a Ia'
ata- 1 - u 6 3 - U 9 3 ) = a -1u - u9 0 (-11 b
13s a2 n a a ' aI a t - a au~~ (2 a1
0 S 2 r6 + u6  0 ar 1- g a0 r6 +au61 0 ar9 1  -u91

aita" =1 a I a'F

atan- 1j- - 60 2=tan 1 60 20 7-(.1c
S a a IV a 1 ti f a 11 aOS3= r6j+ u61 -r9 1 - u9  r6 j+ U61 - r91- Lic),

0- 1 0 0 10

For completeness, the following relationships define the qlt;;z:i *-tatic-

location vectors for Points 6 through 9 in the intermediate f'""- rames

as a function of the their values relatib'e to thc- initial pmi- 1,~r

frame:
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a a a " a "rsk +ausK 1=a Csj 3 ( r"k + USko1

a~ ~ an +a t

=a C  a C j rs + aUko

sj30 C2 0  10 0 0

=aC  ac  a c  (a *s+ a u* )= s a r*+U 217
Sj30 2 Slo + USk=0 SOk rsk USk.

where j=O or 1; k=6,...,11, and the asterisk indicates the initial value

(before transformation) which is the value evaluated with respect to the (b)

vector base. Specifically:

a6 aS60=1(a s2+ s2 +S + a a (2.118a)

asr +a s =(l-x ( +auao +Xo (as4)+as4a a (2.118b)
7 s7x0 0 ) N 3aa~o 0

as 8+ a Us8off(l-x 1) (aE5 3+a a s3o)+xo (aEs4 4+ a us~o) (2.1I18c)

a a+a a r a (2.118d'

.sio~ 2SIOO= 1 1) (a.S2s2o)0 (aaj~o

ar + au o=(1-xo) ( au a UaS a (2.118f)

The quasi-static aerodynamic panel loads are extracted from Equation

(2.111):

af CShuf)MIGAMo4] (2.119)

where Cshuf is as before, [GAM 0 is updated to account for large p'ai-static

deformations, and each ao in c ; is found from the quasi-static f-im ,if

Equation (2.109):

-1
So=tan 2 (2.120)2 2'

Vsl vs2o

2-68



and the quasi-static components of the panel relative velocity, Vs. are

extracted from Equation (2.108):

vsVV a cS ei (R a Il_ (E (3)~ [-1 10]
So~ 0  k i ~ A ~ I

A U[K U d qo (2.121)

For the reduced quasi-static flexible vehicle equations, Equation

(2.68b), To and To due to quasi-static aerodynamic loads are the upper 3n-3X1

sub-columns of quasi-static aerodynamic forces and torques in Equation

(2.114), respectively. For the translational quasi-static total vehicle

equations, Equation (2.69), Po due to quasi-static aerodynamic loads is the

3um of all the quasi-static aerodynamic forces in Equation (2.114):

T

Faeroo=(E (3) faero°  (2.122)

And, for the rotational quasi-static total vehicle equations, Equation

(2.68b), To due to quasi-static aerodynamic loads is the sum of all quasi-

static aerodynamic torques plus all the cross products of rs+Uso with the

corresponding quasi-static aerodynamic force:

T

2 3.1.7 Perturbation Aerodynamic Loads

To formulate the perturbation aerodynamic loads: first, all ,im, dependent

variables are expanded into the quasi-static and perturbati, i, i',ation of

Equation (2.62), the purely quasi-static terms have been acc,-,,ui-I f,, in the
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previous section; then, all terms negligible with respect to the first order

perturbation terms are dropped (See Equation (2.64)). The resultant

perturbation aerodynamic loads as a function of the perturbation aerodynamic

panel forces is extracted from Equation (2.91):

{Afaer}=DLO e [( arOaOma f + (CT jmaf]- {faroo} (2. 124)
A taero= so -So. ( o)taeroo.

The grid transformation matrices, DLO and Dqo, define a linear

relationship between the structural and aerodynamic degrees-of-freedom (Alaero

and Alaero to Of, and Aau' to A4): that is, DLo and Dqo are constant under

the perturbation assumptions. Furthermore, the perturbation rotation of the

aerodynamic panel vector bases beyond the quasi-static position is assumed

small: therefore the prime, double prime, and triple prime perturbation vector

bases will be assumed coincident with the quasi-static vector base. Also,

small angle assumptions will be employed in the evaluation of the perturbation

direction cosine matrices, AaCsl and 4aCsO (Equations (2.96), and (2.100),

respectively). For AaCsl:

1 taisl3 -t a~s12

1C Aa i 13 1 (3)-Aak, (2.125)

taas12 -Aaasl 1  1

where:

=a-I 6au83- a u1031 a a +.a

r82+ u82+ a u8 3 a r1 0 2- a au102

0 0

6au8a3-au103 abs1 ..
____________ - ( .126a)
a82a a a abU820- r102- u102o 

Sllo
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( au' a 'u ,-as2=tan a I a ' a a
~5 ta a'a a' a' a' a

r61 + U610o+ u6I- r9I- U9 1- u91

- (u63-au93)Aab
!i (2.126h)

a a a a aar61-AU61o0- r9I- U91o 0 S120

a -a"-1 62- u92
a r6 a to a " a " a "3 r~~ 6 o+ u6 I  6 -  r9 1- U91 - U910

u62-a.a92 Aabsl3 (2.126c)a a--a ab

r61+ U61o- r9I- U910 S130

Substituting Equations (2.126a), (2.126b), and (2.126c) into Equation

(2.125) gives:

eCE() ab5 10asi1 EM)a b51 (db ,) (2.127)

where dbslo is a 3X6n-6 grid transformation matrix which combines the

appropriate weighted averages of all 4 to yield Aabsl (the subscript o

indicates that this matrix is evaluated for the quasi-statically

deformed vehicle), and:

1
ab 0 0

101
abl=0 a bs2 =[bsk1 (2-128)

0 0 abs3 0
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The procedure above to define AaCsl is repeated to define Aarso:

1 aaso0 3 -aas02 -

CsO - 1 Asas0 1 =E(3)-&aks (2. 129)

Aa~so 2 - aaso1  1

where:

a sol =tan aau73- Aau 113

a a a .aab(.3)

r 7 2 + U7 2 +a u7 2-112  U1120-Aau2

z- Aau73- Aau I13 A abso (213a

a r72+ a' a a 'a' ab  a'

a iS0= an-1 a[ a (u63- &au93)

+ ' 6 a e'a4 a 'a ' a'
r6 1+ U61 o+A U6 1 - r9 I- Un o- U9 1

o u63-au93 abso

F s 2  (2.130b)
ara a a abr61+ u6 ,o- r91- U9 1 0 as02o

a 1 a a" a "a

&aos0
a=tan- 1 u62-u u923 a "  " a Pt aa +e " a IV a "r61+ U610+ u61 - r9j - U910o-A ,a1

eau62- Aau92 aabso (_a ab - (2. 130c)
ar6+aa61 a r9b- U91 o 30

Substituting Equations (2.130) into Equation (2.129) result'< ill

a E(3 ) abso a (3)-ab,,o (db C (2.131)
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where dbsOo is a 3X6n-6 grid transformation matrix which combines the

appropriate weighted averages of all aq to yield Aabso, and:

1

ab 0 0
solo

1 1abso =o2 W _k

_ab 2 b 3 (2.132)

1

0 abs03

Equation (2.131) is substituted into the first term of Equation (2.124)

to yield:

aTa T )ma- (3a- T
DL, (ftc rc~ juf 0;L{ [M3Ab (dbSOA q)]a C oa

S{(acT) af [ab (aTaf ]md}-=D LI Oo ) o- N[ O LSO oj dbsoo/b4

.ff ero:DO}.i [abso(aCOO a so)]Mdb5 0 hq (2.133)
ktaeroo

The second term in Equation (2.124) contains the coordinate

transformation aCsl (See Equation (2.106)). When expanded into quasi-static

and perturbation components, the perturbation component is E(3) minus a

perturbation on the deformation variables (See Equation (2.125)). The unity

matrix will yield what appears to be an additional quasi-static aerodynamic

panel force. However, this has already been accounted for in tOr fir,:t term.

To see this more clearly af is assumed to be a function of aCsl Ilv.

Equation (2.91) is expanded as:
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D L Cs=DL. (E '~ Csoo E3.4 k1 CTl
aa T T aT a(T (a- a T

aDLo Ts S l O so 0So+ CSo aCSl o)  (2.134)

The second order perturbation term in Equation (2.134) is neglected (See

Equation (2.64)). The second term comes from the perturbation of the first

coordinate transformation and the quasi-static of the second. The first term

comes from the quasi-static of both coordinate transformations. Likewise, the

first term in Equation (2.124) contains the quasi-static component of the

aerodynamic panel forces including any pure quasi-static terms generated under

the perturbation assumptions due to a coordinate transformation.

In light of the preceding discussion the second term of Equation (2.124)

is expanded. It is assumed that [GAM is only a function of the quasi-static

variables. Therefore, the perturbation aerodynamic panel forces are linear

functions of the perturbation angle-of-attacks, Au', (See Equation (2.111))

and the second term of Equation (2.124) yields:

S(aCT )mefDL(a TC )GmJM(235

To find Acs an additional coordinate transformation, aCsao , is developed

to rotate the a{As1) vector base such that the first axis is coincident with

the quasi-static relative velocity and the second axis is still in the plane

of the first and second components of a{as1) (See Figure 2-13). Only two

rotations are needed: the first rotation is in the plane of the panel, about

the third axis, such that the first axis coincides with the projection of Vs0

in the plane of the panel, the second rotation is about the primed Recond

axis:
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1 01-sas [ c a Os9 saas 0

aC
Cs o -  10 0 1 0 -saas cas 0

0 0

.0 01s a  0 ca 0 0 11

a a

= -s a O3 cas 0 (2.136)

a a a as I2 0 c O3 0 c s20 s M3 0 c S 20.

where:

a s =tan - 1V l  (2.137a)
3o = Vs20

a Os2o=aSo (2.137b)

a Os=o (2.137c)

Aft is defined as the arctangent of the magnitude of the vertical

perturbation relative velocity divided by the magnitude of the total relative

velocity. In the denominator the perturbation terms are negligible with

respect to the quasi-static terms. The numerator is a perturbation term and

is small compared to the denominator and hence allows a small angle

approximation (Note, the magnitude of the denominator may be evaluated with

respect to any reference frame):

&Ls=tan -1 av s 03I 2 V 2 2

I (VSl +AVsi) 2+(V s2o+AVs 2 ) 2+(Vs 3o +AVsQ 2

- s_3 2 .1 3 8 )
V21o+V22o+V23

slo S20 s-7
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Figure 2-13. Perturbation Aerodynamic Panel Rotatinn
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Equation (2.136) is expanded into quasi-static and perturbation components

under the assumptions of Equation (2.62). This expansion and the shuffle

matrix in Equation (2.111) are substituted into Equation (2.138) to yield Aas

as a linear function of AVS:

CT  aC a c AV CTuaC AV

hs n ________(2.139)

2 +V2 2 ' 2 V2siVSV2 o+Vs3o jVo+Vzos~o 3o

where the final approximation is made hioting that AaCsoL is approximately E(3 )

minus a skew-symmetric perturbation matrix.

AVs is found by expanding Equation (2.108) under the perturbation

assumptions. It is important to note that Equation (2.108) contains

coordinate transformations, and any purely quasi-static terms that result from

the expansion of these transformations have already been accounted for in

Equation (2.133). Therefore, the perturbation approximation of AVs is:

VSuaVgo s(2)a d 9csl)Er3)aCsl [eis+tO(RarSt)e i(E (3) 1 tioi]

relc -'K' and 
a 

r e l

((E(3 to]+ N [K - K -(214
T 'u 1lu q

Equations (2.127) and (2.97) are substituted into Equation (7.14(l) to

replace AaCs1 and WO, respectively:
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&lSAvsbs (dbsl JACsl[~~. Ras (E(( 3 )Jl[T i

+ a Ii~oi~(~r 5

r~ * I A uKU

~((3)I 1 10o1]+ !D[Ku JKU q0] 1 (2.141)

The terms in Equation (2.141) are rewritten and regrouped so as to extract

and combine according to the order of the independent quasi-static variables:

T(
'1 HArei [+ roi+ [ iK]d-]

Thefolowig horhad otatiwil e used t~~ oimplif aqi~o
+(2.142)I:- ) b(R

MAx v8&. Un$]i qVr

A~s (3) -1 d l~ +d IKA -dd q ~ (.1

-;D I E [ 1 MAK n I Un.1 s2-]78j



where the first three coefficients are 3X3 and the last two are 3X6n-6.

Equation (2.143) is substituted into Equation (2.139) to obtain , as a

function of the structural perturbation variables. The Boolean operator

matrices are the used to substitute this result into Equation (2.135), which

is the second term in Equation (2.124):

DLO (aCT) Ma ef=DL -(a Csoshuf) 2[GAI I shufa

IV5  +V +V 2Slo+ S2o+Vs3o

[ (V,+ ( &r),r"+ (d" 'n)%i"+ - . (2.144)

where the double prime represents a column matrix of m sub-matrices of the

operand.

Finally, Equations (2.133) and (2.144) are substituted into (2.124) to

yield the perturbation structural aerodynamic loads for all 6n rigid sub-

bodies:

AfaeroL=Df ( [GAI AV".

lataer oSJL 0 cs~ huf) ,12V 2 1 g+( kvsr) Ar
Slo+ S2o+ S3o

+ (di ft)i"+ (d ~~ d A+ 4

+ [absoo (Cs 0 fSo) DbsoA} (2.145)

For the reduced perturbation flexible vehicle equations. Eqti'limi (2.76e),

AT and AT due to perturbation aerodynamic loads are the upper 3n MxI gub-

columns of perturbation aerodynamic panel forces and torques in FKwition

(2.145), respectively. For the translational perturbation t',t:il 'Iii'0

equations, Equation (2.78), AF due to perturbation aerodynami, v.", I loads is

the sum of all the perturbation aerodynamic forces in Equation (2.145):
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T

MFaero (E(3)5  Afaero (2.146)

And, for the rotational quasi-static total vehicle equations, Equation (2.79),

AT due to quasi-static aerodynamic panel loads is the sum of all perturbation

aerodynamic torques plus all the cross products of rs+Uso with the

corresponding perturbation aerodynamic force and Aus with the corresponding

quasi-static aerodynamic force:

T

Araero(E(3) j [Ataero+ ~s) aero]

+(() _T(;.n- n-l11 oC]

-([Kuin IK n]0o) Afaeron+laerOno UniJKu (2.147)

2.3.2 Gravitational Loads

2.3.2.1 Sub-body Gravitational Load

Forces due to the Earth's gravitational attraction are body forces,

proportional only to the mass of the sub-body and always in a "downward"

direction. It may be convenient to define the inertial reference frame at an

arbitrary angle. Thus, although the direction of the gravitational

acceleration does not change with respect to the inertial reference frame, it

may not be coincident with any one base vector component of the inertial

reference frame.

In order to incorporate gravitational effects into the hybrid-'oodinate

dynamic equations it is necessary to define the direction of the gvavitational

acceleration in term of the inertial vector base, (i):

({)Tg (2.148)
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where g is a 3X1 coefficient matrix in which all elements, in general, are not

zero (depending on the choice of (il).

The gravity forces, to be included in Equations (2.52f), (2.60), and

(2.61), should be expressed in the (b) vector base. Recall the base vector

relationship of Equation (2.2):

(iT= b)TE (2.149)

This is substituted into the definition of the gravitational acceleration

in Equation (2.148):

&={b)Tog (2.150)

Therefore, the time dependent (8 being a function of time) force due to

gravitational acceleration, fgravs (a component of f only, Equation (2.26g)),
is:

fgravs=ms g 
(2.151)

2.3.2.2 Vehicle Gravitational Loads

For the reduced flexible vehicle equations, Equation (2.52f), Igrav and
Tgrav are a column of fgravs (s=l,...,n-1) and a 3n-3X1'column of zeros,

respectively. For the translational total vehicle equations, Equation (2.61),

Fgrav is the sum of all fgravs (s=l,...,n):

T

Fgrav=(E(3) T fgrav (2.152)

where fgrav is a 3nXl column matrix of all fgravs . The total vehicle

equations were developed with respect to the vehicle center-nf-m:,,:-.

Therefore, Tgrav is zero.
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2.3.2.3 Quasi-static Gravitational Loads

For the reduced quasi-static flexible vehicle equations, Equation

(2.68b), the quasi-static assumptions defined in Paragraph 2.2, Equation

(2.63), are imposed upon the n-i column matrix of Equation (2.151):

fgrav&oM.i (e) -g' (2.153)

where j1' is a 3n-3X1 column matrix of g.

For the quasi-static total vehicle equations, Equation (2.69), the quasi-

static assumptions are imposed upon Equation (2.152):

Fgravo= (E(3) jHT(eO)g' (2.154)

where g'is a 3nXl column matrix of g.

2.3.2.4 Perturbation Gravitational Loads

For the reduced perturbation flexible vehicle equations, Equation (2.76e),

the perturbation assumptions defined in Paragraph 2.2, Equation (2.64), are

imposed upon the n-i column matrix of Equation (2.151):

Algrav=jT (/M*)n-l 9- fgravo-T (eo L g1 (2.155)

where the final equality makes use of Equation (2.74) which expresses M as an

approximate linear function of r.

For the perturbation total vehicle equations, Equation (2.7A). Ih

perturbation assumptions are imposed upon Equation (2.152):

T T

MFgrav ((3) 1 (ae) ng, -Fg ravo'-(E(3)5 T(no)n9' (2.156)
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2.4 SPECIAL CASES

In the first part of this section, the results of the previous sections

will be examined under rigid body assumptions and compared to the rigid body

stability derivatives. In the second part of this section a simple test case

is evaluated to illustrate the use and significance of the hybiid-coordinate

dynamic equations of motion.

2.4.1 Rigid Body Stability and Control Dynamics

2.4.1.1 Purpose

The purpose of this section is to demonstrate that the hybrid-coordinate

dynamic equations summarized in Paragraph 2.1 will yield the classical special

cases when the corresponding additional assumptions are applied.

Specifically, the aircraft will be assumed rigid. The flexible vehicle

equations will be shown to yield the total vehicle equations under this

assumption. Then the resulting simplified total vehicle equations will be

compared with those found in Reference 8.

2.4.1.2 Rigid Body Hybrid-Coordinate Equations

The aircraft is assumed to be rigid. This implies that the -tiffness

matrix, KA, is infinite and that the aircraft does not deform (i.e. q is

zero). This also implies that Cs is unity. With q zero, the right-hand side

of the complete flexible vehicle equations, Equation (2.44c), is equated to

zero and solved for the externally applied loads, f and t:

= 
(2.157)

t MR '+ - MRO'

Likewise, the complete total vehicle equations, Equations (.'.'3n and

(2.46), are also greatly simplified:

F=MAeX (2.158)
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and:

(0 (4Ts (R)rW (RW nMRw'}Ti
T T •S) )+MR*, '

( )3 T(lLVT+LVR}fb d (I -W (2.159)

With q equal to zero there remains only six unknowns (X and w) in 6n+6

equations. It can be shown that Equation (2.157) is contained in Equations

(2.158) and.(2.159) by summing the flexible vehicle loads for all rigid sub-

bodies to obtain the resultant total vehicle loads. The total vehicle force

is f pre-multiplied by the pi operator:

T

f

The second term contains the sum of the first mass moments of each rigid sub-

body about the vehicle center of mass and hence is zero. The first term is

the sum of all mass premultiplying the total vehicle acceleration. Therefore

F =(E(3)' ,(ej),=M~ei (2.160)

The total vehicle torque, T, is the sum of t and f weighted by its moment

arm, R+rs, pre-multiplied by the pi operator, thus,
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T

T= (E(O)'JMRR(O'}If~

-(EM5" {LVT+LVR} (2.161)

In the above equation, getting from the second line to the third line is done

by noting that: the eX term is a constant post-multiplying the sum of the

first mass moment of inertia for each rigid sub-body about the vehicle center

of mass, which is zero; and the next two w terms make use of the following

skew-symmetric matrix identities:

VVV~(0JV-"[ 3 Wi 1 - V11j t V2Ii = -W 1vV3) V1)V"V=-(O) 'W3 0 -W 2 V 2 _j_=- W3V1-W1V3 2>

1 2 1 0 Wl+WV

- W2lVV 3) V 3 1 WVl*l2J 3

[_W2VWV 2  w2V0 1 V2 w3V+W 1V3 ]V

-W3VI+WV 3 -W3V2+W2V3 0 2W V3)
=[rIVl W1V2 W1V3] 1V1 W2V1 W3V1 ] V1 = ( T
= VI W2V2 W2V 3J-W1V2 W2V2 W3V2  2 V2 vWT )V (2.162)

L W3V 2 W3V31 W1V3 W2V3 W3V3  V3

and:

(MW)V= [0 -.V3 V2][ 0 -.W3 W2][ 0 -W3 W2]{
V3 0 -1 W 0 -W W W

(V1 0 -W2 W 01V
=(VlV2WlW3-VlV3WIW2+V2V2%/2W3-V2V3%/2W2 +V2V3W3W3-V 3VI 

u o

=VIVlWlW3 VIV3WIVI-VIV2W2W3+V2V3WIW2-VlV2W3W3 VlV3U I lj
SVIVIWIW2-VlV2WIWI+VIV2W2W2-V2V2WIW2+VIV3W2W3-V2V?~wi u

0W1  2 W3 ) (2 3  0 (. 163)
3-W 2  V1  0 V~
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2.4.1.3 Comparison of Results with Classical Development

The results of Equations (2.160) and (2.161) can be compared to other

published results by appropriately renaming variables. Figure 2-14 shows the

variable notation used in Reference 7. These variables are defined relative

to a body fixed axis; (b). Velocity components are U, V, and W; first time

derivative of X resolved in the (b) reference frame:

dU

e therefore: =dV (2164)

dW

Forces acting at the vehicle center of mass are described as ZFs . where s is

x, y, and z; total vehicle force, F:

F= (2.165)

The total vehicle mass is z; MA. This mass multiplied by the vehicle

acceleration, Equation (2.164), equals the vehicle force, Equation (2.165):

hFx= du

dV
F= EFy=Dta =MAex (2.166)

E~=dW

The same procedure is repeated to confirm the comparison th,-. total

vehicle rotational equations. Rotati-nal velocity component: .1,, r. 0. and R;

w. The inertial dyadic elements are identified as Ijk, where j a"rl k. are x,

y, and z. Thus:
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Figure 2-14. Rigid Aircraft Coordinates
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[ ixx -xy - 1Iz
T.)= |-Zy x -Iyy Iyz (2.167)

-Izx -zy IzzI R)

Component torques acting at the vehicle center of mass are L, M, and N; total

vehicle torque, T becomes:

E L'

T= EM (2.168)

The time derivative of Equation (2.167) is equal to Equation (2.168):

ZL.Pi xx+Pixx-QIxy-oixy-RIxz-Rixz,

T= M6Iyy+oiyy-IyzRiyzPIxyPixy d (I. &)) (2.169)

EN=RtIz +RIzz-PIxz-Pixz-QIyz-Oiyz

Thus, it has been shown that the hybrid-coordinate dynamic equations for

flexible aircraft reduce to the classical dynamic equations for a rigid body.

Equations (2.166) and (2.169) are called the Euler equations of motion of the

aircraft. Quod erat demonstrandum.

2.4.2 Simple Test Case

2.4.2.1 Purpose

The purpose of this section is to use a simple test case to dfmoustrate

that the hybrid-coordinate dynamic equations do produce the same io-sults as

those derived relative to a Newtonian reference frame. The model heiiig

considered is one dimensional with four lump masses (See Figt,,, I', Body B

is one of the center sub-bodies and i K mazsless The cootdi" ",,,,diately
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UNOEFORMED

0 (COINCIDENT WITH C.M)

Im !3

DEFORMED

Figure 2-15. One-Dimensional Three-Mass Model
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beneath the model in Figure 2-15 correspond to hybrid-coordinates, while the

lover coordinates refer to inertial-coordinates. This model has only four

degrees of freedom: u1 , 22 , 23 , and X. For simplicity, this model has no

structural damping; that is, D is zero. Also, the stiffness matrix will

consist of the linear springs connecting only the neighboring sub-bodies as

illustrated in Figure 2-15.

2.4.2.2 Hybrid-Coordinate Dynamic Equations Approach

The reduced flexible vehicle equations, Equation (2.52), are of dimension

two; a one less the number of unknown deformations (this being only a linear

problem). For this example U2 will be resolved into the remaining degrees-of-

freedom according to Equation (2.43). The independent degrees-of-freedom of

Equation (2.52) become:

q=u= U1}, (2.170)
Iu3 1

the dependant degrees-of-freedom become:

qn=Un=U2, (2.171)

and the coefficients become:

N=N- +N- K - (2.172)UU Uun Unu

where N is N, G, K, and A. Also:

-L-=FI (2.173)uF3J

The stiffness matrix in the second term in Equation (2.172). Ktlnql, is

defined in Equation (2.47). For this example, Equation (2.47) i-: "qlilivalent

to Equation (2.43), which is short hand notation of Equati, (' , '1here uB

is set to zero and solved for un. ThV elements of the stift,, ,,, titiix in

Equation (2.38) are defined in Equation (2.37) which contains the free-free

stiffness matrix of the vehicle, KA:
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-k 0 01kl u qU

LA 3 0 -k3  k3  0 - qq Ki U]fq (2. 174)
F2J k3 -k2-k31 k2  u2 Bq KFBUB B[FBJ 0 - -il-k

The lower partition of Equation (2.174) is set equal to zero and solved

for UB:

u 3 0 k2]{u (2.175)

It is now apparent that the motion of m3 can not be resolved in terms of

the other degrees-of-freedom using this hybrid-coordinate method: m3 is not

being directly connected to Point 0. uB is defined as zero for the hybrid-

coordinate equations, thus uI can be expressed as a function of u2 , or vice-a-

versa:

k~u~ [- j1]Ul}=K Unijq (2.176)

Kun- as defined in Equation (2.176) is substituted into Equation (2.172).

The reduced coefficiant -4trie-s, W, are foind as follows: the elements of H

are defined in Equation (2.48a):

w-ji[i2- _A(E)j2HT ]

1 m m2+mm 3  mm 3  (2. 177a)
ml+m2+n3 j. -mlm 3  m1 m3+m2m 3J
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and:

m~l~m2 m3 .0m 3 m0 [12

- m1m2 (2.177b)
ml+m 2+m3 2m3 J

Similarly, the elements of C are defined in Equation (2.49a); however, this is

a linear problem with no rotation: (a is zero. Therefore, C is zero. The same
reasoning applies to A being zero (See Equation (2.50a)). The appropriate

elements for K are extracted from the definition of K, Equation (2.39), which
for this problem is found by setting FB in Equation (2.174) to zero, solving

for uB as a function of q, Equation (2.176), and substituting back into
Equation (2.174) to express the remaining loads as a function of q only:

L[KLqq-KLquBK;'U.KF'q ] q=Kq

t0 -k3 k3 ] 0 0 k2] u3
S0 k3 -k2-k3. C2M21

kj2 0 I kjk 2  ]u 1r
[ k"-- f0 1 - U4 ii K n jq (2.178)

Skk2 klk 3+k2k3 -kjk 2-klk 3-k 2k3 /u 2  unu UnUn

On the right hand side of Equation (2.52f) is Li, which is defined in
Equation (2.51). For this one-dimensional example 0 is unity. EqiArion

(2.52f) becomes:

L-u=-i}It +f=- fm.. {F1 } (2.179)

29X F2
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The preceding development is substituted into Equation (2.52) to yield

the reduced flexible vehicle equations for this model:

1 m m2+mm 3+mlm 2 1 -mlm3
-mlm 3+m 2m3 k mlm 3+m2m3 l J

kk+klk2  0 u 'j

F1+ 2[( 1kklk3 klk3+k2k3]{3} 3i~ 3}(.10

The reduced total vehicle equations ,Equation (2.61), are of

dimension one; the number of total vehicle degrees-of-freedom relative

to the inertial reference frame (this being only a linear problem). For

this example, Equation (2.60) becomes:

MAei=(ml+m 2+m3 )X=Fl+F2+F3=F (2.181)

Equations (2.180) and (2.181) are now combined into the three dimensional

equation :

rlm2+mlm3+mm2
1  -m1 m3  (ml+m 2+m3 )m3i 1

ml+m2+m 3  m3+m2m3i1 mlm 3.m2m3  (i+m 2+m3)m3  u3
0 0 (ml+m 2+m3 )

2 Ri

[klkl+klk2  0 "1 F

1 -1 klk3 klk 3+k2k3  0 3 = F3 (2.182)

0 0 0. I +F2

2.4.2.3 Newtonian Physics Approach

In this section the Newton-Euler dynamic equations of motion (Se-

Equation (2.18)) is applied to the same one-dimensional three 1,,mi,-1 mass

model. This time, all motion will be expressed relative to 11- i, illv

fixed Point 0'. A free body equation is written for the transl,4ti1,, f each

rigid sub-body:
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For ml: Fl-keq(xl-xl)+keq(x2-x2)=mlxI  (2.183a)

For m2 : F2+keq(xl-xl)-(keq+k3)(x2-x )+k3(x3-x*)=m2x2 (2.183b)

For m3: F3+k3 (x2-x*)-k 3 (x3-x)=m3x3  (2.183c)

where a superscript asterisk indicates the initial (t=O) position of the rigid

sub-bodies, and the equivalent spring constant, keq, is expressed in terms of

kI and k2 by the series spring formulation:

1 1 1 (2.184)

This implies:

keq 2 (2.185)

Equation (2.185) is substituted into Equations (2.183a) and (2.183b).

All Equations (2.183) are then combined into a single matrix equation of

dimension three, expressed in terms of x1 , x2 , and x3 :

k k2 k k ] (2.186)

0 A3 -k3  k 3-x

The results in Equation (2.186) may seem simpler than those obtained in

Equation (2.182). However, each of the three modes of vibration obtained from

these results will contain a weighted portion of the total vehicl- motion and

both flexible modes; whereas, the hybrid-coordinate dynamic equaliniv-, yield

these three modes directly. In the case of free vibration (FI=F 2 F1 =H)

Equation (2.186) may be reduced to two equations in two unknown. ;;v :1 and

x3 . The coordinate x2 is found in terms of x1 and x3 by usii, 'h, ....ton-

Euler equation for the total vehicle

2-94



mlxl+m 2x2+m3x3=0 (2.187)

or:

X2=- m(2.188)m2

Equation (2.188) is substituted into the first and third partitions of

Equation (2.186), which is then rewritten so as to be expressed as a function

of xI and x3 :

[m+ ]Ly+[ ~ T( i*2 -k(+ T3)]Ci 4 }* (2.189)

2.4.2.4 Comparison of Results

Finally, in this section the results of the previous two sections will be

compared. Specifically, Equation (2.189) will be shown to yield exactly

Equation (2.181) by making the appropriate transformation of variables (xI and

x3 to ul and u3). From Figure 2-15, the vector addition relating the two sets

of variables is:

1 -Rc-r~ul 
1 R-rl

2=X-R-c+r2+u2 also =EX*-R+r2 (2.190)

J -R-c+r3*u3l [ 1*-R+r3)

The definition for c in terms of us is in Equation (2.19). For this test

case, Equation (2.19) yields (also, making use of Equation (2.176)):

lmluI-m 2 k2ul+m 3u3) (2.191)

M=A

For the case of free vibration, X=X* and time derivativa- -, : Hie zero.

Equation (2.191) is substituted into Eqii tion (.190), whiri ,

substituted into Equation (2.189) to yield:
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M) -(m** k ° 1 +2 

2

1Mm3- I3- u k

L ~ 1 .-kl(+k2)m 1il- R!(mlul-m2  ul+m 3u3)J0

which, upon regrouping, becomes:

l m + l 3-l2 km 1 m 3  ] ( 1 1 _ 1 [ k k + k k 2  n00ml+m 2+m3  -mlm3m2m3kj ml3 m3 k)kk 3 kk 3 +k2 k3 ]{U1}{O}

(2.193)

This is exactly the results obtained by using the Hybrid-coordinate

dynamic equations approach, Equation (2.180), for the free vibration case.

Quod erat demonstrandum.

2.5 SUMMARY

2.5.1 Review of Assumptions

The aircraft, Body A, is composed of finite rigid sub-bodies, AS, chat

are inter-connected by linearly elastic members. Therefore, the deflection of

any of these elastic members yields a restoring force that is proportional

only to the corresponding deflection (K is constant). Thus q is limited to

deflections which do not produce any cross-coupling stiffness effects due to

the geometry changes.

The aircraft, Body A, is attached to a massless Body B for All six

degrees of freedom at one Point Q. The sum of the loads at 0 i-4 -in. This

auxiliary relationship is used to define the stiffness matrix of 1h- flexible

aircraft. Prior to deformation, when us and 3s are zero, the or,in ,f Body

B, Point 0, is coincident with the vehicle mass center: thei-frn,, is

initially zero.
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The overall matrix equations of motion, Equations (2.62) and (2.113), are

written in terms of the sub-body deformations. However, the coefficients of

these equations are in terms of the overall vehicle motion (w, Qa, and X) and

the direction cosine matrices (0, C, and Cs); all of which are also unknown

(mostly a function of q). Thus, 3n+9 additional auxiliary equations are

required to uniquely describe the matrix equations of motion.

2.5.2 Review of Hybrid-Coordinate Dynamic Equations Development

The work by P. W. Likins for flexible spacecraft was rederived for an

aircraft of arbitrary configuration undergoing an arbitrary maneuver using a

hybrid-coordinate system. Vector bases are defined relative to an inertially

fixed reference frame, the vehicle, and each rigid sub-body. Direction cosine

matrices are defined describing the rotation of the vector bases to each

other. Vehicle deformation is defined by the motion of the rigid sub-bodies

relative to the vehicle center of mass. The motion of each sub-hody is

described as a series of vectors which are Lesolved relative to the

appropriate vector bases.

Special. operators are defined to facilitate the matrix algebra necessary

in using a hybrid-coordinate system. Translational vehicle deformation is

considered first. The motion of the vehicle mass center relative to the

massless body reference point is described in terms of the rigid -ub-hody

translational deformations. Separate Newton-Euler equations of motion are

written for translation and rotation for each rigid sub-body in terms of the

hybrid-coordinates. The resulting equations are combined into two sets of 3n

equations, which are then written as one matrix equation of order 6n. The

Newton-Euler equations are then developed for the vehic]e, which yields two

sets of three equations each; for translation and rotation.

These 6n+6 equations have 9n+15 unknowns. Auxiliary equati,,u : ale

developed to uniquely specify the problem. 6n equations desrrib the n sub-

body direction cosines matrices as a function of the sub-body's ,-t;4tional

deformation. Six more equations result from the vehicle's ,,t,,, ,hree

associated with defining the direction cosine matrix and thi dl.li,,ig
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rotational as a function of rotational velocity. For a free-free vehicle, the

vehicle stiffness matrix allows the motion of the massless Body B to be

described in terms of the deformation variables. This allows the deformation

variables to be reduced to 6n-6. The remaining three degrees-of-freedom

result from the choice of hybrid-coordinates: The vector base associated with

the massless body is defined to always be coincident with the vehicle vector

base.

2.5.3 Linearization of Hybrid-Coordinate Dynamic Equations

All time dependent variables are assumed to be composed of quasi-static

and perturbation components. The quasi-static component allows for large

amplitude, but slowly time varying deformations. The perturbation component

allows for small amplitude rapid fluctuations about the quasi-static solution.

All variables are expressed in terms of their quasi-static and

perturbation components. The resulting equations are expanded. All purely

quasi-static terms are collected into a set of quasi-static equations. All

first order perturbation terms are collected into a set of perturbation

equations. All higher order perturbation terms are assumed negligible. The

resulting quasi-static equations are non-linear zero order (with respect to

time). The resulting perturbation equation is linear second order (with

respect to the perturbation variables).

2.5.4 Inclusion of Aerodynamic and Gravitational Loads

For the aerodynamic loads, a deformable panel method is assumed that

allows for large vehicle deformation. The deformation of the panels is a

function of the deformation of rigid sub-bodies. Aerodynamic loads are

assumed to act normal to the panel surface at the panel load points and are a

function of th3 angle-of-attack at the panel normal wash points. The specific

relationship between load and angle-of-attack is beyond the scop-' ,f this

report. A vector base is defined at each load point and each notmRI vash

point. The orientation of these vector bases relative to th p;,-'il's vector

base is derived as a function of the -vehicle deformation. fIIt ... ,.I ,f-atack

is defined as the angle between the ielative velocity and 1,m,' 'if tile

panel at the normal wash point.
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The results are linearized using the same procedure before. The

perturbation components are highly non-linear. To facilitate the description

of the perturbation angle-of-attack, an additional vector base is defined that

has one base coincident wi:h the quasi-static relative velocity, and one base

remaining in the plane of the panel. Perturbation aerodynamic loads become a

linear function of the perturbation angle-of-attack, which become a linear

function of the perturbation relative velocity, which become a linear function

of the structural deformations.

Since gravitational acceleration acts in a constant direction with

respect to the inertial vector base, gravitational loads are directly

implemented into the hybrid-coordinate dynamic equations.

2.5.5 Special Cases

The hybrid-coordinate dynamic equations summarized in Paragraph 2.1 are

evaluated under the assumption of a rigid vehicle. It was shown that for a

rigid vehicle, the flexible vehicle equations reduce to the total vehicle

equations. The resulting total vehicle equations were then compared to a

classical derivation reference publication by simply renaming variables

appropriately. This showed that the results are identical.

A simple one-dimensional three lumped mass model was evaluated. This

provided a more tangible perspective on the application of the hybrid-

coordinate dynamic equations, and particularly on the variable reduction.

Equations of motion were derived for the same model using inertial position

vectors. The two results were compared: most notably, the hybrid-coordinate

approach results in the total vehicle equations being separated from the

flexible modes, whereas the latter approach does not. By implem~ntinK a

variable transformation, the two approaches were shown to be eqii,1"',,"t.

nonlinear with respect to the unknowns.
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SECTION 3

DERIVATION OF EQUATIONS OF MOTION AND

STABILITY DERIVATIVES FOR A FLEXIBLE AIRCRAFT VEHICLE

3.1 INTRODUCTION

This Section presents the development of the maneuvering and control

equations from first principles. The derivation is based on ASE modeling

methodology for the stability and control analysis of a flexible airplane that

includes the synthesis of active control systems. In Section 2, Likins'

method was used to derive these equations and is not used any further.

The stability and control equations are derived by defining the

translation and rotation of an axis system relative to the inertial reference

frame. The structural deformations and rigid body perturbations are defined

relative to the inertial reference frame as well. The equations are

categorized as follows:

Maneuvering Equations - These equations relate the total aerodynamic
forces and moments, including the force of gravity, to the overall
motion of the airplane relative to the inertial reference frame. The
flexibility effects, that account for the effect of a maneuver load
alleviation system, are included.

Stability Equations - These equations describe the rigid-body

perturbations of the airplane relative to the inertial reference
frame. The development of the equations covers stability
augmentation, flutter suppression, gust load alleviation, and ride
quality aspects. The resulting equations are developed further to the
extent that "small angles" assumption is no longer valid.

3.2 RIGID BODY EQUATIONS OF MOTION

The six degrees of freedom equations of motion, that provide a time

history of a rigid airplane during maneuvers, are developed.

Force Equation:
F = m d V (3.1)

it
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Moment Equation:
T = d H (3.2)

- t-

where V is the aircraft inertial velocity, H is the inertial angular momentum,

and m is aircraft mass. It is implicit in the above equations that the force,

F, the moment, T, and the time derivatives are all expressed in the inertial

reference system, the ground system in our case. It is impractical nor

desirable to use that reference system for simulations. Experience has shovn

that six degrees-of-freedom aircraft simulation can be much simplified by

solving the above equations in the body axes system.

In the following, it is shown how the force equation is derived further

to be useful for simulation purposes. This derivation makes extensive use of

the Ground, Body, Stability, and Wind axes systems, and therefore vectors in

these systems will subscribed with G, B, S, and W respectively. The

definitions of the axes systems and the transformations from system to another

are given in Section 1 of this report.

The R.H.S. of Equation (3.1) represents the total force, F; the vector

sum of the gravity force, the aerodynamic force, and the propulsive force.

These forces, expressed in the proper reference systems, are:

Gravity Force:

Fg = (0 , 0 , mg)G  (3.3a)

Aerodynamic Force:

FA = (Fj, Fj, Fk)S (3.3b)

Propulsive Force:

EP = (Px, Py, Pz)B (3.3c)
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The transformation matrices from axes system x to axes system y will be

denoted by Txy. Hence,

[cOsX 0 sine]

TSB = [A] =f0 1 0 (3.4a)

[since 0 cosJ

cOS13 -sinO 0]

TVS = [B] = sin0 cos 0 (3.4b)

1o 0 1

cos6 cos* cose sin* -sine

cos* sin sine cos* coso cose sinO
TGB = IT] = -cos* sin* +sinP sin sine (3.4c)

sin sin* -cos* sin cose cosO
.+cos cosP, sine +sin p cost sine

will denote the transformation matrices from Stability to Body, Wind to

Stability, and Ground to Body axes systems, respectively. In the above

equations, c is the angle of attack between the Stability axis and the Body

axis system, 0 is the sideslip angle of the Wind axis to the Stability axis,

and #,0,* are the Euler angles between Body and Ground axes systems.

Since the Body axes system is adopted for deriving the force equation,

then

F = TGB EG + TSB FA+ Fp

Substituting from Equations (3.3) and (3.4) in the above equation gives

F =F32 mg + [A) Fj + Py (3.5)

333- Yk Pz

where T3 1 , T3 2 , and T3 3 are the components of the third column of 'GB in

Equation (3.4c).
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Now, the L.H.S. of Equation (3.1) is proportional to the time derivative

of the aircraft velocity relative to ground. Since aerodynamic loads are

proportional to the aircraft velocity relative to the wind, VA/W, the velocity

relative to the ground is decomposed into,

VA/G = YA/w + Hw/G (3.6)

where VW/G is the wind velocity relative to the ground. Hence the time

derivatives of both sides of Equation (3.6) is given by,

Gd ~, Gd MAv Gd VG d A/G = GdVA/ W + GdVW/G

at B 3t- B it- B

where the subscript B is indicative of evaluation of the above terms in the

Body axes system (for consistency with the force terms). Now,

G d VA/W =Bd VA/W + W X VA/W
at B Ut- B B

and

Gd VW/G = TGB !W/G =  y

dt B Lv z

where _=(p,q,r). But,

Bd VA/W = Bd [A) [BI VA/ = Bd [A1 [BJ F]
at B dt W ct

This implies that,

Cosa coso]

Bd _A/B = d V sinOs
tit B at LV sina coso

[coscz coOlO [sina osO -~r i 0]

VlsinO + V cosO 3
Lsin cos1.J Cosa cosO & silry iu-i a
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Combining the above equations yields

rosacoso -sinacosj3 -cosasinO]V [qx+ sin~xcosO - rsin1 ]
d Y/Gi Isino 0 coso Vt +ky]+ V rcosxcosO - psinzcos0I
dt B si nocosO cosacosO -sinmsinl VOJ LJ Lpsing - qcos=cosSJ(3.7)

In the above equations x, y, z are the components of wind acceleration in the

Body axes system, V is the aircraft speed relative to wind. Equating the

R.H.S.'s of Equations (3.5) and (3.7) and premultiplying both sides by the

inverse of the 3x3 matrix in the later equation gives,

V = (T1 3 g + -PX 'x)cOs cosO + (T2 3 g + - - y)sinOm m

+ ( T3 3 g + -Pz z)sino cosO + 1(Fi coso + F sing) (3.8a)

g - --(F+ icos sing (T23 g + m - ycos+

-(T3 3 g + z - r'z)sinc sing + -(-F i sing + Fj cos)- (rcoso - psino) (3.8b)

= _1(T13 g + - x)sinot + (T3 3 g + Pz- 'z)cos a + Ekt zs T39+m m

-(rsine + pcosm)tanO + q (3.8c)

In body axes system, the Moment Equation (3.2) becomes:

T = 1 ") + w x (Iw)

where,

Ixx -Ixy -IXZ]

I = -Ixy Iyy -Iyz

t-Ixz -Iyz IzzJ
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is the moment of inertia matrix; IxxIyy,Izz are the mass moment of Inertia

about the longitudinal, lateral, and normal axes respectively, and IxyIyzIXZ

are the products of inertia. Expanding the moment equation results in:

= Ixx - Ixz + (Izz-Iyy~qr - Ixzpq + Ixy(4 - pr) - Iyz(q 2 - r 2)
L I(3.9a)

M = IyyO - (Izz-Ixx)pr + Ixz(p2 
- r2 ) - Ixy(' + qr) - Iyz(i -pq) (3.9b)

N = Izzi - Ixz + (Iyy-Ixx)pq + Ixzqr - Ixy(P 2 
- q2) - iyz(4 + pr) (3.9c)

where L, M ,and N are the sum of the external moments about the x, y, and z

body axes respectively.

Equations (3.8) and (3.9) fully describe the motion of a rigid airplane

in the six degrees of freedom system. Simplified sets of reduced degree of

freedom equations can be readily obtained from these six equations.

3.3 LONGITUDINAL EQUATIONS OF MOTION

The longitudinal equations of motion are obtained from the six-degrees of

freedom equations by setting all lateral and directional components to zero.

The resulting equations are as follows:

=(T3 g + x _x)cost + (T33 g + Pz _ z)sint + Fi (3.10a)(T39+m m m

(-(Tl3 g + PX Vx)sino + (T3 3 g+ PZm -'z)cs + mk) + q (3.10b)

H&= (3. lOb)

Mcg = Iyy' (3.10c)

= 0 ;and L = N = 0
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3.4 AERODYNAMIC FORCES AND MOMENTS

In Equations (3.10), the aerodynamic lift and drag forces, Fk, and, Fi

and pitching moment, Mcg, have been, traditionally, expressed in nondimesional

terms, i.e.,

Fi = - q S CDT (3.11a)

FK = - q S CLT (3.11b)

Mcg= q S C CmT (3.11c)

where CD r CLT ,CmT are the total drag, total lift, and total pitching moment

coefficients, q is the dynamic pressure, S is the surface area, and c is the

mean aerodynamic chord. The parameters that influence those aerodynamic

coefficients are discussed in the following.

The total drag coefficient is expressed as,

CDT =(CD)+ ( CD)cg + ( CD)&sp + (6CD)h

where (CD)., (ACD)cg, (ACD)SSp, ( CD)h, are the drag coefficients due to angle

of attack ,a, trim correction for center of gravity shift from c/4, spoiler

deflections and, the Reynold Number correction for profile drag, respectively.

These coefficients are determined as follows,

(CD)t = CD @ CLBasic

CLBasic = (CL)a + (CL)H + (CL)Se

n
(CD)6Sp = iZICDSsPi6SPi

(aCD)h = (30,000 - h) 4.5 . 10-8
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The variables that influence the total lift coefficient are angle of

attack, a, the horizontal stabilizer deflection, 6H, the elevator deflection,

6e, the pitch rate, q, the angle of attack rate, a, the pitch angular

acceleration, q, the normal load factor, nz , and the spoiler deflections, 6SP.

The normal load, nz, is the load component along the normal axis of the

aircraft body normalized by the aircraft weight. Equivalently, nz is the

projection of the sum of the aircraft acceleration and the gravity vector along

the normal body axis normalized by the gravity constant. It can be determined

from Equations (3.5) and (3.7) that,

nz = -(sinacosaV + cosacosBVa - sinasinoV0 + (psino - qcosacosO)V + Vz)/g

+ T3 3  (3.12)

The total lift coefficient, CLT, is expressed as,

CLT = (CL) + (CL)H + (CL)Se + (CL)q + (ACL)sP + (CL)& + (CL)4 - (CL)nz

For small perturbations in the aforementioned parameters, the total lift

coefficient is represented as

CLT = CL1 + CL2 7- + CL3 - CL4nz

where,

CL1 = f(c, 6H, Se, q, 6SP)

CL2 = aCL/a(c&/2V)

CL3 = aCL/a

CL4 = aCL/anz

Similarly, the total moment coefficient is represented

C C,~ + Cm cOC +C CnmT ml+ Cm3q - Cm4nz
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Cm1 = f (ct, SH, Se, q, SSP)

C m2 = aCm/a(c&/2V)

C m3 =aCm/zI

CmIT4  aCm/aflz

For detailed derivation Of CLT' C~ and, CmIT' refer to Appendix C.

Considering the longitudinal motion (13=0), the normal load factor, nz,

from Equation (3.12) is given by,

nz n 1+ nz 2&

where

nz1 - sincc + V q cosoc + T33 g - '/

nz 2 = -V cosaIg

Now, the aerodynamic lift and moment equations (about the c.g.) become,

Fk -q S [CL1 + (~CL2 - CL4 nz2) & +CL 3  CL- CL4  (3.13)

Mcg q SE c Cmi + 01C2 - Cm14 n 2) 01C3  I C 4 fl 1 ]

-Fk c XZCG1 - Fi c XZCG2 + HIP (3.14)

where,

XZCG1 = [cosa (xcg - xREF) + sinct (WL cg - WLREF)l /C

XZCG2 = [sina (Xcg - xREF) - coscx (WL cg - WL REF)lI/C

HIP = Moment due to thrust about the center r"f Fgi-ilv (e.g.)

Xcg = The fuselage station (F.S.) at the c.g. of Ih- aircraft

VLcg = The waterline (W.L.) at the aircraft c.g.
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XKEF - The F.S. at wing MAC

WLREF = The W.L. at wing MAC

The wing a.c. XZCG1 and XZCG2 represent the moment transfer arms that

account for the changes in aerodynamic moments resulting from the forces

determined at a moment reference point other than the aircraft center of

gravity.

The sign convention here is such that the distance x is positive aft and

WL is positive up. Figure 3-3 depicts the distances used in the above

equation.

.P F

Figure 3-3. Explanation of Distances Appearing in the Longitudinal Equations

3.4.1 Solution of the Equations of Motion for &

The CSMP 90 computer graphics programs used for the time history analysis

initiates solutions of the oequations of motion by performing solu'tions for a

and q at discrete intervals of time. Substituting for Fk from Eq,aHin (3.13)

into Equation (3.10b) gives,
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& = (-TI3 sin + T3 cosa) g + ( sina - cos)

+ -m [Pz cosa - Px sina + q S (CL1 - CL4 nzl)J

+ q S - nz2 ) & + q SCL34 + q+ - T (V CL2- CL4 M VLq

and rearranging yields,

&=(A 3 + A2 4)/ A, (3.15)

Where-

A1 =1.0 q S c _ nz2)1 im V CL2 CL

A2 S
2 = mV CL3

A 3 V ((-TI3 sine + T33 Cosa) g + ('x sinm- z cosa)

( M [Pz cosa - Px sina + q S (CL1 - CL4 nz1)I} q

3.4.2 Solutions of the Equations of Motion for 4
The second phase of the solution of the longitudinal equations of motion

is solving for the moment equation. Substituting for M., from Equation

(3.10c) and Fk from Equation (3.13) into Equation (3.14) gives,

4= q sc [C1  + c C 2 - C nz2) & C 4 - C nz1] + r CDT XZCG2

+ q S c l + ( C 2 - C 4 z2) + CL3 4 - CL4 nz1] x CT;I Mr

and rearranging yields,

= (M3  M 2 &)/M 1  (3.16)
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Where,

M - I - q S c (Cm3 + CL3 XZCGl)

= - q S c[ Cm2 - Cm4 nz2  V (- CL2 - CL4 nz2) XZCGIJ

M3 =q S c[Cml - CM4 nzI + (CLI - CL4 nzl) XZCG1 + CDT XZCG2J + MP

From Equations (3.15) and (3.16) & and q can now be determined completely

3.5 AERODYNAMIC DERIVATIVES OF A FLEXIBLE AIRPLANE

3.5.1 Inertial Reference Axis

The aerodynamic derivatives for a flexible airplane are defined relative

to an inertial reference axis. Definition of the inertial reference axis is

essential.

The concept of an inertial reference system is illustrated for airplaac

flight in the plane of symmetry, omitting considerations of the fore-and-aft

degree of freedom. The airplane is assumed to be flattened into the x-y plane

to more easily demonstrate the principle. Figure 3-4 shows an arbitrary

flight condition.

The aerodynamic force and moment, controlling the motion of the inertial

reference, and thus the flight path are in coefficient form, Reference (6).

CL = CL=( = -aO) + CL6 
6e + CL~c 7-V ' CL t V (3.18)

e TV IV

Cm Cmo + Cm=(0EtcO) + Cm6 
6 e Cm ~ c T-V c C. C c3.19)
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~Vy
°

VY0 Cos ao
FLIGHT PATH/00

O v CENTER OF GRAVITY
INERTIAL

io REFERENCE AXIS

=o o/V

Figure 3-4. Flight in Plane of Symmetry

4

. ' / INERTIA L
REFERENCE AXIS

AXIS FIXED TO BODY
AT TWO POINTS

Figure 3-5. Inertial Reference and Body Axis
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where ao is the angle of attack at zero lift, and 6e is the longitudinal

control surface deflection angle.

The derivatives on the right hand side of the equations must be computed

for the flexible airplane. The computer codes used to generate these

stability derivatives appear in Appendix D of this report. Figure 3-5 shows

the inertial reference axis and an axis fixed to the body. In this figure

the position of the body axis relative to the inertial reference is defined by

ZR and eR. This distinction must be made because the inertial reference is

not fixed to any point of the body. If the flexibility of the airplane is

defined in terms of structural influence coefficients (flexibility

coefficients), a reference fixed to the body in a statically determinate way

must be defined. Elastic deformations are defined relative to this reference.

The inertial reference defines the overall motion of the airplane if the

following conditions are satisfied:

11 111 (Zr) = 0 (3.20)

Lx-x 0J [M] (Zr = 0 (3.21)

where x0 is the structural influence coefficent reference point, zr is th

displacement relative to the inertial reference axis and [M] is the mass

matrix.

These equations imply that the momentum and moment of momentum relative

to the inertial axis are zero, thus; the motion of the aircraft in the

inertial axis defines the total momentum and moment of momentum of the

deforming airplane.

The deformation of the body relative to the inertial axis svstem. [:r),

is defined by the following equation:
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Zr = f1) zR +X-XR} R + [z} (3.22)

where (z) defines the deformation relative to the body fixed axi . Figure 3-5.

Denoting the aerodynamic forces by {Zal and the inertial fu0' by {Zin),

then the total distributed force is:

(Z) = (Zin) + (Za) (3.23)

The key step in this procedure is that the vertical force and moment

equilibrium are imposed before (Za) is computed. As a result, the equilibrium

between aerodynamic, elastic and inertial forces is automatical].v assred in

the final answer. It also follows that the results are only applir able to

free flight conditions and hence are not applicable to a support'd model in a

.wind tunnel.

The forces-and-moments equilibrium is determined by the following two

equations:

0 = LiJz} = Lli(Zin} + LlJ(Za) (3.24)

0 = Lx-x 0 J(z} = [-x 0 Jf in) + [-xoJ[Za) (3.25)

The total distributed force is written in the form:

(Z)= (111 - (1/R)IMJ(1}LIJ - (I/IO)[Mjfx-xo) Lx-X 0 J f7-,l (3.26)

where,

R = LlJiMi{1

I0 = Lx-x 0JlMJ(x-x0

This equation expresses the total force distribution, in tpims of

aerodynamic forces, under the assumption of equilibrium between inertia forces

and aerodynamic forces.
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The aerodynamic forces, (Za}, can be expressed in terms of thil dynamic

pressure, aerodynamic influence coefficients, [QOZx, and local aigle-of-attack

distribution. The local angle of attack is the sum of angle of ;itta ck of the

inertial reference axis; the built-in (zero load) angle-of-artaP djtribution

{ea}; an angle-of-attack distribution associated with a control 'urface

deflection; an angle-of-attack distribution due to pitch rate of the

reference; and angle-of-attack distribution due to elastic defomation.

Aerodynamic lag effects are included by adding an a term, or by higher order

approximations derived from unsteady aerodynamic theory.

In order to formulate aerodynamic derivatives that correctl describe the

overall motions of the flexible airplane when used in the rigid Aitplane

equations associated with Equations (3.18) and (3.19), the deri-aties must be

related to the inertial reference axis, and thus to ao and en.

In mathematical terms:

(z a }  qQ = [Q ({l)a + [e) + (i/V){x - xo)eo+ [D,9fzd}) + q IO Zi &O  (3.27)

In this equation [Del is a differentiating matrix, that is IDeJ 17,1 defines

the slope in the direction of the free stream. Alternatively, I[eij is the

streamwise angle of attack at point i due to a unit structural dpflection at

point j.

The deformation (Zr is given by,

(zr) = (z) + tzS}6

where (z} is the elastic deformation, and {zS)6 is the displacem-,,,, hie to

control surface deflection.
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Let

[B] = [11 - z {(-1/IoR) {1) x - X0J [MI + IDe } (E] (3.28)

(ill - (l/M) [M] (1) I - 1/I 0) [MI (x - xO) Lx - xoJ )

IOR = Lx - xOj [M] (x - xrd

where [El is the square matrix of structural influence coefficients with Eij

is the deflection at point i due to a unit load Z applied at point j, i.e.

(z) = [EJ{Z)

Then it can be shown that:

JB] (Za  = [oZa' ((-1/IOR) (1) [x - x0 ] [M] + [Del } (z)}

+ i~ z. ((1) o + (0a1 + (1/V) (x - xoeo} + 1Qz&J(l' &0(3.29)

The matrix [B] is constant for a given configuration and Mach number.

This implies that all aerodynamic lag is accounted for in [Qza]. This may not

be a valid assumption for fast maneuvers, because the above derivation is

based on [OQz] being constant.

From Equation (3.29) it follows:

fZa) = t[Bo-1 Iz]  (1)M0 + 9) + (1/V) {x - x'} %

+ [(-"OR) (1 Lx x0 I MI + IDel] (z') 6)

+ q(B1-1 [Qz&] (1) &h (3.30)

The above equation defines the distributed aerodynamic forces on the

flexible airplane corresponding to an equilibrium between aerodynamic forces,
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elastic forces, gravity forces, and inertial forces in terms of the motion of

the inertial reference axis, built-in angle-of-attack distribution and control

surface deflections. An implied assumption is that the inertial effects due to

zr can be neglected; that is, L1J[mlZr) and Lx-xoJ[MJ(zr) can be neglected.

Equations (3.20) and (3.21) satisfy these assumptions.

From Equation (3.30), all derivatives used in Equations (3.18) and (3.19)

can be derived. In addition, the deflections relative to the inertial

reference can be determined for any point on the flight path, and, therefore,

the total motion of each point on the airplane can be determined. This

includes the motion of the pilot seat and the motion of the sensors

(acceleration and pitch rate).

The effect of airplane flexibility in the aerodynamic derivatives that

determine the out-of-plane-symmetry motion is included in a manner similar to

that outlined above. The effect of fore-and-aft force in the derivatives will

also be included.

The technique under which the aerodynamic derivatives of the flexible

airplane are derived imply that they are valid for use in the usual airplane

stability equations, if the first structural frequency is sufficiently above

the short period and Dutch roll frequencies. If there is a possibility of the

dynamics of airplane flexibility entering into the stability characteristics,

the complete dynamics equations of the flexible airplane will be used.

3.6 FLEXIBLE STABILITY DERIVATIVES

A stability derivative is defined as the rate of change of a force

coefficient or mome- t coefficient with respect to some independent variable.

The theoretical methot ; used to obtain the desired stability deriv',fies are

outlined in the following sub-sections using simplified expressini [or

illustration.

Both rigid and flexible parts of the stability derivari-'- ,,, ,,,termined

as functions of dynamic pressure, Mach number and weight case. ll,- flexible
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derivatives are calculated in two distinct and independent sets. The

distinction between the two is their frame of reference. One set is

designated fixed airplane stability derivatives and the other as the free

airplane stability derivatives. Although the magnitudes of the individual

derivatives are different for each set, when all of the derivatives are

applied to a time history problem for one set, the resulting accelerations and

velocities versus time are identical to those that result from applying all of

the derivatives from the other set to the same problem. A short physical

description of the stability derivatives used in this report is given in

Appendix A.

Lift and moment coefficients are defined by,

CL = LIFT/(q SREF) (3.31)

Cm MOMENT/(q SREFC) (3.32)

m m
LIFT i MOMENT =iElPi ARM i

ARM XREF- xi  (3.33)

or in matrix form,

[F L ] = [/q lS k / S [ A M ' [A I ] ( )( 3 .3 4 )

Where:

Pi  - The lift acting on the ith panel

XREF a The F.S. where the wing mean aerodynamic center is 1kwts,d

xi  = The a.c. of the ith panel

AICtj= Incremental lift on panel i due to downwash applied at point j

k = 1 for full aircraft model

a 2 for half aircraft mod' 1
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Aerodynamic influence coefficient (AIC) matrices -will be obtained using a

number of theoretical aerodynamic programs, such as VORLAX, OUADPAN. FRE. TEAM

and TRANSAM.

Higher order derivatives, coupling terms, relating rolling, pitching and

yawing moments to aircraft rotational velocities are also considered as

illustrated below:

MOMENT ROTATIONAL VELOCITIES

p q r

ROLLING MOMENT Clp C1

PITCHING MOMENT Cmq

YAWING MOMENT Cnp Cnr

The total load acting on a balanced flexible airplane is then represented

as the summation of rigid and flexible airloads and the inertia loads, that

is:

[P] = RIGID AIRLOADS + INERTIA LOADS FLEXIBLE AIRLOADS (3.35)

Where:

RIGID AIRLOADS = [6L/QO = F[a, 6eREF ]  (3.36)

INERTIA LOADS [W] = F [ni , 0.1 (3.37)

FLEXIBLE AIRLOADS [6P/A] F tfle:.:i (3.38)
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3.6.1 Longitudinal Stability Derivatives

For the purposes of illustration, derivation of the longitudinal

stability derivatives of a rigid airplane with o = 0 will be dealt with in the

following. Using Equations (3.18) and (3.19),

CL (OC a0) q S + CL6 8e q S + CL - q S + nz W = 0 (3.39)
eTV

e 7 -V

+ nz w (xREF- Xcg ) = 0 (3.40)

where:

10 = Lx - xOJ [M] (x - xO)

and, xREF is the reference point about which the moment coefficients are

taken. In this subsection if XREF is taken at Xcg then the last term in

Equation (3.40) becomes zero.

In matrix form, these equations become,

[ L Jl {[AS]{ 1 Y(-o) + [AS]{a[AS]e) [A)
txcg-x j 6 8e T

[As] (cO) (W}(nz) + Pz}(e) : { 0 } (3.41)

-1

C, = (S/2) 1J[A( 1 (3.42)

C m = (qsc/2) Lg:[~J )-.43)
(X
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where

[AICsI = .5([AICI + [AICIT)

[AS ] = [AICs] q

Collecting the terms that multiply [As] and defining their sum as the rigid

airplane angle of attack distribution yields:,

(R) = { )(-aO) + {ce )(&e )+ {Cc }( 2 )+(a0} (3.44)

3.6.2 Concept of Flexible Longitudinal Stability Derivatives

The incremental change in local panel angle of attack due to airframe

flexibility is:

[%]l = POe]LES]{NET} (3.45)

where,

[ES] = .5([E] + tEIT)

The net vertical panel loads for a flexible airplane are:

(z ET} = [A](. ( fa}}) + {'Wl(nz) + {PZ6(6) (3.46)

Substituting for [(e) from Equation (3.45) into Equation (3.46) yields,

(1 ]-[AS ][De ][ES ]){ZNET} [AS](%) + (WI~nz) ,7J9)(3.47)

Let,

[D][ ] [AS ][n] [Ej (3.48)
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Then,

{Z NET } D 1~[AS]( ctR) + [ D 1{1 W )(nz) +ID 
1 { 'Z6j )( 6 (3.49)

For steady maneuvers at specified load factors e = 0 and the e and nz terms

are fixed so that a solution can be obtained for (a-a0) and (6e) such that:

[1c~~1 {NET = {0 }(3.50)

Expanding [(R) in Equation (3.49), yields:

zNET= [D E[S] 1 )((x-aj) +[D1  [ks](ao) + [ID AI ae) )

+ [D- IrASi _cp- Xcg ](e + [D- 1 ](I(nz) + [D- PZ64(6) (3.51)
r-' C/2 k7e)

Each of the terms in the above equation represents a constant times the

parameter for which it is desired to have a flexible stability derivative.

Formulation of flexible stability derivatives from this equation are given as

follows:

cfixed L i JID- 1 [As]f 1 ) fixed xcg-XJLD- lj[As]{ 1 }
LOflex qS/2 m flex qcS/2

fixed L1 J[D-D1 1 [AS ]{86e} fixed Lx-J[D- 11 [A]L6eflex qS/2 meflex qcS/2

L- . 1 JID1 [A] - Xcg-XJiD- ]

Vflex qS/2 V flex qcS/2
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fixed - L 1 JID-1] S]{01 fixed fixed

flex rigid L 1 J[D-I ][As] I I flex rigid flx rigid

fixed
_fixed LXcg - xj1 sI{ (O~flex
Cmflex qcS/2

cfixed L 1 J[D- 1 ](w -L 1 J(w) Cfixed Lxcg-XJID-1 ]{W} Xcg- XJwL = m =-

nZflex qS/2 flex qcS/2

fixed L 1 J[D-1]Ze Y L JN ) cfixed xcg-xj[D-1]fZ6)_- xjf Z4

flex qS/2 flex qcS/2 (3.52)

The flexible stability derivative defined above can be used to define the

flexible/rigid ratios and increments required to correct the equations in

Appendix C (Aerodynamic Equations).

The preceding derivatives will be the same as those for the rigid

airplane when [D] equals [1]. It is seen from Equation (3.48) that ID] equals

[Il when the dynamic pressure equals zero, since [As] = (q)[AICs], or when

[Es ] =[O.

3.6.2.1 Concept of Fixed Longitudinal Stability Derivatives

The stability derivatives derived in the previous section include the

superscript "fixed" in their definition. This designation pertains to the

assumption that physically speaking the airplane is constLained at two fixed

points. These are the points in the [ES] iatrix that show zero deflection for

all load conditions and from which all elastic deflections are ref~renced.

By examining the individual stability derivatives of Equation (3.50) it

is apparent that the force system representel is a series of ai-i rd dlistribu-

tions due to unit changes in angles -,( ittack in balance ,.ith .... ,,ated

loads at the constraint points. The entire system is in static halance.
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Equation (3.52) may be used to generate a consistent set of "fixed"

flexible stability derivatives suitable for use in time history balanced

flight maneuver analysis. Two types of stability derivative output are

required for a fixed airframe concept. The first type is the ratio of the

flexible to rigid stability derivatives associated with the applied angles of

attack, , Se p and ec/2v. The second type consists of the inertia derivatives

associate with nz and 0. The inertia derivatives represent the incremental

flexible airload.

The method of solution is illustrated by writing Equations (3.31) and

(3.32) in coefficient form as follows:

= [CLOr&roT + CLnznZ + CL6 ] (q) =-W nz (3.53)

EMy = [Cm r'OT + Cmnznz + Cm6 e ] (qSc) = -w nz(xREF- xcg) I Iyy0  (3.54)

where:

CL OrOT = CLa(-ao) + CL6e6e + CL4C (0c/2V)

CmoroTOT = Cm,(x-aO) + Cmrue6e + Cmin (Oc/2V) + Cmo

The equations are then combined and expressed in matrix notation as:

[fix ]I+ Cnz ] {nZ} (l/q) [~] ~

where

fix F CL, 'L /2V ][ "Lfi ] = c Cm;- me

CmL Cm6e Cme /2V 'm0
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is the normal force and pitching moment coefficients due to an applied angle

of attack distribution for (a - o), Se ,  c/2V and CmO,

nz Cmn z Cm6

is the flexible incremental normal force and pitching moment coefficients due

to vertical and rotational accelerations (incremental airloads only),

1_ Iyy
STT(XREF - Xcg) CS/2

is the normal force and pitching moment due to balancing inertia reactions,

is the balancing inertia load factor and rotational acceleration at the

reference point, and

is the applied external angle of attack distributions.

The required flexible ratios and inertia increments are obtained through

independent solution of the terms of Equation (3.55). The required stability

derivatives may be obtained by solution of ICLod for unit values of a-a, Se ,

and ec/2V. The required inertia derivatives are obtained by sol],tion of[CLnzI

for unit values of nz and 6. The required rigid values may be obtained by

repeating the solutions with [Es] = [0]. Flexible/rigid ratios are obtained

by division of the above two solutions.
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3.6.3 Concept of Free Longitudinal Stability Derivatives

The stability derivatives derived in the previous section are for the so-

called "fixed" airframe consideration. The following discussion presents a

method of generating stability derivatives for an unrestrained or "free"

airplane system. These stability derivatives reflect the effects of the

simultaneous application of airload distribution and the required balancing

inertia load distributions. They provide greater insight into the physical

significance of each parameter.

The solution of the equations of motion for a "free" airframe is

illustrated by examining the "fixed" equations of motion for the single

parameter (*-uaO). Equation (3.55) may be rewritten as follows:

[Lf ]f0 + [ Cnz ]{=}G/q)[].} (3.56)

The "free" stability derivatives incorporating both airload distributions due

to the applied angles of attack and the balancing inertia contributions are

expressed as follows:

free 0((~~) f rz )BALANCE
[CL 0 + 1 1 [CL J '0 + [ jj= (3.57)

If a solution is performe4 for a unit value of (c-mO), Equation (3.56)

becomes:

+ ) BALANCE (3.58)

from which,

fz1BLNC I fC" Ly[

{ LN[C + (1/q [ m (3.59)
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Thus the nz and e required to balance the "free" airframe may be obtained

through the solution of Equation (3.59) and the final value for the "free"

derivative can be obtained from Equation (3.57). The elements of [Cnzl, [W/SJ,

and [CLtfix ] are the same as the "fixed" derivatives given in the previous

section. The above solution can obviously be repeated for each type of

arbitrary angle of attack distribution.

The solution represents an airplane force system in which the airframe is

in equilibrium, where the airloads are in balance with the inertia loads, and

the airframe is no longer "fixed" in space, but is free to accelerate in the z

direction and rotate about the y axis. However, Equatio;' (3.57) contains no

allowance for the z translation or rotation about the the y axis. The above

equations are shown to present the concept of "free" derivatives. The

particular solution for free derivatives encompassing the z translation and y

rotation is developed in Subsection 3.5.

3.6.4 Effect of Flexibility on aO and Cm0

If the airframe under analysis has a design wing with a null camber and

twist (C&T) distribution, then the aerodynamic load distributions at zero

angle of attack, a0 = 00, will be equal to zero, and the zero lift angle, aO ,

will also equal zero. Similarly, the pitch moment coefficient , Cm0 will also

be zero.

If the design wing has a non-null camber and twist distribution, then the

flexible body aerodynamic load distribution of Equation (3.52) at a = 00 may

be expressed as:

_ flex q D- [ A ] o

where ( a0 ) is the camber and twist distribution at a = 0*. The lift and

moment coefficients due to camber and twist are then defined as:

_ flex (2/qs) L 1 J { fle (3.61)
3-29C&T
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{CMC& (2/qs) L ax flex J } (3.62)

CL flex (/-)L1J D1A(-3

Cm } = (2/q-S) La] [ D- 1  ] [ ] (1 } (3.63)

Substituting the above expressions for lift and moment coefficient slopes into

Equation (3.52) yields the following equations for the effect of flexibility

on aO and Cmo.

Moflex = - CLflex / CLflex (3.65)

C&T a

Cmflex = - (Cmflex / Cmflex) (flex (3.66)
0 C&T c 0

Values of *0 and Cm0 for the rigid body can be obtained by repeating the above

calculations for [D- 1 ] f [I]. Flexible increments for oo and Cm0 may then be

expressed as follows:

Aaoflex = 0oflex - MOrigid (3.67)

ACm flex C lex  - Cmr (3.68)

0 0 0

The above flexible increments for a0 and Cm0 may be included in the rigid body

equations of motion.

The total flexible lift and pitching moment coefficients of Equatinivz (3.39)

and (3.40) due to angle of attack o and aO are expressed as follnws:

(CL )O = CLM * RCLO ( o - o 6f lex ) (1.69)
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Cm ) C m * RCm ( t - a0 + 010 flex ) ( C O + ) (3.70)

Note that in a typical 2-DOF time history analysis CLo, Cm=, o ), and Cm0 are

generally obtained from measured wind tunnel force data. The terms RCLC,

RCmo, A*Oflex, and 6Cmoflex represent theoretical flexible corqrections as

obtained from the type of analysis presented in this report.

3.6.5 Horizontal Stabilizer Downwash Contributions

The lift coefficient acting on the horizontal stabilizer may be expressed as

follows:

CL)TAIL = CL c + ( CL )T + CL 6H (3.71)C~c&T HT

or;

(CL)TAIL = CL (1 + )m + C0  + CL 6H (3.72)

%T HT

where

CL = stabilizer lift coefficient slope dC L/da
r in the presence of the wing.

CL = stabilizer lift coefficient slope dC L/d

'HT out of the presence of the wing.

C0 = downwash angle at a = 00

de / da = slope of the downwash angle at o = 00

(CL )T = stabilizer lift coefficient due to wing camber
C&T and twist at a = 00

( CL )T = stabilizer lift coefficient slope dC L/d
6HT in the presence of the wing.

The above stabilizer derivatives may be expressed as the summation of the load

distribution on the tail plane only, as follows:

3-31



{CL. } (2/S) L 1, J [D-1  3 AS] 1 }(3.73)
CL.. (2/S) L 1, J[ D-1  ] A1 } (3,74)

{ LC } (2/S) L. 'T JI D-1  ] AS] { o }(3.75)
{CL } (2/s) L 1T j[ D-1  ][AS ](10 }(3.76)

where

L 1T J = summation matrix for tail load distribution only

1 } = unit angle distribution for total airplane control points.

0T } = unit angle distribution for tail plane only.1T

{* } = camber and twist distribution at c = 00.

0 } = unit angle distribution for tail plane moveable
16H control surface only.

Reviewing Equation (3.72) indicates that the downwash terms at t = 00 may be

defined as follows:

Oflex ( Cflex )T / c-flex (3.77)= &T LlT

( de/dox )flex = ( CLflex - CLflex ) / C flex (3.78)
L - HT 0LHT

Values of CL , CL C&TT, c and de/do may be generated in a

manner similar to that for Aa and 6Cm0 in Equations (3.67) and (3.68). Thus

by repeating the above calculations for [D- I = 111, flexible effects for

CL T , (CL6HT)T, Co and de/dx may then be expressed as follows:

flex flex RIGID (379)
AC0C0 C0-(379

flex flexRIDA(dc/da) = (dc/do) - (de/dz)RIGID (3.80)
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RCL = CL flex / RIGID

HT 0HT CHT

flex RIGID
RCL(HT  CL 8HT (LT

Thus the horizontal stabilizer lift coefficient of Equation (3.72) may be

rewritten to incorporate the above flexible effects as follows:

( C CL RCL [( 1 + de +(d) flex + (+ flex

+ CL6HT RCL 6HT6H (3.81)

Note that in a typical time history analysis CLCT, CLSHT, A dc/da and AC0

may be obtained from either experimental data or from theoretical aerodynamic

codes. The terms RCL (  ,AEO f l e x and A(de/do)flex represent the theoretical

flexible corrections as obtained from the type analysis presented herein. The

independent real time parameters are o and 6H-

3.6.6 Determinations of o contributions

The change in lift coefficient with variation in the rate of change of

angle of attack, c, arises essentially from an aerodynamic time lag effect.

It comes from a so-called plunging type of motion along the z axis, in which

the angle of attack, a, remains constant during the disturbance.

The horizontal tail of a conventional airplane is immersed in the

downwash field of the wing and whenever the wing undergoes a change of angle

of attack, the downwash field is altered. Thus the change in stabilizer lift

may be expressed as a function of incremental downwash angle as follows:

(OCL)tail = CLoHT AC (3.82)

where

AC = (dc/dx)& At (3.83)
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and At is the time lag from the wing to the tail. This lag can be expressed in

terms of the tail length, (distance from wing C/4 to tail C/4), it, and the

free stream velocity. Thus, Equation (3.82) may be expressed as:

(ACL)tail = CLxHT (d/da) & (lt/V) (3.84)

By definition, the incremental stabilizer lift may also be expressed as

CL(.>/2V)(&C/
2V) CL (fT 2)(2/ )(d/d)(it/V) (3.85)

Thus

CL(&*/ 2 V) = CL T (21t c)(d /dc) (3.86)

Similarly, it can be shown that

Cm(/ 2V) = mlT (21t/c)(ds/do) (3.87)

Using rigid and flexible values for CL4T, Cm 4T , and dc/da obtained from the

above analysis, the theoretical flexible/rigid ratios RCL. and RCmi may be

generated and included in time history analysis.

3.7 LATERAL/DIRECTIONAL STABILITY DERIVATIVES

The approach used for the longitudinal stability derivatives is similarly

employed for the solution of the lateral/directional stability derivatives

except that anti-symmetric aeroinduction, inertia, and structural influence

coefficients are utilized.

3.7.1 Lateral/Directional Equations of Motion

For simplicity, the applied aerodynamic forces used in the dpo-elhpment of

the equations of motion will be limited to the side force due to an applied

sideslip angle. It will be shown later how to expand the applied aerodynamic

forces to include all contributions rlie to the full set of Lit, ,.,I ,;1,ility

derivatives.
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E Py = -Wfy (3.88)

E N = W(Xcg - XREF)ny + IzzREF - IxzREF (3.89)

E L = W(ZREF - Zcg)ny - InZREF " + IxxREF 4 (3.90)

where ny is the inertial load factor, and i and ' are angular accelerations

about the x and z axes respectively. The aerodynamic forces and moments may

be expressed as follows:

E Py = (CyO 0 + Cyn Y ny + Cy.. ' + Cy.. $) qS (3.91)

Z N = (Cn 0 + CnnY ny + Cn."  + Cn.. ) qSb (3.92)

Z y + $l.

E L = (C1O 0 + Cl f+ CI. + CI.. $) qSb (3.93)

where 0 is the applied sideslip angle and,

CY() = aCy / a( )

Cn() = Cn / a( )

Cl() = acI / a( )

In matrix notations the above equations become:

+ j { IF (3.94)
C 3x C 3x3 i )3xl 3x3

where

C -5 10
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is the flexible side force, yawing moment and rolling moment coefficients due

to an applied sideslip distribution.
-C C Y  C n

Y YJ C n n~y C 'V
3x3 C1 Y  C1ny CI3x3

is the flexible incremental side force, yawing moments and rolling moment

coefficients due to lateral and rotational accelerations. (incremental

airloads only)

-bW 0 0

[W ~ l ~ xcg -I

- ] W(x- xREF) zz xz
S 3x3

W(zREF - ZI I

is the side force, yawing moment and rolling moments due to balancing inertia

reactions, and

is the balancing inertia load factor and rotational accelerations at the

reference point.

3.7.2 Equations of Motion in a Panel Point Load System

The preceding equations may be represented as the sum of a net panel load

point system and expressed in matrix notation as follows

NE 0(3.95)

where:

( NET _ AIR + P INERTIA (3.96)
RII A'zRIGID 'Y' ~RIGID)
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and

[ E 1 -- Summation matrix for total Y load, yawing
.1 moment and rolling moment.

This shows that the net loads acting at the panel points consist of anti-

symmetric Y and Z airloads, and anti-symmetric X,Y and Z inertia loads.

The rigid body airloads are defined as follows:

{ AIR q A=Z] 0, [ 0z{} (3.97)PY,Z RIGID -

where

[A ]= [o ] + [oZAS]

and

Theoretical aerodynamic induction matrix,
Q AS ] relating anti-symmetric vertical loads at the

panel points, to anti-symmetric angles of attack
and sideslip angles at the control point.

Theoretical aerodynamic induction matrix,
Qy J relating lateral loads at the panel points, to

anti-symmetric angles of attack and sideslip
angles at the control points.

{ 1 Anti-symmetric angles of attack and sideslip
J - angles at the control points.

The X,Y,and Z inertial loads are defined as follows:

P XY,ZRIGID IN + PIN + P IN ]{Y (3.98)

where:

[P IN] o3-

[ IN ] = [ .}{p. }]
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[P IN] [{ } o

and

( W 4 P ' P Inertial Y loads due to a unit
S y/ Y/ J- ,ny, , and i, respectively.

( PX/ } - Inertial X loads due to a unit

{ P } -- Inertial Z loads due to a unit

Thus, the net panel loads acting on the rigid airframe may be expressed as:

( NET q~[ Ay'] { } X [ , Z ] } I(3.99)

where:

[ INERTIA ]] [p IN P IN

For a flexible structure, the net loads acting on the panel points may be

expressed as follows:

( NET = NET + f AIR (3.100)

flex 'RIGID I + 1 YZflex)

and

( AIR [ A (3.101)

The incremental change in local anti-symmetric angle of attack and -irieslip

angle due to airframe flexibility is :

{ e [ ,] ExAS ] } (3. 102)
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where

Differentiation matrix relating deflections at
[D - load points, to local angles of attack and

sideslip angles at the control points.

Anti-symmetric structural influence coefficientEAS matrix.

From Equations (3.100) to (3.102), it can be seen that,

_ NET _ NET q [ 1 r E AS 1 I NET } (3.103)
X flex I XRIGID + q y ~JL J1 flexJ

or

_ NET DRr1ID N (3.104)
Xflex) =J FRIGID)

where:

[D ] [I\] - q Ay ][D0 EAS ](3.105)
Therefore, the solution to the three degree of freedom lateral/directional

equations of motion may be solved using a summation of an anti-symmetric

lateral and vertical panel point load system, that is,

{ } =[f{ } (3.106)

or

R0 [ ] } (3.107)

It should be noted that the above solution reduces to the rigid case when [D]

is the identity matrix rI\] Equation (3.105) indicates that tiq is the

case when the dynamic pressure equals zero, i.e. q = 0, or when ,Hi !tructural

influence coefficient matrix is null, i.e. [EAS] = 0 ]. The equitions of

motion may be expanded by inserting Equations (3.99) and (3.ln4) int (3.106),

as follows:

3-39



[ flex= [ : ] [D-1][Ay+z]{ 'Io [D-1]P INERTIA] } (0)
(3. 108)

A( AIR D I rid I ] INERTIA 1 ] (3.109)Y,ZINERTIA xYz

ClY

10

C 7 ]- P I]ETIA ](3.111)

[] 1 4] [ Z [pXIIETIA ](3.112)
Obviously, the above solutions for either fixed or free derivatives can be

repeated for different types of facoI distributions, such as for a rudder,

ailerons, unit rolling velocity, or unit yawing velocity. The reader is

referred to Subsections 3.7.3 and 3.7.4 for a description of the fixed and

free airframe concepts of flexible stability derivatives.

3.7.3 Concept of Fixed Lateral/Directional Stability Derivatives

The stability derivatives derived in the previous paragraphs include the

subscript "fixed" in their definition. Physically speaking, this designation

implies that the airplane is constrained at two fixed points. Thes are the

points in the [ EAS ] matrix which show zero deflection for all loanl

conditions, and from which all elastic deflections are referenced.

By examining the individual stahility deri atives of E ,,ii ,,, ( . 108 ) it

is apparent that the force system represented in a series of ailnoad

distributions due to unit change in angles of attack is in balance with

3-40



concentrated loads at the constraint points. The entire system is in static

balance.

Equation (3.108) may be used to generate a consistent set of "fixed"

flexible stability derivatives suitable for use in time history balanced

flight maneuver analysis. Specifically, two types of stability derivative

output are required for a fixed airframe concept. The first type is the ratio

of the flexible to rigid stability derivatives associated with the sideslip

angle 1. The second type consists of the inertia derivatives associated with

ny, i, and i. The inertia derivatives represent the incremental airload of

Equation (3.109).

The required flexible ratios and inertia increments may be obtained

through the independent solution of the terms of Equation (3.94). The

stability derivatives may be obtained by solution g Fix for a unit value

of 0. This solution is given by Equation (3.110). The inertia derivatives may

be obtained by solution of [ Cy ] for unit values of n., i, and i.

Equation (3.111) represents the required solution. The rigid values may

be obtained by repeating the above solutions [ EAS ] = [ 0 ]. Flexible/rigid

ratios are obtained by element by element division of the above two equations.

Program DRSD solves the 3-DOF lateral/directional equations of motion for

a "fixed" airframe using the above method. A description of this program is

presented in Appendix D.3 of this report.

3.7.4 Concept of Free Lateral/Directional Stability Derivatives

The stability derivatives derived in the last section are for the so-

called "fixed" airframe consideration. The following paragraphs pieet a

method of generating stability derivatives for an unrestrained o, "f'-e"

airplane force system. These stability derivatives reflect the effects of the

simultaneous application of airload distribution, and the requivOd hnIancing

inertia load distributions. Thus the- pro-,ide greater insigh, bi1, ,h,.

physical significance of each parameter.
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The solution of the equations of motion for a "free" airframe may; be

illustrated by examining the "fixed" equations of motion. Thus Equation (3.94)

may be rewritten as:

ngn

The "free" stability derivatives incorporating both airload distributions

due to the applied sideslip angle and the balancing inertia contributions may

be expressed as follows:

C YFREE ) {3CY I c 1 3 C Y ]{~ BALANCE (3.114)
ny

For a unit value of 13, Equation (3.113) becomes:

{ cY FI C, {~ ] + (1/q-) [W9 }{1 (3.115)
ny

Therefore,

{ {(3.116)

Thus ny, 1, and i required to balance the "free" airframe may be obtained

through the solution of Equation (3.116). The final value for the "free"

derivative can be obtained from Equation (3.114). The elements of [ny1

[ , and { CyFIX ) are the same as those in Subsection 3.7.3. ;irl may be

obtained from Equations (3.110) to (3.112).

It is obvious that the above solution can be repeated f-i , 'vpes of

arbitrary anti-symmetric angles of a',a.l" and sideslip di-t, i,, i,,,
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Program DRSD solves the 3-DOF lateral/directional equations of motion for

a "free" airframe using the above method of solution. A description of this

program is presented in Appendix D.3 of this report.
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SECTION 4

AERODYNAMICS FOR AEROSERVOELASTICITY

4.1 INTRODUCTION

The subdisciplines of aeroservoelasticity: aerodynamics, feedback servo

control, and solid mechanics were developed, independently of each other over

the course of aviation history. Interaction between these disciplines could

be ignored roughly up to the 1950's. Modern fighters and transport airplanes

operate at combinations of angle of attack (at) and dynamic pressure rendering

the integration of these disciplines mandatory. The modern airplane design

must ensure enhanced safety, reliability, operational life and unparalleled

performance. In the following, a historical background relating to the

evolution of these disciplines and the need for their subsequent integration

into the new discipline of aeroservoelasticity is briefly outlined.

Aerodynamics - Evolved from classical hydrodynamics and the empirical

science of hydraulics. The former dealt with formal solutions to
partial differential equations such as Laplace's equation and reached
its zenith in the mid 1800s. The latter measured the flow of fluid in
pipes, channels and wires and about bodies such as ship hulls and
bridge piers. Scale ship models, for example, have been tow-tested
for several hundred years. Aerodynamics as a subject emerged fewer
than 100 years ago, and unsteady aerodynamics of lifting surfaces,
about 60 years ago.

Servo Control - Employment of measurements of the state of an object
as a means of automatically changing that state to achieve a desired
objective, defines feedback control. The device for amplifying the
measurement signal to effect the change is the servomechanism. The
steam engine with mechanical feedback of piston position for changing
slide valve openings effecting steam delivery and exhaust, represented
an application of this principal in the late 1700s. The coming of
electric power in the late 1800s introduced and required the use of
electrical feedback and electrical and electro-mechanical servos and
began to lay the foundation of what was to become servo control
theory. Modern evolution of the subject stems from chemical and
petroleum process control that led to fully automated production
plants as early as the 1920s. Modern servo control could thus be said
to have a history of about 100 years.

Solid Mechanics - The oldest of the three disciplines evolved through

civil engineering from Roman times. Elasticity and maximum load
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concepts gradually emerged through stone and concrete construction of
in situ structures: bridges, aquaducts, dams, and buildings. Marine
architecture extended the subject to vehicles. Wooden ship structural
design evolved to steel within the last 150 years. Metal aircraft
construction practice and theory followed that developed for steel
ships. The study of elasticity thus has a history of over 2000 years
and the theory employed in aircraft metal monocoque structures a
history of over 100 years.

The three disciplines began interacting, two at a time, in aircraft

analysis and design as early as the 1920s. A brief review of these sets the

stage for the more complete discussion of aerodynamics and the part it plays

in aeroservoelasticity, the subject of this report.

Aeroelasticity: The first analyses of the interaction of unsteady
aerodynamics and linear elastic structures were made in the early
1920s to gain an understanding of the previously unexplainable flutter
of aircraft lifting surfaces. Design changes based on these analyses
made the aeroelastic modes stable without the benefit of active servo
control.

Static aeroelastic effects began to severely limit fighter aircraft
maneuverability in WV II. Aileron reversal was the first example to
appear. This combined discipline is approximately 70 years old, and
is the oldest of the three.

Aeroservo Control: The interaction of quasi-steady lifting surface
aerodynamics, classical mechanics of rigid bodies (linearized) and
servo control under gyroscope feedback acting through elevator,
aileron, and rudder deflection began to be studied for the purpose of
providing autopilots for commercial transport aircraft in the 1930s.
The DC-3 could be flown "hands-off" for example.

This type of system was extended to high speed pilotless aircraft in
WV II with the German V-i pulsejet powered subsonic flying bomb and
the supersonic V-2 rocket, a forerunner to today's space vehicle
launch boosters.

Servoelastic Dynamics: The third pair of disciplines - the
interaction of the linear elastic modes of a flexible vehicle (with
little aerodynamics influence) and servo control, under accelerometer
feedback acting through swivelling main rocket thrusters. for example,
began to be considered in earnest during the development of
intercontinental ballistic missiles (ICBHs) and space vehicle launch
boosters about 30 years ago.

It was necessary to stabilize not only the neutrally stable highly
flexible body bending and axial modes and slosh modes of the fuel and
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oxidizer in large diameter tanks but also the completely unstable
vehicle "rigid" body modes.

The small damping of the elastic modes and fairly wide resonant
frequency spacing often provided mode independence and permitted the
separate stabilization of each.

As aircraft speeds increased in the 50s and 60s and wing thickness

decreased, the effects of lifting surface elasticity became more pronounced -

including the quasi-steady (or static) aeroelastic effects. These could

usually be accounted for by modifying the aerodynamic stability and control

derivatives of the rigid airplane. Thus the basic means of analyzing airplane

stability'and control did not have to change to accommodate static aeroelastic

effects.

Dynamic effects at the structure mode frequencies could be neglected by

designing the servo control to roll-off rapidly as these modal frequencies

were approached. This permitted unsteady aerodynamics to also be neglected in

stability and control analysis. This independence of the control system from

rapid unsteady effects is still valid for many stability and control problems

today. Dynamic aeroelastic modes are traditionally stabilized passively by

aerodynamic, inertial, and structural design.

Static aeroelasticity very greatly affects servo control system design in

typical fighter aircraft configurations. With increasing dynamic pressure,

stability generally decreases (e.g., longitudinal static stability, CMC,

decreases and lift curve slope CLo increases with unswept wings due to

leading-edge nose-up elastic twist) making the airplane more responsive to

disturbances. At the same time controls become much less effective (e.g.,

positive elevator deflection bends the aft fuselage down causing stabilizer

lift that acts to neutralize the elevator down force). Obviously, if the

control aeroelastic derivative approaches zero, no control system will be able

to stabilize and control the airplane.

When such behavior unexpectedly manifested itself in flight test, as it

sometimes did in the 50s, the only recourse open to the operator was to

4-3



restrict flight operations to lower dynamic pressures (and sometimes to lower

transonic Mach numbers). If such a problem were caught in the design phase,

structural stiffness could sometimes be increased, though attendant weight

increase would usually force a completely new structure to be designed that

would produr a less severe deflection distribution.

Structural design began to be greatly affected by requirements for

controls effectiveness, and the prevention of flutter and divergence.

Required wing main box torsional stiffness increases resulted in skin and spar

web thicknesses far beyond those required for optimum strength design. New

and unorthodox controls configurations became necessary to save weight and

retain aeroelastic controls effectiveness to high dynamic pressure.

It was into this atmosphere that the new discipline aeroservoelasticity

was born.

4.2 EQUATIONS OF FLUID MOTION

The equations governing the aerodynamic forces employed in stability and

control analyses are based on air considered as a continuum. The following

equations are developed, in descending order of complexity:

* Navier-Stokes.
Euler.

* Full Potential
* Prandtl-Glauert (Linearized Potential).

- Hyperbolic (Supersonic).
- Elliptic (Subsonic).
Laplace (Incompressible).

Though it had been possible to develop the most comprehensive set of

fluid motion equations (the Navier-Stokes) over a century ago they were of

little use without the computer, except as the beginning of a path to simpler

more restricted equations. The simpler equations were the first to yield

technically useful results.
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An example of simpler equations is provided by the Euler nonlinear

partial differential equations, written in vector notation:

Euler Equation

D - - p V.u Continuity
Dut

P - Vp Momentum (Newton's Second Law)

De
D = - p V.u Energy Balance

Where:
D aD a+ (u.V) "Following the Motion" Operator

These are usually written in divergence form to facilitate computation:

Euler Equations in Divergence Form

aP_ a (pu) a (Pv) L(pw) = 0 Continuity
at ax a-y az

2

a (pu) + a(pu 2. p) _ a (puv) a (puw)+T+ L(uw = 0 Momentum, x com.ponent
at ax ay az

2a (pv) _a (pvu) a (pv + P) _ a (pvw) -

0 Momentum, y component

a (pw) +a (pwu) + a(pwv) + _(w 2 + p)
0 Momentum, z componentat a x ay

a[e q2 ( 2 +a2

L p~e + 2 ] + -[(e + 2 ) + Pu] + L[((e + 2, 2 Ppv]

+ [ {(e + S ) + -w = 0 Energy

Euler and Navier-Stokes nonlinear partial differential equations are

solved by erecting a grid of volumetric elements that totally fills the space

surrounding the object under study. The time rate of change of fluid density,

momentum, or energy within an element is proportional to the net flux of the

quantity into the element. A pseudo time-stepping procedure can find the no-

flux condition that marks a steady-state solution (see Figure 4-1).
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One dimensional continuity equation for typical volumetric element:

Pu Z (Pu + ac2u) AX) LPa- -)ax at "-ax

Figure 4-1. Euler Equation Solution Volumetric Element Grid

The potential equation of fluid motion may be obtained from the Euler

equations as follows:

Full potential equation is based on:

Dp
d -p V.u Conservation of Mass

Du
5-t - -Vp Newton's 2nd Law (F = ma)

P . _ Isentropic Equation of State Substituted
PO It] for the Energy Equation

The potential equation applies to flows in which vorticity is null. It

does not apply to:
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• Boundary layers and wakes
" Separated regions
" Within shock thickness or behind curved shocks

If * is the velocity potential, then the fluid velocity is given by

ax ay az

Fluid Rotation w = Vxu = VxV * a 0

First the Bernoulli equation is deriven. the Momentum equation:

-Vp + V L + (VO.V) VO = 0 with -t - V LO
Pat at - a

with 1/p substituted from the equation of state, may be integrated over any

path through the fluid from point A to the point of interest.

1
PO 1Po y7a

0 P Vp + V L + (V,.V) v, = 0

1
P-° -Yp ~

p p .dr + V- .dr + (VO.V)VO.dr + C(A) 0

The Bernoulli equation becomes:

S+ '' _ + 1:2
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or equivalently:

1 a2 + a+ + =

y - at 2

Now the conservation of mass equation may be written as follows:

1 ap + V.v + V- = 0P at P

and from the Isentropic equation, may be substituted

[1 as2  ap
a2 = 1 a

a2 -VP

to yield

1 aa 2  1 2+ V-'V4 + VO'Va 2  0

(y - 1)a2  at ( - 1)a2

Differentiating Bernoulli's equation with respect to time gives:

aa2  1fa22 +

at = - ( a- 1)[a ,

and taking the gradient of Bernoulli's equation:

Va - (Y-1)(V + (V..V)VO)
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and substituting into the above equation yields:

a V2- - 2VO-V - V 0
at 2  at

or more concisely:

a2V2  = a + + (VOV)] (V ) 2

at2 at 2 (

4.2.1 Linearized Potential Equation (Unsteady Prandtl-Glauert)

It applies to steady uniform free-stream flow. Body produces small

perturbation unsteady velocities that decay rapidly with distance upstream.

U = VO = VO, + V = i(U + u) + jv + kw

Where: VO. =iU, and VO' = iu + jv + kw

Thus:

a a ' a2* 21, V2  = V20 '  and
at - at' at2  at2 '

2 2 a,'
(V*) = (Vol) + 2U -+ U

Substituting these into the full potential equation yields:

a' 21 + (L + j(V. .V) (v' 2 + 2U0 - - U2 )

Expanding the equation yields the nonlinear full potential equation in

the perturbational potential:

a2  2 a' . 2

V2 -' = 2 V#' + 2+ U-- + 2U( V*' V) !- + V*' (V ' -V)V ' + U2

at2 a ax ax2
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Discarding all nonlinear terms leads to:

a 2, a2 , U2 a a2V2,
at 2 U Xat ax2

The equation is normally rewritten as follows:

2 )a a2 t 2 VlLa2

(1 - a a - + 2U -_
a2 ay2 -a2 - 21a 2 axatt

which is the linearized unsteady Prandtl-Glauert equation.

Where M = U/a, the Mach number. For supersonic speeds, H > 1.0, the

equation is elliptic in the spatial coordinate.

4.2.2 The Linearized Unsteady Bernoulli Equation

To go with the linear unsteady Prandtl-Glauert equation and to preserve

linearity of the AIC matrix is the linearized unsteady Bernoulli equation:

Ap = p- Ps _ s(a uax

Before these equations can be solved the boundary, initial and uniqueness

conditions must be specified.

4.3 BOUNDARY CONDITIONS

Boundary conditions on the surface of a moving body, see Figure 4-2, may

be described by:

DF 0

Dt 0

where:

F(r,t) C
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WING

z Y

X

Figure 4-2. Body Defined by the Function F(r,t) = 0

is the function that describes the surface of the body and C may be zero or a

constant.

Substituting F into the boundary condition equation and expanding yieldj.

aF
T- + u, VF = 0

aF + u, F aF 3F

For example, with the body described by: z = f(x,y,t), the function F

becomes:

F(r,t) = z - f(x,y,t) = 0

The boundary condition becomes:

af u f f
--- (U + u ) - - v L v 0
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or

= f a' af t
w + (U + u') af va

For a flat-plate lifting surface by linearized theory:

W z + U z where z is the structuLdl deflection
at ax

4.4 METHODS OF THE EOUATIONS SOLUTION

With a range of fluid motion equations available of varying capability

and complexity, and with the principles for determining the boundary

conditions understood, it becomes necessary to choose the equations that suit

the problem. An appropriate analysis method is then found or created for that

equation set.

The method of solution should be selected from the options listed in

ascending order of complexity. These roughly parallel the original

chronological development.

Methods for solving the simpler equations are listed first, thus laying a

foundation for the more demanding methods needed by the more comprehensive

equations. Some solution methods are as follows, each listed under its

appropriate fluid motion equation:

Incompressible Equation (Laplace).

- Vortex Lattice (2-D Steady Lifting Surface).
- IAMA (Incompressible Arbitrary Motions Aerodynamics).

Linearized Potential Equation (Prandtl-Glauert).

- Subsonic (Elliptical)

o USSAERO, DPM
o DOUBLET LATTICE METHOD (DLM) (unsteady).
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- Supersonic (Hyperbolic).

o QUADPAN (Steady Panel).

o POTENTIAL GRADIENT (Unsteady Multiple Interfering Lifting
Surfaces).

o MBOX, Harmonic Grad, DPM, Supersonic Kernel F.

Full Potential Equation.

Euler Equations.

Navier-Stokes Equations.

4.4.1 Incompressible Equation (Laplace)

Introduction

Solutions of steady and unsteady lift distribution of surfaces may be

expressed in terms of a number of elementary functions, that individually

satisfy Laplace's equation. Each describes the spatial distribution of a

scalar potential field. The corresponding gradient (or velocity)

distributions approximate observable physical flows. Functions describing

uniform flow and the flow fields resulting from the following elementary flow

generating devices are described and discussed:

" Source (and Sink)
" Doublet
" Vortex

New functions formed by the superposition of elementary potential

functions will also satisfy the linear Laplace equation and result in

physically realizable flows. It is also permissible to construct solutions by

superimposing elementary velocity fields and this is often more easily

visualized.

In final combined solutions large velocities are admissible. If large,

compared to the mean flow velocity, the "strong" Bernoulli's equation must be

employed rather than the linearized version to obtain pressures in the flow.

4-13



Since Laplace's equation is time-independent, the gradient of the

potential field at a point describes either a steady velocity or an

instantaneous velocity changing with time. If the boundary and uniqueness

conditions are satisfied and the resulting potential field satisfies Laplace's

equation at that point in time the kinematics of the flow are valid

independently of time.

Due to the discrete nature and finite strengths of the elementary flow

generating devices - source, doublet and vortex - the corresponding functions

are singular at the centers of their spatial location. As long as the devices

can be employed as discrete elements and the boundary conditions met at points

other than the points of origin, then the singularities cause no problem in

numerical analysis. If, however, the devices are arranged in distributed

fashion along filaments, in sheets, or throughout volumes, then integration

may become singular and special means must be employed.

The devices are employed as discrete elements arranged in a pattern

dictated by the geometry of the immersed lifting surface. The problem to be

solved is the determination of the element strengths that satisfy the surface

timewise varying boundary and uniqueness conditions. The timewise history of

element strengths then defines the flow kinematic behavior. The forces acting

on the body are determined from this by Bernoulli's equation.

Uniform Flow

If the coordinate axes are fixed near the immersed body and translate

with it at a mean vehicle speed, U, the uniform flow potential function is:

=U x + C

The gradient of this scalar function

V# = iU + j(o) + k(o)

is the freestream vector velocity.
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4.4.1.1 Source (and Sink)

The potential function of a unit source, m = 1.0 (i.e., emitting a volume

flow of 1.0 cubic ft/second), located at the origin is as follows:

1 i 2  2 2

4 r+y +z

where r is the radial distance to any point.

The velocity vector from a source will always be directed radially,

therefore, and is given by:

a 1

r - ar - 4nr2

The flow velocity from a three-dimensional or spherical source,

therefore, reduces as the reciprocal of square of the distance from its point

of origin. It should be noted that the volume flow from the source must be

equal to the product of flow velocity and surface area at any radial station.

Volume flow = v S 2 x 4nr2 = 1.0 ft 3/secr 4 ur2

Streamlines from a source radiate in straight lines from the point of

origin, therefore, a source can induce no velocity in a plane passing through

its origin. For this reason sources are not used for modeling lifting

surfaces. The principal use of sources and sinks is to give thickness to

bodies and wings. For example, a source in a uniform flow produces a flow

about a shape resembling the front end of a body at zero angle-of-attack.

A sink is a negative source in which the flow velocity vector is directed

toward the origin.
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4.4.1.2 Doublet

A doublet may be formed by allowing a source and a sink of equal strength

to approach one another with the strengths increasing as the distance between

them decreases so that the product of strength and intervening distance

remains constant.

Let a source of strength, m, be located a distance 6z/2 above the plane,

z = 0, at the origin and a sink of equal magnitude be located the same

distance below the plane. The strength of the doublet so formed is defined as

P = m Az

ft3  ft4

and the units of P is 
ft x ft -c
sec sec

The equation of the potential function of the doublet may be obtained

from that of the source and sink by combining them and finding the limit:

a,+doublet -i unit source

Therefore, the unit doublet potential function is:

C d -z 8z r x 2 1I 2 2

4nr

-Z 2 2 2
- = x + y + z
4nr

for z below the plane and x = y o, * is positive, as z approaches the plane
the function becomes infinite, switches to negative infinity above the plane

and is negative above.
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The velocity component normal to the plane is given by:

0d 1 [3z'

for z = 0 (i.e., velocity normal to x,y plan)

az 4nr 3

for x = y =0

30 d 1

Ar SAME RADIAL
POSITION

Wx.ya- - wz..O

When z - 0*d -0 so 3+/3x W*ay a0 and the map of streamlines is as

shown above.
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The doublet just described is physically like a tiny actuator disk (or

propeller) that pulls in fluid from below the plane z = 0 and discharges into

the region above. It neither adds nor subtracts fluid from the flow as do the

source and sink.

Doublets are often distributed over lifting surface elements and are

particularly useful for modeling thin surfaces of arbitrary planform.

Consider the characteristics of the uniform distribution of doublet

strength over an area, r. The equivalent doublet on an increment of area is

given by

1= r dx dy

and since P has the dimensions ft4 /sec, r has the dimensions ft2 /sec.

A uniform distribution of doublet strength over an area is exactly

equivalent to a ring of concentrated vorticity or a vortex encircling the

region.

Some of the present applications employ concentrated, or discrete

vortices running along lines, only. Any surface element of arbitrary shape

lying in a plane, that supports a uniform distribution of doublet strength, r,

may be replaced by a vortex of strength, r, running continuously about its

periphery.

Remembering the equivalence between sheets of uniform doublet strength

and circumscribing vortices permits the establishment of important laws

governing discrete vortices.

4.4.1.3 Vortex

The vortex that occurs at the discontinuous edge of a constant doublet

field is of a constant strength along its length. This is known as

Helmholtz's first theorem.
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Vortices often form closed endless filaments or rings. If the edge of

the element of fluid supporting the doublet distribution was flowing past a

wall, the mirror image of the flow on the other side of the wall would

continue the vortex. The vortex then would appear to terminate at the wall.

That the vortex filament must endless or terminate at a wall is Helmholtz's

second theorem.

In a vortex the tangential velocity is constant on a circle of radius r

about an infinitely long two-dimensional vortex.

r
Velocity = 2nr

where r is the circulation of the vortex.

Any closed line integral of t.ie velocity vector component, q, along the

line following any path that encloses the origin must equal, r.

f Vds = r

In general, a closed line integral of local fluid velocity component

times line element length that encircles any closed vortex filament will yield

the circulation of the filament.

Before leaving the vortex subject there is one last item of importance.

To aid in the computation of the velocity field of complicated snakelike

vortices, such as shown in the sketch below, the Biot-Savart Law may be

employed. It is noted that a complicated vortex may be broken into a number

of small equivalent elements and the flow fields of all pieces combined to

yield the total complicated flow field.
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vds- V

VORTEX FILAMENT

An element of a vortex of strength, r, and length, ds, induces a

velocity, dVp, at Point p, normal to the plane formed by the radius, r, from

the element to the Point p and the axis of the vortex element, according to

the Biot-Savart Law:

r Vos$ ds
d Vp 4n 2

r

VP

r /
d 

S>

h

where 0 is the angle between the radius to Point p and the normal to the

vortex element in the above plane.
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The Biot-Savart Law may be expressed in an alternative form by rioting

s sin ; h Cos
r r

so that s sinO
S= cos 1

and ds cos 2+ sin26 dO- dO
h cos 2 cos23

Substituting the results ds = 2 d
Cos

h
and r -

into the Biot-Savart equation gives

dVp - cos dO
4n h

Example:

A straight line vortex is extending to infinity in both directions. The

induced velocity at Point "p" a distance, h, from the vortex is:

- r r rt/2

Vp = cosO dO

- n/2

V =

p 2mh

4.4.2 2-D Vortex Lattice Method

The 2-D Vortex Lattice method illustrates the means by which the

chordwise distribution of lift is affected by the shape of the mean camber

line, Figure 4-3, in incompressible flow:
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C

__ AIRFOIL
MEAN

CAMBER

Xn rn LIN

w
M

OOWNWASH (CONTROL) POINTS
C AT 314 Ac

LIFT (VORTEX) POINTS
AT 114 Ac

Figure 4-3. Incompressible, Steady, 2-D, Airfoil

Boundary Conditions at Control Points:

S3z 1  az

at ax

V2  3z2 az 2

at 8+t U a

azk 3zk
Vk -t- -'

It should be noted that the first term in the R.H.S. of the above

equation is zero for steady motion.
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Aerodynamic Influence Coefficients (AIC):

wI  r

kw 2  r 2

wm E ( ac r i.e., - [AIC]m n=1 2n(x m+ Ac n•

Wk 2 k

This implies that

1
AIC =m n2 (x m +- - x n )

m -2 -n

Differential pressure coefficient across element n is given by

pr nurnU

Pn R U2

&Cpl Wl- 8"-n-

2

az1
6Cp1  w1 ax
C PU w2  az2-11 -[AICJ

= a. [AIC]- - 2 [AIC-1 ax
2 6_

wk 
3zk
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EXAMPLE:

Let the airfoil experience a uniform unit angle-of-attack:

Zl az 2  aZ kI
= 1 "'" 2 ak -1.0, k = 20, Ac c = 1.0

For this example, the pressure distribution is given by

6p1  1.0,

.2 1 0
= - [AICF 1

ho

as shown in Figure 4-4.

20

15

di0, 1

5

0 1- I I I L
0 0.2 Q.4 0. 0.8 .0

Figure 4-4. Chordwise Lift Distribution Due to Unit Angle-of-Attack
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The Incompressible Arbitrary Motions Aerodynamics (lAMA) Method

This method illustrates the means by which a vortex lattice method may be

employed to find the unsteady lift distribution on a low aspect ratio lifting

surface. The surface may have any timewise and spatial distribution of slope

and normal velocity. First the surface is divided into equal sized elements,

as shown in Figure 4-5. A lift point is placed at the midpoint of each

quarter chord line and a control point at each three-quarter chord line.

Ring vortices are placed on the surface and wake elements as shown in

Figure 4-6.

A typical wing and wake is shown in Figure 4-7. A time-domain analysis

yields the left distribution shown in Figure 4-8, and Figure 4-9 is the

response to a step plunge velocity.

APEX PLANE OF SYMMETRY

Y

BOUND OR
SURFACE ELEMENTS

TRANSITION OR
TRAILING EDGE
ELEMENTS

I I I .4

I-- ,II I ]SHED OR
I I I I WAKE ELEMENTS

ix 'LIFT POINTS
a DOWNWASH POINTS

Figure 4-5. Surface and Wake Representation
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114 ~ LIFTING SURFACE

31a BOUND

5/AxAx VORTEX RING

B3OUND LEGS

BOUND LEG LIFTING SURFACE

FORWARD
DIRECTION
OF FLIGHT TRANSITION

VORTEX
RING

I I / TRAILING EDGE

- - 4 WAKE

SHEDE

-Am  VORTEX RING

0LIFT POINTS
SHED:
LEGS X 0OWNWASH POINTS

Figure 4-6. Ring Vortex Geometric Specification
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C
L SYMMETRY

LIFTING SURFACE
ASPECT RATIO 3.33
TAPER RATIO 2.43
16 ELEMENTS.
ROOT: 4 ELEMENTS
TIP: 4 ELEMENTS

S-.WAKE:
I 200 ELEMENTS

r - LENGTH: 40 ELEMENTS
OR 5 ROOT CHORDS

t I H -!
-I -I- I1 - CONTROL

VOLUME

END OF
CONTROL VOLUME

Figure 4-7. Typical Wing and Wake Model
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Figure 4-8. Pressure Distributions versus Time for the Indicial Response

of a Wing of Aspect Ratio 3.33 and Taper Ratio 2.43
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aAR

1 2 3 4 25 46

ROOT CHORDS TRAVELLED

Figure 4-9. Indicial Lift versus Aspect Ratio

By use of the Biot-Savart relations given in previous section, the

dovnwash, v, is related to the bound, transition and shed vortex strengths as

follows:

Iyrr

nxl nxn nxm-n mxl

The dovnvash required at step, p, is given according to the boundary

condition specification in Section 4.3 by:

(v(p)) - az/at(p)) + U (azlax(p))
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Determination of ring vortex strengths, by satisfaction of boundary

conditions at time step p = 1, is given ny:

t = x/U is the increment in the time between the points at which boundary

conditions are satisfied.

I = [W (1) l
nxl nxn

p represents the pth time step in a sequence.

Determination of strengths increments at time step p = 2.

rr (1)

(arb t(2 ) = {Vwb,t - (w(2)} - (v(1)) - w ,

' nxl nxn nxl nx(m-n)

m-nxl

Total wing ring strength:-

(rb,t(P)) = (rbt(P - 1)) + (arbt(P))

Ring strength history is converted to differeritial pressure by the

unsteady Bernoulli equation:

= ptuar/ax + ar/at
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4.4.3 Linearized Potential Equation

Doublet Lattice Method

The DLM, see Reference [81, is employed in high subsonic speed flutter

and atmospheric turbulence response.

Gridding

The method applies to wing, tail, control surfaces, flow-through

nacelles, and body, if each can be represented as a combination of zero

thickness flat panels (of any planform), that have no initial or steady-state

inclination to the free-stream flow. The wire-frame geometry of the panels is

such that it lies parallel to and does not deform the flow.

Flow inclinations are achieved solely by enforcing boundary conditions at

one control point in each areal element into which the panels are divided.
This has been called the "venetian blind" model. The major panels may have

relative dihedral and vertical separation between them.

Panels are defined as lying in a single plane. The contiguous elements

making up the panel must be arranged in chordwise strips, each of constant

width, from leading edge to trailing edge, but elements in each strip may have

varying leading- and trailing-edge sweep and chord length. Panels then are
usually chosen to nest within the wing outline, with boundaries along control

surface hinge lines. Control surface elements are treated the same way as
other elements (these rules also apply to the Supersonic Potential Gradient

Method (PGM) and ZONA 51).

Though no panels are required on lifting surface wakes (wake effects

being included in the acceleration-potential methodology), two surfaces may

not lie one-behind-the-other unless strips of elements have continuous width
over the two surfaces. (This is because singularities stream behind the strip

side edges and give spurious induced downwash on following-surface control

points if they do not lie midway between edges.)
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If it is not practical to keep strip widths continuous, the problem can

be avoided by raising or lowering the second surface about one and one half

strip widths relative to the forward surface. This small gap will usually not

make a significant change to the results, since chordwire velocity

perturbations are not employed in the method.

Bodies should be modeled as cruciform flat plates, looking forward. Some

analysts have used a series of ring-wings of difference radii fore and aft to

represent tapering fuselages, but the calculated lifts on these elements must

be reduced by a factor (usually 0.5), to account for the fact that the

physical flow is not swallowed by these rings. This practice, however, is not

recommended since in the event that the body cross-section is not circular,

some other unknown factor would be more appropriate.

In the case of flow-through engine nacelles of any cross-section shape,

however, no correction is needed and paneling that follows the shape is

recommended.

The lift force on each panel element is assumed to be concentrated

uniformly along a straight line across the quarter chord and is directed

normal to the undeformed surface. The control points lie on element

centerlines at the 3/4 element chord position.

Method Description

The DLM is designed to treat discrete frequencies of oscillation, one at

a time. The method assumes that all surface elements of the airplane are

oscillating at this frequency, though not necessarily in phase. The frequency

is non-dimensionalized so that model motions will synchronize with the

drifting flow vorticity in the same way as they would on the full. scale

airplane regardless of scale or wind speed. The nondimensional frequency is

called a "reduced frequency" or Strouhal number which is defined as the ratio

of frequency in radians/second to numbers of passages of a reference length

per second, i.e.:
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k = 7- radians/chord

where c may be delta-wing root chord or conventional wing semi-chord at the

3/4 semi-span, and U is the flight speed.

Motions of the aircraft are specified at the control points, in matrix

form, as

z2 
z2,

e

Z k Zk

and are resolved into local angle of attack as discussed in the boundary

conditions subsection:

=i + L z

The objective of the DLM is to find the matrix relationship between the

induced velocities at each control point on the whole configuration and the

sinusoidal oscillations of lift point on each element.

1a l l a 2 . . . . a n
01 1 a12 I n 1

2 21 a22 a2n 12

an an1 ah2 a nn tn
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where

6p is the differential pressure across the surface element, and 6s is the

element area.

0'2

If the complex matrix is known over the vehich:. then the complex

lift force is given by:

1 A11 A12 i 1n a1

2 A21 A22 A 2n 02

n An1 A n2 A nn an

v

[AIC] w Aerodynamic Influence Coefficients

and it fits into the linearized equations of aircraft motion, including

structural motions as:

[M] ({) + (KI (a) - [AICI () = 0

The equation is usually written in terms of the structural modes (mass-

stiffness). This causes the mass and stiffness matrices to become diagonals

but leaves the [AIC) matrix full, (it is also complex).
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Theory Discussion (Doublet Lattice Method)

The DLM is based on the acceleration potential rather than on the

velocity potential discussed in the previous section. Other applications of

the acceleration potential are discussed in Reference [5]. The relationship

between the two is as follows. The acceleration potential is based on the

momentum equation:

Dup-=-Vp

Discussion of the DLM is simpler if the Eulerian axes are assumed to

reside in the zero velocity fluid so that the aircraft, in passing, induces

only small velocities and position changes to air particles. Thus:

Du aup Ft = p T+ (u • V)u -vp

may be approximated to

au
at V

This states that the instantaneous fluid acceleration is:

Ia= - -VP
P

Because of the small translational displacements during acceleration to

the distributed velocity, at time, t, the velocity may be obtained by:

u(t) = a(t)dt

or

u(t) = -1 Vp(T)dT
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By the velocity potcntial method, however, the velocity is given directly

by the gradient of the scalar potential, *.

u = V

The relationship of the pressure p (a scala?) to the velocity potential

is as follows:

V p V L

The DLM employs lines of constant strength acceleration potential

doublets along the quarter-chord loci of the panel elements. These are

equivalent to lines of constant lifting force per unit span across element

spans. (In the DLM these strengths vary sinusoidally in time at the specified

reduced frequency.)

To illustrate the behavior of such aerodynamic devices a single point

acceleration potential doublet, with axis normal to the plane (x. y) of the

lifting surface and whose strength remains constant with time, will be

discussed. It has the same form as the velocity point doublet of Section

4.4.1.2.

First the velocity potential doublet:

z 32 2 2= 3 p  r= x +y +Z

4 nr

where strength, v, may be thought of in terms of distributed doublet strength

per unit area, r, which is also the circumscribing vortex strength of an

elemental area of constant doublet strength. Then

= r dxdy dxdy is element area.
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The velocity component, normal to the x, y plane at zero, then is given

by

W- r dxdyTz 4nr 3

and the acceleration component normal to the surface:

a at _ i at dxdy

A pressure field due to a pressure difference across an elemental area may be

assumed to be analogous to the velocity potential field due to a doublet.

Hence, from the doublet equation, the pressure (or acceleration) potential is

expressed as:

~1 () 1 -z
(p) - 3 - pdxdyP P 4nr3

where Ap is the differential pressure across the doublet origin and the

acceleration normal to the x, y plane at r is then:

W = I a 4rrT -z Apdxdy-P P p  z 4nr 3

w -I1 pdxdyP 4r 3

and the velocity component normal to x, y plane is given by:

[t t~~tdd

w(xPyPt) = J (x)d- = dxdy -1 p(t)dT

4-37



Before moving on to discuss the acceleration potential doublet, as it

acts in the DLM, it is instructive to equate the velocity and acceleration

potential expressions for parcel acceleration, a, normal to the x, y plane.

Velocity Potential Acceleration Potential

/A - A
\ /

1 ar 1 1

4mr3 atdxdt = -P 4 r3

Thus ar -
at p

ar
or p= at

Lhe well known result from compressible unsteady aerodynamics is the unsteady

Bernoulli equation in stationary fluid.

It is now possible to determine the velocity, w(x, y, t), at Point p,

normal to the x, y plane in stationary air induced by a point doublet of

constant strength moving past it at a constant speed and any subsonic Mach

number. (In the DLM this point doublet would be spread out laterally across a

strip width to form a finite width line doublet of the same total lift. The

velocities induced by the line and point doublets would be approximately the

same at control points several strip widths away. This illustrates the

behavior of the DLM for steady nonoscillatory flow.)

DIRECTION POINT DOUBLET
OF MOTION

XI I-0
Ip V  - Uat t - 0

STATIONARY
CONTROL POINT
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The doublet will be assumed to come into existence at x = 0. t = 0 and to

translate at speed, U, at a distance, y, laterally of Point, p. The problem

is to deduce the time history of the development of normal velocity w. The

doublet will be traveling at subsonic Mach number and compressibility effects

are to be included.

The smooth motion of the doublet may be thought of as a series of closely

spaced hops. At each point a frontal wave is sent out at the speed of sound,

a, that produces a steady fluid acceleration pattern and centered at the

position of the doublet. This pattern reaches Point p at a later rime given

by, a' where r is the radial distance, from the instantaneous position of the

position of the doublet, to p.

It is clear that the time of arrival, T, is given by

xr v
a U

The velocity induced at Point p then is given by

t

W(Xp, t) = Apdxdy dT
S4p Jo r

where

J )2 2
r =(x p- x ) + yp v

x = U~t
v

r
=+ at

a

At and x are dummy time measures.

4-39



Thus the two equations,

t
W (pdxdy 1d(x, t) 41p [(xp - U 2t)2+ y2 3i

1 U)2 2

T = 1 I(x - Ut)+ y + At
a p

will permit the problem to be solved.

Example:

The induced velocity, w, and acceleration, *, are computed for P= 10,

y = 4, and u = 1.0 for the three cases of a = 5 (M = .2), a = 2 (M = 0.5) and

a = 1.25 (M = 0.8). The graphs for these cases for tPdxdy/4np = 1.0 are shown

in Figure 4-10.

In this example, it is important to note that the induced velocity

increases to asymptotic level as the doublet passes by. This means that the

doublet leaves a permanent wake behind it. A finite span line doublet,

instead of a point, would leave a horseshoe vortex in steady flight. It

should also be noted that the calculation procedure takes care of this wake

automatically so that the wake need not be explicitly modeled.

An interpretation of this analysis is that, for a steady flow situation

(not a sinusoidal variation of elemental lift force), we have calculated a

number of elements in the reciprocal of the AIC or normalwash matrix. Suppose

we consider a swept wing, flying at M = 0.2, M = 0.5 and M = 0.8. Its normal

wash matrix was shown on Page 4-33, as

(o) = (AIC -' (1
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Factoring it by the forward speed it gives the form just calculated:

(w) = [B] (6)

For example the matrix elements for element p due to the fores in

elements 1 through 5 may be read from the plot, for M = 0.5

Bpl = 0.09

Bp2 = 0.072

Bp3 = 0.042

Bp4 . 0.017

Bp5 = 0.002

This outlines the aerodynamic logic employed in the Doublet Lattice

Method. The method is generally valid for attached leading edge flow at

angles of attack from -5 to +10 degrees and to Mach numbers up to H = 0.8 for

highly swept slender configurations or to slightly above the critical Mach

number.

4.5 DERIVATION OF THE STATE-SPACE EQUATION

4.5.1 Introduction

The equations describing the dynamics of a flexible airplane in flight

are usually written as a set of simultaneous second order differential

equations. The aerodynamic forces are defined as functions of frequency and

are, strictly, only valid for constant amplitude. The generally recognized

form of the equation is:

[M] s2 + [D] s + [K] - pV2 [A(ik)] (z) = 0 (4.1)

where:

z degrees of freedom: discrete displacement at structural nodes

[KJ mass matrix
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[D] viscous damping matrix

[K] stiffness matrix

(A(ik)] complex matrix of unsteady aerodynamic coefficients: a function
of the reduced frequency k = c0c/V

V true airspeed

P air density

s Laplace transform parameter

Equation (4.1) is for free flight without excitation. Any excitation (e.g.,

through control surfaces) will add a right-hand side to Equation (4.1).

Equation (4.1), therefore, is a stability equation and because it is for the

flexible airplane, it is also called the flutter equation. Any instability

associated with the structural modes of vibration is called flutter.

Stability of the system, defined by Equation (4.1), is defined by the

roots of its characteristic equation: s = (y + i)w, where w is frequency in

rad/sec and y is the logarithmic increment. In solving the characteristic

equation of Equation (4.1), the constraint k = (c/V)IM(s) must be observed.

To take full advantage of the methodology developed under the discipline

referred to as Modern Control Theory, it is necessary to reformulated Equation

(4.1) in state-space format. The state-space format is set of simultaneous

first order differential equations with constant coefficients:

s [x) = [A] (x) + [BI [u) (4.2)

The degrees of freedom x are called state variables. For the second-order

system, Equation (4.1), the state-space vector (x) contains [z) and (sz). It

may also contain higher derivatives, {s2 z), etc., as well as lag functions

such as [sz/(s+3)). The additional state variables result from approximations

of [A(ik)J in terms of rational functions of s.
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In the following, the state-space equation, corresponding tn Equation

(4.1) but with control added, is derived.

4.5.2 The Force Equation

The relation between the degrees of freedom [z}, the corresponding forces

(Z), and the elastic characteristics of the airplane is defined by:

[KJ (z) = [Z] (4.3)

The deflections (z), most easily visualized as downward translations, may

contain rotations as well as translations in other directions. Similarly, (z}

may contain moments.

The forces (Z) are composed of inertia forces (d'Alambert's principle)

viscous damping forces, and aerodynamic forces.

The inertia forces are:

{Zinertia} -[I (y) (4.4)

The viscous forces are:

{Zviscous = -[D] (4.5)

The viscous forces may be associated with hydraulic dampers, or they may be

used to approximately represent structural damping.

The aerodynamic forces are:

{Zzero} = p V2 [A(ik)] (z) (4.6)

The aerodynamics matrix IA(ik)] is obtained from aerodynamic influence

coefficients, a basic relation between the air aerodynamic force distribution
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over a lifting surface and the angle-of-attack distribution. In some methods

of computing unsteady aerodynamics a more basic relation is defined by a

matrix of induced velocity coefficients, defining induced velocities in terms

of a pressure distribution. In the following section, the more basic

formulation leading to [A(ik)] is presented, as well as the rational function

approximation of [A(ik)] needed for the state-space representation.

4.5.3 Formulation of the Aerodynamics

The formulation of the unsteady aerodynamics is based on the relation

[NID] (6p} (4.7)pV2

where {Ap} represents the pressures at aerodynamic force nodes, wF is the

velocities normal to the lifting surface, induced by (Ap}, and INIDI is the

induced normal downwash influence matrix. The induced velocities can be

defined anywhere in the flow field. For the purpose of computing (Ap} due to

airplane motion, however, they are defined at so-called downwash collocation

points.

Downwash collocation points are those points on a lifting surface at

which the induced velocity normalized by the free stream velocity is equal to

the local angle of attack (a), i.e.,

(a)= (4.8)

In the doublet lattice method of unsteady subsonic aerodynamics

(Reference 25) there is a downwash collocation point associated with each

aerodynamic force node point, although they don't coincide. The result is a

square invertible matrix [NIDJ, and thus, from Equations (4.7) and (4.8):

(Ap} = pV2 [NIDI -1 (a) (4.9)
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The inverse INIDJ-1 is the matrix of aerodynamic influence coefficients:

[AIC]. Thus, Equation (4.9) is equivalent to:

[Ap) = 1 pV2 [AIC] (a) (4.10)

There are unsteady aerodynamic computer programs that compute [AIC directly,

some of them leading to a form consistent with the equation

=Zaero) 1 pV2 [AICLI (a) (4.11)

In this equation (Zaero) is defined at the structural nodes. in general

different, and different in number, from the downwash collocation points.

Thus, [AICLJ is not necessarily a square matrix.

In the following derivation, Equation (4.9) is used as a starting point.

From (Ap), by an integra'ion or "lumping" process represented by [ZPJ,
the aerodynamic forces are obtained:

(Zaero) [ZPJ (Ap) (4.12)

The local angle of attack, taken relative to the free stream velocity, V,

is given by

(a) = (ae } + (ai) (4.13)

The contribution a0 is the instantaneous slope of the lifting surface,

relative to V, in a plane through V perpendicular to the lifting surface:

(a0) = ID9l [z) (4.14a)

where [D91 is a differentiating matrix.

The contribution az results from the rate of translation in a direction

perpendicular to the lifting surface:
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(az} = [DI {j } (4.14b)

where [DzJ is an interpolating matrix.

Note that to illustrate the principle, it is assumed that there are only

z-type degrees of freedom and that all z's are defined perpendicular to the

lifting surface.

Substituting Equation (4.14) into Equation (4.13) and replacing z by sz

yields:

(a) = [De] + [Dzl] {z} (4.15)

Combining Equations (4.9), 4.12) and (4.15) leads to:

Zaero) = 1 pV2 [ZPJ [NIDI-1 [Dz + a [Dz] (z) (4.16)aeo 2 Lz v

For constant amplitude oscillation s = iw = i(Vk/c). The induced

velocity matrix is a function of ik. It follows that Equation (4.16) can be

written as:

1

(Zaerol = 2 pV2 [A(ik)] (z) (4.17)

where A(ik) is defined as in Equation (4.1) and is given by:

JA(ik)J = JZPJ fNID(ik) -l [[Dol + L- [Dz] (4.18)

For developing the explicit function of s, [A(s)], corresponding to

[A(ik)], the [Do] and [DzI contribution to [A(ik)J are identified separately,

and the explicit occurrence of s in Equation (4.16) is maintained.
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[A(ik,s)I [ ZPI [NID(ik)] 1 [DE) + [ZPJ [NID(ik)]L1 IDZI (4.19)

Let:

IAe(ik)] = ZPI [NID(ik)]l1 [De] (4.20)

and

IAz(ik)J = Zpl INID(ik)]V1 [D_] (4.21)

Then:

[A(ik,s)] = Ae(ik)I + a [A (ik)J (4.22)

Preliminary to approximating [A(ik,s)J by an explicit function of only s,

IA0 kik)) and IA.,(ik)] are arprovimated by tAe(p)] and IAZ(p)J, where p is the

nondimensional form of s: p = cs/V.

Following Reference [261, the following terms are approximately,

[Ae(p)J = Ij3(Oj + E + b. (4.23)
j 1 j

IAz(p)J IBZoJ + [B].24

j=1 p + b. 4.4

Because the state-space equation will be written in terms of s (see

Equation (4.2)), Equations (4.23) and (4.24) are written in terms of s by

letting p =cs/V:

[Ae(s)J = BeoJ + s E + 1.(4.25)
j=1

[Ae(s)J = BZ0J + S E s+ 1.(4.26)
j=1 j
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where

= V bj/c (4.27)

Combination of Equations (4.17), (4.21), (4.22), (4.25), and (4.26) leads

to the following approximate qxpressions for the aerodynamic forres:

(Zaerol = P 0V
2  (BOO] + s Z (z)2s s1

1 2 n
+ i pV2 [ [BzOj + z (z) (4.28)

With an obvious shortening of notation this is written as follod :

I

(Zaero) = 1 pV2 [A(s,V)I (z) (4.29)

To clearly demonstrate how Equation (4.28) is used to develop the state-

space equation, without using unnecessarily long algebraic expressions, it

will be assumed that n = 2.

The following section deals with the incorporation of Equation (4.28) in

the airplane dynamics equation, and the introduction of control surfaces.

4.5.4 The Dynamics Equation

The total force distribution on the airplane is given by the sum of the

inertia forces, Equation (4.4), the viscous forces, Equation (4.5). and the

aerodynamic forces, Equation (4.28) or (4.29). Replacing d/"t by s and d2/dt2

by s2, this leads to

{Z} [.-[M] s2 - (D)s + . pV2 IA(s,V)J {z} (4.10)
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Combining Equation (4.30) with [KJfz) = (Z), Equation (4.3). leads to the

flutter equation, the equivalent of Equation (4.1).

To introduce the effect of a forced control surface deflection, a

distinction must be made for z used in Equation (4.30). In Equation (4.3), z

represents the sum of displacement due to rigid body motion and elastic defor-

mations. The forces in Equation (4.30) are due to the sum of these displace-

ments, and additional displacements, due to control surface deflection. To

make the distinction, [z} in Equation (4.30) is replaced by {z}:

(z) = [-[1 s2 - [D] s + 2 (v2 [A(s,V)] (4.31)

The relation between (z} and IF) is given by

IF) = [z6] (6) + [z) 4.32)

Each 6 represents a forced control surface rotation, and each column in

[zS] represents the z-type displacement due to the corresponding 6. Thus,

1z61 contains nonzero elements only for nodes on control surfaces. Their

values equal the distanccz from the nodes to the hingeline.

It should be understood that the forced displacements (z8] (6) are in

addition to any displacements on the control surfaces included in {z) that are

part of the elastic or rigid body response. The actual control stirface

rotation, relative to the main surface, is the sum of 6 and the rotation due

to elastic response implied by Equation (4.3).

Equations (4.3), (4.31), and (4.32) are combined to

[M] s2 + [D] s + (K) - 1 pV2 [A(s,V)I] (z

-M] s 2 - [D) s + P. V2 [A(s,V)] [z6] {6 (4.33)
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If {6) = 0, the right-hand side of Equation (4.33) is zero. and the

equation corresponds to Equation (4.1), the flutter equation.

The number of discrete degrees of freedom {z) may be large. For a

typical airplane analysis it may range from 100 to 300. This is not an

unreasonably high number for vibration analysis, but for fluttei analysis and

active control design it leads to higher-than-necessary computing rots.

The number of degrees of freedom is reduced by modalization. ,,sually by

means of natural vibration modes. The deflection (z) is assumed tf, bt a

linear combination of lower-frequency, natural vibration modes, -a,1h of which

is defined by a column in the modal matrix IT]:

(z) = ITI (q} (4.34)

Elements of (q) are the modal degrees of freedom, also called modal

coefficients or participation coefficients. The modal matrix [TI. in general,

also contains rigid body modes, if deemed necessary for description of the

system under consideration. Typically, {q) may have 2 to 50 elements.

Introducing Equation (4.34) into Equation (4.33) leads to mote equations

than there are degrees of freedom (q). The number of equations is reduced to

the number of degrees of freedom by premultiplication with the transpose of T:

ITT].

The result is:

[TTI [(MI s2 + [D] s + [KI - j pV2 [A(s,V)j IT q}

= ITTj I-IM s2 - [D] s + p pV2 [A(s,V)l] 1z81 (6 (4.35)
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Identifying ITT ] I I IT] by an overbar - (e.g., ITTI [M [TI = IM! and

ITT] I ] [z6 j by a hat (e.g., [TTI IMI [z 6j = (MI, Equation 4.35) is written

as:

s 2 + [D s + [K] - 0V2 [A(s,V)] {q}

- -[MI s - [DJ s + pV2 [A(sV)I t61 (4.36)

Introducing the detailed expression for the aerodynamic forces, Equation

(4.28), with n = 2, into Equation (4.36), leads to:

s s2 + (51 s + [K- - pV2 [goo, - [ pV2 [zO]

pV2 [Bell s+- pv2  2 s2
2 s+01 -I2 IDg12 j +3

-1 PV2 [g S2 1 2  
- 1is- 2 ]"2 Bz11 V s+031 2 V2 [Bz2] V sS'132_ (q)

=-[MI s2 - ID] s + pV2 tBeo ] + 1 pV
2 IBzO ]

1 s 1

1 V2 [Bell s--- + 2 pV2 [Be2 -
+01 + pV2 B621S +0

1 1 2 1 2 1 s2
PV2 [Bz 1 ] V2 s+f2 +) (437)

The notation of the aerodynamics elements in Equation (4.37) is

shortened: [Coo] = 1/2 pV2 [BO 0 ], etc. The new symbols are defined below in

terms of symbols without overbar or hat.
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1 1 T
ICejil = f pV2 [TT][Bej]T] ICej] = pv2 I ]TTBe]jld6J j = 0,1,2

112 1T

ICzjJ = j pV2 [T1 [j = 1 pV2 [ TB d = 0,1,2

(4.38)

With this notation, Equation (4.37) becomes:

[MI s2 (DJ s+ [K - [Ceo] s - [Ceol S+--- S eo -I

-[Cz2 q[D] s + [Ceol

IC" s+0I z2I S0 2 (q) M s2 - s

+ [CzO] S + s+11 [C2+ [Czl S 2 + [Cz2 J [6

(4.39)

4.6 STATE SPACE EQUATIONS FOR AEROSERVOELASTICITY SYMMETRIC AIRPLANE

The development of the final state-space equations will be done in a

manner similar to that of Section 4.5. However, gust equations will be

included, and a more general for., of the servoactuator will be used. At a

later time, the equations for explicit force feedback may be added.

4.6.1 Gust Equations

The angle-of-attack due to penetration of a gust can be reptesented by

a = " {e V = w e (4.40)

where

U = gust velocity

V = airplane true airspeed
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c =reference length

axi = xi- Xcg for each DOF

k = reduced frequency

v = u/V

The gust aerodynamic forces are then given by

(FG) 2 P112 [Zp J[A ,(ik)J fczG1 (4.41)

After modalization

(Q(G) = [TIT {FGI p112 (FG;(ik)) w (4.42)

where

(FG(ik)I = [TIT IZpj [Aot(ik)] {e - kx(4.43)

Use the approximation from Reference [26]

2 4 (B G3)p
(FG(P)) = 1BGO) + (BG,) P + {BG2 ) P

2 + E p~j(4.44)
j=3 pb

Replace p with the generally used Laplace transform operator s:

p = s (4.45)

V

+ {BG31 -+ + fBG4) T (4.46
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and
1

S = pV2 [fG(S)) w (4.47)

Equations (4.46) and (4.47) give the gust aerodynamic forces defined in terms

of the state variables w, sw, s2w, sw/(s+0 3 ), and sw/(s+0 4 ).

The basic gust input is taken to be white noise of level n. A filter is

then defined which will convert this to the desired psd shape. The Dryden

gust spectrum is generally used for control systems work, and will be employed

here. A Dryden psd filter can be represented by

{ = [1 1] { } c ~ i(4.48)

where g is a dummy variable, and

2al = cl= mn

a2 = c2 = (4.49)

and T = L/V, with L = scale of turbulence.

Closer examination of Equations (4.46) and (4.48) reveal a singularity

when combined wiLL the identity equation ws = ws (necessary because of the

existence of both sw and w as states). These equations are

ws = ws (4.50a)

ws = a1 w + g + c1 tl (4.50b)

gs = a2 w + c2 rl (4.50c)
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Since ws is a state variable, we need a derivative of this to put on the left

side. Therefore, we will use a suggestion by Hassig and add c2ws
2 to Equation

(4.50b). Thus, Equation (4.48) becomes

S= aj/C2  -1/V 2  1 s2 w + 4f1/C 2  (4.51)

a 2  0 0 { c2

where £2 is a small quantity. Again care must be taken that this is chosen

properly, i.e., small enough to be correct, but large enough to avoid ill-

conditioning in the matrices.

4.6.2 Servoactuator Model

Assume a servoactuator which can be represented by a polynomial in s

n
E a.sN~s) i=O1

& = u - m u ; m > n (4.52)D(s) m bi -
r b.s
iO1

where 6, the control surface rotation, is a response quantity, and u is the

input command. Rewriting Equation (4.52),

(bmsm + bm lsm- 1 + ..- + bo) 6 (ans n + anlsn-i + + ao)u (4.53)

Define additional state variables,

61 S

62 s -S26

6m-1 =sm-1 6 (4.54)
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This takes care of the denominator, but the numerator requires an additional

step. In order to achieve a state-space formulation we must change u and its

derivatives into state variables. This can be done with the following

equation:

(cI sn+l + 1) u = uc (4.55)

Note that we must go to the n+l power of s in this equation. This can be

explained by examining Equation (4.53), where the term with the highest power

of s on the right-hand side must represent a state variable - not the

derivative of a state variable. In order to form the state-space equations, a

derivative of this variable must appear - thus requiring the sn,1 term in

Equation (4.55). Equation (4.55) allows the selection of small values for El ,

thus making uc essentially equal to u for the problem at hand. Therefore, we

can define the new "quasi-input" states

U 1 = su

u2 = s
2u

un  snu (4.56)

The complete state vector for the servoactuator is then 6, 61, 81 6m-1 ,

u, uI , U2 , -, un - a total m+n+l quantities.

Using Equations (4.53), (4.54), (4.55), and (4.56), we have the necessary

n+m+l equations to define the state-space model for the servoactuator. These

are shown in complete form in Equation (4.57).
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6 61 S2 " 6m- I  u u u2 "" Un

0 1 0 ... 0 00 0 .-. o

0 0 1 ... 0 00 0 ... 0 61

t2 0 0 0 ... 0 0 0 0 ... 0 62 0

-b 0 -bI -b2  -bm 1 a0  al a2  an

bm bmbm bm bm bm bm bm C

u0 0 0 . 0 0 1 0 -" 0 u 0

0 0 0 ... 0 0 0 1 • 0 u I  0

u2  0 0 0 ... 0 0 0 0 .•0 U2
. ... ... ......... ...............

u n  0 0 0 ... 0 -1/c1 0 0 ... 0 U /I

(4.57)

or

0 1 t0J Sf eo
*1 0 0 LYJ s +  O uc (458)

{BS) {B61} [B&21 B
Sm+n~l U

where

Yi = [I 00 "'' OJ (B 6) b ; {B61 4- row m

The requirements for choosing c1 will not be examined. Assume for low

damping that:

s = iw = i 2 af (4.59)

where
= frequency in rad/sec

and f = frequency in Hertz
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If I is chosen to make u and uc differ by only a percent then

oI s n + l < 0.01 (4.60)

or

0.01
eI  0 . (4.61)

(2rf)n+l

Remembering that n is the order of the numerator in the polynomial expression

for the servoactuator, we can see that for frequencies above 1 Hz. C becomes a

very tiny number quite rapidly, especially for complicated servos. For

instance, let's compute it for n=3 and f=1 Hz:

el 0.01/( 2 n ) 4

el < 0.64 x 10 - 5

and

I/c I = 0.156 x 106

This large number may make [A] matrix somewhat ill-conditioned. Careful

attention should, therefore, be paid to Equation (4.61).

4.6.3 Phugoid Mode

Equations for including the phugoid mode in the aeroservoelastic model

will not be developed.

Assume a modal transformation such that:

80
{x} = [T) zo, (4.62)

qf.

where x and z are the deflection distribution, xo, zo and 90 are the rigid

body degrees of freedom, and qf is the flexible body degrees of freedom.
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Keeping in mind that the flutter equation is a perturbation equation from

an equilibrium state, lets look at the vertical force created by a small

increment in forward velocity, AV. The aerodynamic forces are

(ZA} = pV2 [AIC(O)] tmq) (4.63)

where (%q) is angle of attack at equilibrium.

The incremental increase in vertical forces is

-ZA} pV [AIC(O)I (eq} AV + i pV2 (AIC(O)[ a e AV (4.64)

-- + Y (4.65)

For V >> i o, y = tan y

tan y = -io/V (4.46)

where the negative sign enters because of the definition of the direction of

rotation of Y.

z

o  - 0 (4.67)

4-60



0 (4.68)
av - v2

Substituting this in the second term of Equation (4.64) gives an

expression which is negligible because of the presence of both z,, and AV as a

product.

p pV2 [AIC(0)I t A V = 0 (4.69)

Thus, writing the perturbation in velocity as -xo, since x is defined positive

aft, Equation (4.64) becomes

{6zAl = -pV [AIC(O)J (eq) X o = 2 pVp2 {Az xo  (4.70)

Now consider the arpg forces on the total airplane only,

D = 1/2 pV2 CD S (4.71)

We are concerned with the incremental force due to xo, z0, and e0.

AD = pV CD S AV + 1/2 pV2 S CDa Ac

where = a(V, io, 90 ) (4.72)

a~c AV 2E . 8cE
acV+ -z + e e0  (4.73)av z 0

4 -6 1 + 9O (4.74)
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The first term in Equation (4.74) can be neglected for the same reason as

before in Equation (4.69).

W = - pV CD S ko + 1/2 pV2 S CD* (0 o - io/V) (4.75)

-I

There is also a drag force due to the change in direction of total velocity

due to an angle-of-attack change.

XL 1 1/2 pV2 CL S io/V (4.76)

The total force in the x-direction is

XA  - pV CD S x o + V2 SCD le - + I pv2 cL s -- (4.77)

or

XA = g 2  CD S xo + 7 (CL - CD) Zo + S CD, (4.78)

or

-x = 0v2 [x X; Xe 0 SZoJ (4.70)

The total aerodynamic forces can then be written: I:°I
&X I 1 sxv2x Xe zo

2 2 ]x t s (4.80)
LAT.A  (Az) s  oA C

where

[AICI = (AICI [TzI (4.81)
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and

[TJ = ](4.82)
{0 Tz ]

Now define

[AIC] IT 2rT [AlC] [Tz (4.83)

If

(a} = [De] + E [Dz] [Tzl {qzj (4.84)

{Qz) V2 [TzIT [ZPl [A,(ik) ] (a) (4.85)

This can be divided into pitch and plunge:

{Oz) = pV2 [IAe(s)J + E [Az(s)l] (qz) - [Tl T (Az} vo (4.86)

where

[Ae(s) ] = [TZIT [ZPJ [A,(ik)] [Del [Tz (4.87)

and

[Az(s)l = !Tz]T [ZP] [Aa(ik)] [Dz] [Tz] (4.88)

Now using the rational function approximation,

[Ae(s)] = [Ae(0)j [Bel] + s- B921 (4.89a)

[Az(s)] = [Az(O)l + sBZ- + [Bz2S (4.89b)

where we use only two terms in the series. These matrices can be determined

by a least square fit using two or more k-values. Note that the modal matrix

[TI is now of a predetermined form, i.e., the first 3 columns represent rigid

body fore and aft, pitch, and plunge, in that order.
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4.6.4 Equations of Motion

A control surface rotation, 8, gives the additional displacements.

(zcl = [z61 (61 (4.90)

where the ith column of [z&] gives distances from a hinge line for the

particular control surtace corresponding to 6i . The total deflection is

M = (z) + {zc }  (4.91)

The equations of motion are

[MI s2 + [Dls+ [K] - 1 pV2 IA(sV)l (z) + [xl (z) = (FG ((..V)1 2 1(4.92)

Substituting for 2 from Equation (4.91) results in

IM) s2 + ID]s + [K] - O pV2 [A(s,V)J] (z

(Ms- [DI s + 0V
2 [A(s,V)l] [z1 (8)

+ (FG(s,V)} v (4.93)

Nov,

(z) = IT] (q) (4.94)

Note that, in order to incorporate the phugoid mode, we must modalize the

aerodynamics first. This presents a possible problem for the aero forces on

the right side of Equation (4.93). The contribution to X-forces due to rigid

control surface motion should be zero since this side has not post-multiplying

IT]. This requires that xo, zo, and eo are not on a control surface. This

seems to be acceptable. After modalizing, Equation (4.93) becomes
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s2 [D s + [1R1 - -pV2 [A(s,V)J {q)

s 2  -[DIs + V2 [A(s,V)J [z61 {61

2 .V 2 [FG(S,V)) (4.95a)

where

1-1 = [TIT [.1 [TI (4.95b)

and

['] = [TIT (-I (4.95c)

Here

A(sV)J = [ [ Az - (4.96)
-2s/V [Tz]T [Az)- [Tz]T [AIC] [Tz]

and

[A(s,V)j = M [AIC] () (4.97)

Here (q) also contains the rigid body DOF, i.e.,

ZO  XO 1
(q) = 0= (qz (4.98)

A f

where (qf} represents the flexible modes.
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Redefine the parts of Equation (4.96):

[ sX. sX. xe  oJ]
lKsl]x z Olx ~ . .. . . ... .-.-.-.-.-.-. -.- (4.99){Az) s [AIC

where

(A,} = -2/V [TzIT (Az)

and

[AfC] = [Tz]T lAIC] [Tz]

Leaving off the first row of each matrix in Equation (4.95), we have

[Rz] s 2  [Dzl s + [Kzj - 1 )V2 iAfC] IqzJ

- [IMzJ s2 - [Dz] s + 1 pV2 [AICI [zS] (6)

1 I

+ pV2 [Fcz(s,V)) w + f PV2 (Az) sx o  (4.10

Now,

[AICI = [Ae(s,V)I + s/V [A,(s,V)] (4.101)

with

wAh(s,V)! = tAe(0)I + 1 1 [Be1] + S B 2 1 (4.102)

[gz(S,V)j = [1z(O)I + s [Bzll + s2 [Bz (4.103)
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where

3= Vbi/c

2-
{FzsV}=(BGO) + - (BG) + B2

S S B4 414

+ S+3(BG) + (BS+(4004

Let

(CGO) = V 1 GO (4. 105a)

~.pV 2  {BG1) (4.105b)

(C 02  = 12 (4. 105c)

PV2 (BG3) (4.105d)

(CG4) = V B4 (4.105e)

[CX1 1 pV2 [Az 1(4.106)

[CEo] = 1 PV )Oj(4.107a)

(C i = 1 (4. 107b)

L~2 = V 1 fe~ (4. 107c)

= v 1 4~~ (4.107d)

[Ezij = 1 vlii (4. 107e)
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[Cz 21 = PV IBz2I (4.107f)

1

[Ceol = pv2 [A(O)l [z6] (4.107g)
1

[Cell = p V2 [Bel [z6] (4.107i)

1

1
[C21 = 1 pV [B 21  [zS ]  (4.107i)

1
[Czl)] = 1 pV Bz(Ol] [z] (4.107j)

2

[Cz21 = PV [Bz2l Iz6l (4.1071)

Note that the notation of Equations (4.95b) and 4.95c) still holds for

these equations. Equation (4.100) becomes

[fI] S2 + [6. s + [9zl - 1401 - s [Cell - s ICe21

s2  s2 ]
-s {Cs -Z s+"-- _C L __ E s-2 [z2] {qzl

M 2s s

[-zi s2 - [DzJ s + (Ceol + + [Cell - +j ICe21

s_ 2 " 2]

+ s (CzOJ + _ [Czll + I Cz2 l ()

CGo) w + ICGI) sw + (CG2) s2w + (CG 3) s

+ (C04) sw + (Cx) sxo  (4.108)
5 +0
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where

[71 = ITzIT [.] ITzJ (4.109)

There is also an equation of motion for the fore and aft direction.

Assuming xo to be uncoupled from the other DOF, for the free airplane we have

MxS2Xo + Dx Sx0 = pV2 (X sxo + X szo + X98o)

= sx + ( J s + [eJ ) (4.110)

where

X = 2 pV2 X , (4.111a)
x2 x

1 2 X. 00 .. 0](4.111b)

and

[Xe oJv [x o 0 (4.lllc)J=  V2 [0 X, 0 0 ... •j(-1c

Now we are only lacking some identity relation in order to complete the state

model. Some of these are:

s xo = s xo  (4.112)

s{q z} = s(qz) (4.113)

For the others note the following:

S2q qs2 + qs~j - qs~j

S+ Il S+ Oj

qs (s+%) - qs0j

S +
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Thus

= siq} - s+qj ; j=1,2 (4.114)

This is also true for 6,

= s(q) - j=1,2 (4.115)

likewise for the gust lag terms,

- Vs + w - w0j w(s+) i W0j.
S+j S+j Ili S+ -j

s w - ; j=3,4 (4.116)
S+j S+ Il

The complete equations for the state space model are found in Equations

(4.60), (4.61), (4.108), (4.110), (4.112), (4.113), (4.114), (4.115), and

(4.116). These are shown in full matrix form in Equation (4.121). This may

be written:

[H] ( ) = [HAl (x} + [HBI (u) (4.117)

Define

[A] = [HI -1 (HAl (4.118)

[B] = [HI - 1 [HBJ (4.119)

We then have the final state-space format:

(k) = [A] (xl + [B] (u)
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SECTION 5

MODEL-ORDER REDUCTION FOR LINEAR SYSTEMS

5.1 MODEL-ORDER REDUCTION FOR LINEAR SYSTEMS

5.1.1 Introduction

Model-order reduction makes application of modern control theory more

practical. To include all of the huge number of modes of a stru, t,iral

dynamics model in the control-system plant of an active control -Vqtem would

not only strain the capability of the computer facility, but would lead to

compensation transfer functions of much higher order than necessary.

A method of model-order reduction that Lockheed has successhflly used in

the past and some variations of a more general method, which are ,irrently

under study, will be discussed. These methods are: (1) spectrAl

decomposition, and (2) balanced approximation. Spectral decomposition is the

more direct method, but is limited to linear time-invariant (LTI) systems (the

usual model for stability and control of airplanes). The balanced

approximation method can be applied to time-variant models and, ohviously, to

their LTI extensions.

The main thrust of the model reduction problem, as reported here, will be

limited to LTI systems denoted simply as (A,B,C) realizations. The

corresponding state-space equations are:

k(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (5.1)

5.1.2 Background

Before the development of the jumbo air transports and othei large

aerospace vehicles, rigid-body equations were all that were needpd (ot the

mathematical description of an airframe in a control-system model. Except as

needed for the judicious placement of sensors, concern with the stutictural
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dynamics of the airframe was avoided. Structural paths affectin cervo

feedback signals were part of the control system technology, but qny other

aspects of structural dynamics were left to the dynamic loads and flutter

disciplines.

With the advent of new technologies aimed at controlling thp structural

modes of large flexible bodies cane the need to expand the control theory

domain. The most obvious approach to these higher-order models was linear

algebra, the basic analytical tool for structural dynamics, dealing with

vectors and matrices. Adoption of these methods in control theory led

naturally to the development of multi-loop optimization processes which

utilize state-space models and which are covered under the broad discipline

known as "modern control theory." Large scale digital computers were

essential tools for this work because of the large matrix sizes.

Stability-and-control engineers have been working with vectors and

matrices for decades. The state-space approach is little more than a method

of accounting. It is equally applicable to time-domain (differential

equation) or frequency domain (Fourier/Laplace transform) models of dynamic

systems. There are sevEral advantages to using state-space models. a few of

which are:

A large number of scalar equations can be expressed as a small number

of vector-matrix equations.

" The linearization of aircraft equations, which are inherently
nonlinear, is straightforward.

" Appropriate reduced-order models can be generated easily.

Of course, in order to apply the above conveniences, in addition to those

of the previous classical methods, control theory applied to the design of

airplanes is based primarily on linear analyses. Rigid-body data in the form

of stability derivatives from the wind-tunnel curves are used to compute small

perturbations and related output data characterizing the flight dynamics. A

set of these linear models, each representing a particular flight condition is
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used to study airplane control in the total flight envelope. The rigid body

input data may also include stability derivative corrections to represent

airframe flexure influences upon the aerodynamic forces. This is not

sufficient, however, where the dynamics of the lowest structural mode couple

with the short period of the rigid body model. Similarly, the lowest

structural mode will couple with the next higher mode, ad infinitum; so that

the correct model for some handling quality studies must include the dynamics

of several modes. In case the original model (designed for flutter analysis)

does not include accurate rigid-body characteristics, then a good

representation can usually be obtained by inserting rigid-body coefficients in

the appropriate matrix locations. This approach "estimates" the coupling

between the short-period and the lowest structural mode. If this is not

acceptable, then the original model must include accurate representation of

the rigid-body modes. Lockheed is presently developing new flexible-modeling

techniques that will yield large flexible models with accurate short-periods

and phugoids.

Obviously, a large aeroelastic model of the type commonly used for loads

or flutter analyses must be reduced to comparatively low order before it can

be used in a practical setting for control system studies; e.g., a real-time

flight simulator. Since structural-dynamics models are practically time

invariant, the required simplifications can be done conveniently by exploiting

the fundamental attributes of linear algebra: eigenvalues, eigenvectors, and

superposition. After the aeroelastic model has been reduced to an appropriate

order, it can then be superimposed upon a rigid-body, total-force model if

desired. A comparatively simple alternative to the total-force model,

sometimes used for take-off or landing, is one which utilizes time-variable

interpolation of stability derivative increments between sets of stability

derivatives. In most cases, however, linear models with constant coefficients

are adequate for the study of stability and control characteristics, including

handling qualities.
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5.1.3 Summary of Two Model Reduction Approaches

Two entirely different approaches to model reduction of linear time-

invariant systems are discussed in this report. They are: (1) halanced

approximation, and (2) spectral decomposition. The balanced approximation

approach is better known, having been thoroughly developed and discussed in

the technical literature since about 1979, at which time the importance of

model reduction, as applied to multi-input/multi-output systems, had barely

been recognized, Reference [131. The spectral decomposition approach was

developed and used by Lockheed, beginning in 1974, during studies that led to

the development of the L-1011 Active Control System, References 114J and [151.

5.1.3.1 Assumptions

1. The system is Linear Time Invariant (LTI)

2. The Balancing method is applied to the stable part of the transfer

function

A short description follows on how to separate a transfer function into a

stable part and an unstable part:

Let

G(s) = G (s) + G (s)5 u

Stable Unstable

Let P be a matrix of columns of which are the eigenvectors of A, i.e.,

XSlxo
s 2

A=P 1X P-

u 
2
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The eigenvalues are labelled such that X is stable and X is unstable.
5. I1.

Define

P- x

B P- B

C=C P

and partition B and C conformably with

0 Au

i.e., B = U, ) ( s )

Combining the above yields the new state space model.

(As 1 x Bs uX : T AU] 
U

Y : U)s u)

It follows that

G(s) = C (sI - - + C (sI - A )-___ _____ \u u u
V' V

Gs(s) GU(S)

The above is clearly the "stable + unstable" decomposition.
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5.2 THE MATH MODEL - FROM FIRST PRINCIPLES

An airplane flying through changing flight conditions is de:'-tihed

mathematically by a set of nonlinear aerodynamic curves from whih stability

derivatives are normally derived. A simulation of the exact equations would

not include the stability derivatives per se; nevertheless, the derivatives

would be represented in the simulation by the slopes of the aerodynamic

curves. The resultant dynamics of the simulation will closely approximate

those of a linear model as long as the motions are small perturbations.

The nonlint - equations of motion can be written as a single vector

differential equation

x(t) = f(x(t), u(t)) (5.2)

where x(t) is the state vector, and u(t) is the control vector.

Output quantities are represented as

y(t) = h(x(t), u(t))

The aircraft is trimmed in unaccelerated flight if the system is at

steady state, i.e., k(t) = 0. The states and controls for trim are defined by

0 = f(X0 (t), u0 (t))

Perturbations from this trimmed condition can be characteri7zd by a

linear model, which is obtained by a Taylor series expansions of Equation

(5.2) about x0 and uo The linearized dynamic equation is

A(t) = A Ax(t) + B du(t) (5.3a)

and the linearized output is

Ay = c x(t) + D~u(t) (5.3b)
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where A,B,C, and D are Jacobian matrices of derivatives with respect to x and

u evaluated at the trim condition. In this report, subsequent incremental

equations of the above form will be written with the A's deleted. All of the

elements of these Jacobian matrices are real scalar variables. In general,

the matrices are time-varying; but in keeping with the assumption that the

aircraft is trimmed, it can usually be assumed that the matrices are constant.

During flight manuevers where the stability derivatives are changing rapidly,

the linearized model must contain time-variant matrix coefficient; i.e.:

x(t) = A(t) x(t) + B(t) u(t) (5.4a)

y(t) = C(t) x(t) + D(t) u(t) (5.4b)

where the state at time t, x(t), is an n-vector; the input at time. r, u(t),

is an m-vector and the output at time t, y(t), is an r-vector. A,B,C, and D

are matrices of compatible size. We will refer to this model simply as

(A,B,C,D).

The desired input from the aerodynamic and structural disciplines to the

control system engineer are contributions to the A and B matrices for all trim

conditions representative of the entire flight envelope. Selections of the C

and D matrices depend upon the sensor locations. D is usually zero except for

accelerometer outputs.

The elements of the state vector x include all of the variables of the

flexible model and of the control system, including the actuators and sensors.

Those of the control vector u contain all of the control commands. If the

model is reduced from a larger one, then the negligible variables of the state

vector are removed and the A,B, and C matrices are modified accordingly.

Figure 5-1 is a state-space block diagram of Equation (5.4) with no

direct coupling from input to output (D = 0), but with anticipated feedback

signals from output to input through the feedback matrix F. Although the
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overall model-reduction problem is a function of the closed-loop system, the

scope of this report is restricted to the open-loop realization (A.B,C).

5.2.1 Solutions of the State-Space Equation

The real-time solution of the state variable in Equation (5.4) is

n
_ It

x(t) = (t,to)x(t0 ) + f t(t, )B( )u ()d - (5.5)
t0

where #(t, to), known as the transition matrix, is defined by its time

derivative:

d* (t,t0 ) = A(t)*(t,to); (to,t 0 ) = I (5.6)

FinI

Figure 5-1. Time-Variant (A,B,C) Model With Anticipated Feedback
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The transition matrix is exactly analogous to the integrating factor used

in the classical solution of a single, first-order differential equation with

variable coefficients.

If the matrix A is time invariant, then the transition matriy is

*(t,t O ) = eA(t-t 0 ) = (t-t0 ) (5.7)

Therefore, if the system, Equation (5.4) is time-invariant, the integral

in Equation (5.5) becomes a convolution and the equation is simplified to:

x(t) = *(t-to) x(to) +t6t *(t-x) Bu(T) d T (5.8)

Taylor's series expansion of the matrix exponential eA(t-t) provides a

convenient computer implementation of the transition matrix of an LTI system,
i .e:

CO [A(t-to)]i*(t,t O ) = eA(t-to) Z

i=O i!

If the matrix A(t) is variable, then *(t,t 0 ) is obtained by computer

implementation of Equation (5.6).

Laplace transforms of the LTI systems with to = 0, are:

L[ (t)] = (sI-A) - 1

X(s) = (sI-A)-1 (x(O)+BU(s)) (5.9)

The corresponding output, with the initial conditions at zeto. is

Y(s) = C(sI-A)-IB U(s) (5.10)
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The expression

G(s) = C(sI-A)-IB

is the matrix transfer function of the (A,B,C) system.

5.3 MODEL-ORDER REDUCTION APPROACHES

Inspection of Equation (5.9) reveals a possible approach to the model-

order reduction problem as follows:

1. With all initial conditions zero, consider all possible qrate
responses to all possible unit impulses (one at a time) in the
control vector.

2. With all input signals zero, consider all possible outpit transients
due to each possible initial state (set at unit value, nnp at a
time).

3. Weigh the above results by appropriate means; then eliminate the
states that yield negligible results.

Clearly for this approach each of the matrices A, B and C 'nntribute

heavily in the evaluation. Controllability (state responses due to unit

impulses at the input) and observability (output respotjses due to unit iiitial

conditions) are the prime considerations. This is the basis for the method of

"balanced realizations."

5.3.1 The Balanced Approximation Approach

As mentioned previously, inspection of Equation (5.9) suggests the steps

for a balanced approximation of an LTI system. An intuitive application of

each step would be as follows:

As applied to the input of Equation (5.9) one at a time, thp qet of

Laplace transforms of unit impulses could be represented by an idinrity matrix

of order m; i.e.:
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[UI(s) U2(s) ... um(s)l = Im

The corresponding set of impulse response vectors in the time domain

would be

[Xl(t) x2(t) ... xm(t)] = eAtB (5.11)

If the system is stable, an appropriate measure of all possible impulse

responses would be the time integral of a real symmetric non-negative definite

nxn matrix reflecting eAtB; i.e.:

V= O eAtBB'eA'tdt (5.12)

A real symmetric matrix 0 is non-negative definite if for all real

nonzero vectors, the scaler x'Qx > 0.

Step 2

Similarly, with no input and with the initial conditions applied one at a

time, the set of initial conditions could be represented by an identity matrix

of order n; i.e.:

[Xl(0) x2 (O) ... Xn(O)] = In

The corresponding set of output vectors (transient responses in the time

domain) would be

[Y1(t) X2(t) ... Yr() = CeAt (5.13)

Again, if the system is stable, an appropriate measure of all possible

transient responses due to initial conditions would be the time integral Of a

real symmetric non-negative definite nxn matrix reflecting CeAt: i.e.:
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M 01 eA'tC'CeAtdt (5.14)

These matrices, W and M, are called the controllability and observability

grammians respectively for an LTI system. Some of their properties are: They

are symmetric; they are non-negative definite; and they satisfy the following

time invariant Lyapunov equations, respectively:

AW + WA' + BB' = 0 (5.15)

MA + A'M + C'C = 0 (5.16)

If W (or M) is positive definite, then its eigenvectors are linearly

independent, and each response vector in Equation (5.11) or (5.13) has a

unique value other than zero.

The criterion for linear independence of vectors, called the Gram

criterion, as presented in Reference [2], Chapter 2, is summarized below:

The criterion can be stated in terms of the positive definiteness of a

grammian. A set of real vectors

?S1 ... , XSm

in a Euclidean space is called linearly independent if there exists no set of

non-zero real numbers al, a2 ,..., am such that

ajx 1 + a2x2 + ... + amxm = 0

To test a set of vectors for linear independence, a simple way is to form

m equations by premultiplying the above equations by xi',x 2 ', etc.. to obtain
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l'l l'X2 ......... £l'Xm al 0

?2'fl S2'x2 ......... x2'Xm a2  0

Xm'X l xm'x2 . . m'-xm am 0

The mxm matrix on the left is the grammian associated with ihe given set

of vectors. It is clearly symmetric since xi'xj = xj'xi; moreover it is non-

negative definite as shown by the easy calculation which follows:

[al a2  .....  am] xl' l xl'x2 ......... xl'Xm al

S2' l S2'H2 ......... . 2'xm a2

..... ...• ..... ... .......

Km' l Hm'!2 ......... . m'2m am

11alxl + a2X2  ....... .. amxm 11 2

Clearly, if and only if (iff) the grammian is positive definite, there

exists no nonzero set of a's such that

alxI + a2x2 + ... + amxm = 0

Therefore, if the vectors in Equations (5.11) and (5.13) are all shown to

be independent by virtue of the positive definiteness of their grammians, then

the corresponding (A,B,C) model is minimal; i.e., it cannot be reduced without

introducing some error. However, if any of the vectors are dependent, then

the corresponding grammian is not positive definite, and the system is not

completely controllable or not completely observable, depending on which

giammian is not positive definite. The corresponding model is not minimal and

can be reduced without introducing error.
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Beginning with a minimal system (both grammians positive definite) is a

basic premise. Indeed, balancing cannot be extended to non-minimal systems

without non-trivial modification, for balancing would attempt to equate a

singular grammian to a non-singular one. Nevertheless, to view the system as

ii some of its srater can be treated approximately as uncontrollable or

unobservable is the key to model reduction by balancing. This concept is

amplified in the next subsection, 5.3.1.1.

Step 3

The various singular values of W, relative to each other, represent the

various degrees of input-state coupling in the (A,B,C) system. Likewise, the

various singular values of M, relative to each other, represent the various

degrees of state-output coupling.

As in the case of a scaler transfer function with its magnitude defined

as the ratio of output to input, so might the magnitudes of a matrix transfer

function be defined. This set of magnitudes comprises its "singular values".

A squared singular value of any square matrix Q is an eigenvalue of Q'0

explained as follows:

Denoting an eigenvalue of Q'Q as a2 and its corresponding eigenvector as

v, then

Q'Qv = a2v

Premultiplying by v',

v'0'Qv = 02v'v

Therefore

1OVH / H j = 2
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Thus, a singular value represents an output vector/input vector magnitude

ratio.

Special coordinate transformations in the state space of the matrices W

and M, called "balancing", result in identical sets of singular values for W

and M. The balancing process will be explained in Paragraph 5.3.14.

In the following three subsections, excerpts from Reference (5.4) are

presented as more rigorous background for the above statements. In Chapter 2

of the reference, it is shown how the input-output characteristics of two

time-variant systems - even those of different order - can be exactly

equivalent. This is true if the system of larger order is either

uncontrollable or unobservable. The balanced realization approach is based on

the principle that a system having a state which is comparatively

uncontrollable and unobservable can be considered to be actually so without

significant error in the apprcximation.

5.3.1.1 The Weighting Pattern

A relationship between an input u and a response y is commonly described

by the triplet (A,B,C) which means

k(t) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t) (5.17)

In addition there exists, in accordance with Equation (5.5), a

possibility of a description by an integral equation:

t
y(t) = y(to) + f T(t,a)u(a)da (5.18)

to

where

Y(to) = C(t)t(t,to)x(t O )
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and

T(t,o) = C(t)f(t,a)B(a) (5.19)

T(t,a) is called the weighting pattern. A given matrix T(t.a) is said to

be realizable as the weighting pattern if there exist matrices A. B, and C

such that Equation (5.17) holds for all pairs (t,a) with *(t,t O ) A(t)f(t,t O )

and O(to,tO ) = I. The triplet (A,B,C) is then called a realization of T(t,a).

If a given weighting pattern has one realization, then it has many. For

example if P(t) is nonsingular and differentiable for all t and if system

Equation (5.17) is one realization of T(t,a) then in terms of z(t) = P(t)x(t),

we have the alternative realization:

i(t) = (P(t)A(t)P-l(t) + P(t)P-1 (t))z(t) + P(t)B(t)u(t)

Y(t) = C(t)p-l(t)z(t)

By focusing on the weighting pattern, it is possible to define a type of

equivalence between various systems with the same input-output characteristics

when x(to) = 0. Furthermore, with a given weighting pattern there exist

realizations having state vectors of different dimension. If the Rystem given

by Equation (5.17) realizes the weighting pattern T(t,a) it will he called a

minimal realization if there exists no other realization of T(to) having a

lower dimensional state vector. This minimum dimension is called the order of

the weighting pattern.

A lack of controllability indicates a deficiency in the coupling between

input and state vector, and a lack of observability indicates a deficiency in

the coupling between state and output; so it is reasonable to exprr that

minimality is related to these ideas. The following theorem states that this

is indeed the case.
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Theorem 1

The system Equation (5.17) is a minimal realization of Equation (5.19) if

tl

W(totl) = t4 t(to'a)B(a)B'(a)f1(to'a)da

and

M(to,t1 ) = to

are both positive definite for some pair (to,tl).

For the sake of brevity, lemmas and theorems from Reference 1161 are

stated here without proof. In the reference, the proof objectiveq are to show

that: 1. For controllability, the state vector x(t) must lie within the

range space of a prescribed linear mapping, and 2. For observahility. the

initial state vector x(to) must lie within the null space of another

prescribed linear mapping. For example: z belongs to the range space of A if

there exists a y such that AX = z; and X belongs to the null spare of A if Ay

=0.

The above matrices W and M are the controllability and observability

grammians for time variant systems respectively. In the following two

subsections some lemmas and theorems concerning controllability and

observability will clarify the meaning of the above theorem.

5.3.1.2 Controllability

Problems associated with the controllability of time variant systems can

be illustrated with a simple ballistic problem. Suppose the dynamics are

given as

B(t)u(t)
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Assume B(t) and z(tO ) are known and let the problem be that of finding

u(t) so as to insure that at t = tI > to , z takes on a certain value.

Integrating yields

z(tl) = z(to) + tj B(t)u(t)dt

Hence, if z(tl) - z(tO ) lies in the range space of the lineai mapping

L(u) = t j B(t)u)(t)dt

then the desired transfer is possible; otherwise is it not. This statement is

analogous to one which might say that a line and a plane in a three

dimensional space can be expressed in terms of a two dimensional space if the

line lies on the plane; otherwise it cannot.

Lemma 1

An n-tuple xi lies in the range space of L(u) = tj B(t)u(t)dt if it lies in

the range space of the matrix

ti
W(to'tl) = B(t)B'(t)dt (5.20)

Corollary

There exists a control u which transfers the state of the sYstem z(t) =

B(t)u(t) from zO at t = to to zi at t = t1 iff zl - z0 lies in the range space

of W(to,tI ) as defined in Equation (5.20).

The extension of these results to the (A,B,C) realization leads to
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Theorem 2

There exists a u which drives the state of the system

x(t) = A(t)x(t) + B(t)u(t)

from the value x0 at t = to to the value xI at t = tI > to iff xj - (t),tl)xl

belongs to the range space of

W(to'tl) = t tj (to't)B(t)B'(t)W (to't)dt

The above controllability grammian plays an important role in the theory

of forced linear systems. Some of its properties are: It is symmetric; it is

non-negative definite tI > to; and it satisfies the linear matri-' differe tial

equation

W(t,tl )  = A(t)W(t,t I )  + W(t,tl)A'(t) + B(t)B'(t), W(tl,tl })

In the special case where A and B are time invariant it is possible to

calculate the range space of V quite easily. Moreover, contrary to the

general case, the range space does not depend on the arguments of W except in

a trivial way.

The following theorem expresses the situation. Its proof is based on a

Taylor series expansion of B'exp(A'(tO-a))Y1 = 0. Note that

0Xl (to tl t 1t I IB 'exp(A' (t0 -))El 2 I d a

is equal to zero because x1 is in the null space of W(to,tl).
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Theorem 3

For A and B constant and A nxn, the range space and the null spare of

W(to,t) for t > to coincide with the range space and null space of the nxn

matrix

Wc = [B,AB .... An-lB][B,AB,....An-IBJ '

Moreover, for any vector x0 and any t > to,

Rank[W(to,t),xOl = Rank[B,AB .... An-lB,xo
]

Therefore, an n-dimensional linear invarient system is controllable if

IB,AB ...... An-lBI is of rank n.

5.3.1.3 Observability

Observability questions relate to the problem of determining the value of

the state vector x, knowing only the output X over some interval of time.

Thus, consider the homogeneous system

k(t) = A(t)x(t), x(t) = C(t)x(t) (5.21)

rather than to deal with the more complicated system Equation (5.17).

The homogeneous problem leads to the linear transformation

L(t) = C(t)f(t,to)x(tO ) = H(t)x(to)

For these transformations we define the null space of this mapping as the

set of all vectors x such that H(t)x(t) is identically zero over the time

interval to < t < tj. A characterization of the null space is given by the

following lemma.
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Lemma 2

Let C be an mxn matrix whose elements are continuous on the interval

to < t < t1 . The null space of the mapping L(x) = Cx coincides with the null

space of

t1M(to, tl) = t C'(t)C(t)dt

0

The following theorem is closely related to Theorem 2.

Theorem 4

With A, C, and y given on the interval to < t < t1 , together with

Equation (5.21), then it is possible to determine x(to) to within an additive

constant vector which lies in the null space of M(to,tl), where

M(t ,t1 ) = ,J ti (tt 0 )C'(t)C(t)4(t t0 )dt
0

In particular, it is possible to determine x(to) uniquely if M(to,t 1 ) is

nonsingular. Moreover it is impossible to distinguish with a knowledge of Y,

the starting state x1 from the starting state x2 if X1 - S2 lies in the null

space of M(tO , tl).

The above observability grammian plays a role analogous to that of

W(to, tl) introduced in the previous section. As with W(to, tl). some of its

properties are: It is symmetric; it is non-negative definite for t1 > to; and

it satisfies the linear matrix differential equation

-M(t,tl) = A'(t)M(t,tl) + M(t,tl)A(t )  + C'(t)C(t), M(tl'ti )

Again, in the special case where A and B are time invariant it is

possible to calculate the null space of M quite easily. Moreover, contrary to

the general case, the null space does not depend on the arguments of M except

in a trivial way. The following theorem expresses the situation
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Theorem 5

For A and C constant and A nxn, the range space and the null space of

M(tot) for t > to coincide with the range space and null space of the nxn

matrix

Mc = [C' AIC,...A,n-C ,]

As before, an n-dimensional linear constant system is observable if Mc is

of rank n.

5.3.1.4 Balanced Approximations

Summaries relative to open-loop balancing in References [171 and 1181

comprise most of this subsection. The basic idea is that the singular values

of an appropriately defined matrix are system invariants which measure how

strongly certain parts of a system enter into its input-output behavior in

balanced coordinates. If some singular values are much smaller than the

others, then a part of the system dynamics can be eliminated, resulting in a

lower-order system approximation.

A disadvantage of open-loop balancing is that it requires that the

original system be stable. Moreover, it is difficult to predict closed-loop

stability of a control system based on an open-loop reduced model. Although

the scope of this report does not include closed-loop balancing, such

techniques have been developed (e.g., Equation (5.5)) and shown to guarantee

closed-loop stability of reduced-order models.

As previously explained, the balancing approach to model reduction relies

on measures of input-to-state and state-to-output coupling. These measures

are based on the controllability and observability grammians whirh, for stable

time-invariant systems, are defined by Equations (5.12) and (5.14)

respectively. If (A,B,C) is uncontrollable or unobservable, then a lower-

order a model, having precisely the same impulse responses, can be found.
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Two models are equivalent if they are related by a nonsingular

transformation of coordinates. That is, if x(t) = Tz(t), then the model

i = T-IA T z + T-1 B u, y = CTz

is equivalent to (A,B,C). Letting

A = T-1 A T, B=T 1 B, C=CT

then this equivalence is denoted as

(A,B,C) (A,B,C) (5.22)

If Equation (5.22) holds, then it is easily shown by substif,,tion into

Equations (5.15) and (5.16) that the transformed controllability and

observability matrices satisfy the relationships

f= T - W T' - I  (5.23)

M = T'MT (5.24)

A primary purpose for looking at equivalent systems is to discover what

system properties are coordinate free; i.e., system invariant. A key element

of the open-loop balancing theory is that while W and M do not have system

invariant properties, the product of the two matrices does, and it provides a

coordinate-free measure of state coupling. This fact follows directly from

Equations (5.23) and (5.24).

=T - W M T (5.25)
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Equation (5.25) implies that the eigenvalues of the product matrix WM are

system invariants. Since the matrices W and M are both positive definite if

(A,B,C) is controllable and observable, the eigenvalues of WM will be strictly

positive. Note that WM = TA T-1 where A = WN. Denoting these eigenvalues as

ai , they will be assumed to be ordered as

1 -> 02 .... an > 0

If T is chosen to be the corresponding set of eigenvectors. then WM is

the diagonal matrix of eigenvalues:

aI  0

2

WM A=

0a n

Corresponding reduced versions of and R are

W= M= E1

reduced from

1 0 E1 0

0 E 0 0
w m

In balanced coordinates, each state component is as controllable as it is

observable. Moreover, the oi's give a measure of the degree of

controllability and observability of each component.
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Note that Ew Em = 0 if the corresponding modes of the system are

uncontrollable or unobservable, in which case the coordinate system is

balanced:

Do these solutions satisfy Equations (5.23) and ,5.24)? Yes; it can be shown

in Equation (5.3) that specific eigenvectors can always be chosen such that

T-lwT,-1 = Block diag (El, Ew)

T'MT = Block diag (El, Em)

where

Z diag (al , a2, ... , On)

EwE m = diag (ak+1 , aK 2 an)

with

al>2> " k > k+l ak+2 n = 0

The system model is reduced from the nth-order (A,B,C)n to the kth-order

(A,B,C)k by partitioning in accordance with the following rationale:

If for some k, k+1 << ak, then the first k state components represent

the part of the system which carries most of the input/output information;

i.e., the robustly controllable and observable part. Let E be partitioned as

r 1 0

0 E.2
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Let ( be partitioned conformably as

Al1 A12 B1
111 12A= , B = , C = LClC 2 1

A21 A22 B2

This implies that (A11,B1,C1) is a good Kth-order approximalion of the
nth-order system ( Indeed, letting Tnk represent the first k columns

of T and letting Skn represent the first k rows of T-1 , then

(A 11 ,B1 ,C) = (SknATnk,SknB,CTnk)

Fortunately, balanced realizations have some remarkable structural

properties which make stability of the subsystems automatic.

Note that the reduced state variable is a part of the transformation z,

and not of the original x. This is sufficient if the reduced model is to be

used for control-law synthesis; but if it is required that all elements in the

reduced state vector are to be observed (e.g., in an Iron-bird simulation),

then the original output matrix must be the identity matrix (C = in).

5.3.1.5 The Balancing Algorithm

Calculating the reduced order model using balancing requires computing

the stable projection of the AST model from Figure 5-4. The steps for using

the balanced approximation approach are as follows:

1. Compute the controllability matrix V and observability matrix M for
(A,B,C) as solutions of the Lyapunov equations,

AW + WA' + BB' = 0

A'M + MA + C'C = 0
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2. Compute a coordinate transformation matrix T to yield (A,B,C). The

system is balanced when T is chosen such that

WM = TAT- 1

where A is the diagonal matrix of eigenvalues of WM and where T is a
corresponding matrix of eigenvectors. Then

A = WM

3. Organize the elements of A in descending order; i.e., arranged such
that

al > a2 > .... > an

Then let E (=A11 2 ) be partitioned as

::]
0 r 2

and let (A,B,C) be partitioned conformably as

A11 A12 B1
= , = C = CI C2 1

A21 A22 B2

4. Reduce the system model from nth-order (A,B,C)n to kth-order (A,B,C)k

by letting Tnk represent the first k columns of T and letting Skn
represent the first k rows of T-1 ; then computing the reduced model.

(Ajj,Bj,Cj) = SknATnk, SknB,CTnk)
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5.3.1.6 Model Order Reduction Over a Disk

The error bound for the previous method, the balancea approximation

approach, is,

I (s - G(s) 11 2(ar~l + -+ On V C H

where G is the reduced model of order r. n is the order of the full model.

o's are singular values over the RHP. The proof is given in Reference [201.

It is more practical to minimize the error over the actuator bandwidth,

i.e., a finite bandwidth, instead of over the entire bandwidth as done in the

previous method. The problem of model reduction over a disk can be stated as,

see Figure 5-2.

a.z
s hz 1

CONSI1URAI"1ONS I

zi /' s. s- AON

Figure 5-2. Bijective Mapping Between RHP and Disk D
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sug ItG(s) - G(s) <S

where c is preferably smaller than the full RHP case, i.e.,

c < 2 (rl + - + an)-

Dr. Jonckheere and Li, Reference 20, have found a way to achieve the

above objective. They use a bijective mapping which transforms the problem,

and this new problem is solved using the balanced approximation method. But

the error is found only over the disk which is less than or equal to the error

over RHP. Their methodology follows.

The only known engineering solution to this general domain problem is to

construct a conformal transformation h that establishes a bijective mapping

between RHP and D,

h: RHP -D

and that hence reduces the problem to conventional balancing:

su 11C(s) - G(s) j suR j1 G(h(z)) - G(h(z)) I

The right half side of the above equation is a classical balancing

problem provided the mapping h: RHP 4 D preserves the degree. The only case

in which this happens is when D is a disk in which case h is a bilinear

mapping, see Figure 5-2.

It remains to correctly place the disk in the complex plane. This is

based on the following two considerations:

1. The full order model G(s) must be analytic in disk. Therefore, the
disk must not include any poles of G.
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2. The disk must cover the interval (jw : -Q < w < 2) of real
frequencies not exceeding the bandwidth 2 of the actuators. This
guarantees that the error bound is verified over this clirical
frequency range.

The bilinear mapping is, see Figure 5-2,

s=h(z)= O + Oz z=h 1l(s)= s -

If G(s) = C(sI-A)-IB, then G(h(z))= J + H(zI-F)~IG with

JzC(OI-A)-1 B

H=C(OI-A)- l

F=-(aI-A) (IBI-A) - l

G=(O--a) (OI-A)-'B

Using conventional balancing, a reduced model of order r, G(z) is

obtained and it satisfies,

G(  + Z G(z) jJ < 2 (Or+lD +-+anD) , V Z c RHP

where aD'S are the RHP singular values of G(h(z)).

The reduced model is recovered back by inverse mapping,

G(s) = G(h-l(s))

Dr. Jonckheere and Li, Reference 1201, have proven that for this mapping

2(ar I + -- +an) < 2 (ar+1 D + .. +onD)

i.e., the error bound on the disk is smaller than the error bound over the

RHP.
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5.3.2 Model-Order Reduction by Spectral Decomposition

An appropriately reduced model, (A,B,C)k reduced from (A,B.(')n. 'ill

describe the rigid-body dynamics and only that part of the structural dynamics

necessary for the particular purpose at hand. A technique utilizing spectral

decomposition provides a means for decoupling elements of the state variable

of an LTI system into two or more models without serious degradation of the

total results. For example, it permits model-order reduction of the decoupled

parts of the original (A,B,C) triplet into (A,B,C)k and (A,B.C)n-k. The

procedure begins with a truncated model of intermediate order, n. and uses

spectral decomposition in the subsequent process. The intermediatc model

includes several structural modes couples by generalized, unsteady aerodynamic

forces. Spectral decomposition leads to a singular matrix coefficient Ai for

each eigenvalue Xi in the intermediate model. Indeed, if specti~l

decomposition is used, these singular matrices are the n residues:

Ai= Resi (sI-A)- I , 1 < i < n

= lim (S-Xi)(sl-A)-l

s xi

where Ai is in the ith modal component of (A,B,C), which means

i = Aix + Biu , yi = Ci (5.26)

with

Ai = Eik i , Bi = EiB, Ci = CEi , xi = Ei x

The matrix Ei can be shown, to be the outer product of ei and ti the

normalized eigenvectors of A and A',respectively, i.e., Ei = ei ti'. This

matrix has one nonzero eigcnvalue of 1, and its trace is also 1. hecause the

trace of a matrix is equal to the sum of its eigenvalues.

In the application of classical control theory, which is devoted to LTI

single-input, single-output (SISO) systems, it is common practice to ignore,

in the transfer function, stable poles that are remotely located on the

complex plane; because they are very lightly couples with the set of poles

that are important to the analysis. The residue of any lightly coupled pole
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is negligibly small; so the corresponding partial fraction can be dropped,

thus reducing the order of the transfer function with negligible degradation.

In other words, the residue is negligible and therefore comparatively

"unobservable". It is the nature of partial fractions that a transfer

function reduced in this manner preserves all of the residual influences of

the deleted poles as reflected in the residue values of the important poles.

In addition to the remoteness of a pole as an indication that the pole is

lightly coupled with the important part of the system, there is also the

effect of the proximity of a zero to the pole. The residue of any pole is

proportional to its proximity to a zero. Indeed, if a zero is superimposed

onto a pole, it cancels the pole. In other words, if the pole i- closed to a

zero, it is nearly "uncontrollable" or "unobservable" because of its

negligible residue.

The analogous situation with regard to a multi-input, multi-output (MIMO)

system is that the matrix coefficient of any mode which is lightly coupled to

the remaining part of the system is negligible and the mode can he dropped

from the partial fraction representation. The corresponding rowe and columns

of the state space matrices can then be deleted, thus reducing the rank of the

state variable matrix coefficient.

The roles of observability and controllability in LTI systems with unique

eigenvalues can be made quite clear by substituting into Equation (5.10) the

matrix TAT-1 in place of A. Then

Y(s) = C(sI-A)-IB U(s)

= CT(sI-A)-IT-1 B U(s)

CT and T-1 B are the measurement and control influence matrices respectively.

Denoting these in terms of their column or row vector respectively, as

appropriate, then the r x m matrix transfer function is
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G(s) = 1g1  g2  -. gn] (s - rl) 0 ... 0 hl'

0 (s - r2 ) 0 ... 0

0 ... 0 (s - rn) hn'

n 9ih' i

= E
i=1 (s - r i )

If, in G(s), any pole (s - ri ) is cancelled by a corresponding zeto, then

either gi or h i , is zero; i.e., this mode is either unobservable or

uncontrollable.

Whether a particular mode of a MIMO system is lightly coupled '.ith the

remainder of the system is not immediately obvious, as it is in the case of a

SISO system, because the "zeros" and residues of the transfer function are

matrices rather than scalars; but, with inspection of A i in Equation (5.26)

above, it becomes obvious in view of a criterion for decoupling which is

discussed in Paragraph 5.3.2.2.2.

5.3.2.1 Decoupling Rationale

Given a large system of simultaneous linear differential equations

expressed in the state-space form Equation (5.1), a means of approximating the

system by uncoupled models of lower order is explained below. Responses from

the separate subsystems will combine to form a good approximation of the

solution of the original set of simultaneous equations.

For simplicity, the present scope is limited to systems with distinct

eigenvalues within well-separated groups of frequency ranges. The procedure

decouples the frequency groups without producing significant departure in

character from the corresponding components of the original model. Specifi-

cally, it is possible to write into a nearly equivalent partitioned form

5-33



A*x*+ B**u

in which the elements are decoupled subvectors and submatrices, i.e.:

AI** 0 ......... 0 ** B*

x2** 0 A2** ...... 0 2"* + B2"

0 0 ....... Av ** B.,

Each decoupled subsystem

_k ** = Ak **xk ** + Bk **u , 1 < k < v (5.27)

represents a separate frequency range of the total system behaviit.

The procedure begins with the spectral decomposition of the nxn matrix A

into its special components corresponding to each of the n distinct

eigenvalues:

n
A= r A (5.28)

i=1

and with the corresponding decomposition of the other matrices in the triplet:

n n
B= EB, C= rC

i=1 i i=1 i (5.29)

where:

Ai = Xi Ei

Bi = Ei B

Ci = C Ei
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The Ai matrices corresponding to conjugate complex eigenvalues and other

eigenvalues in the kth frequency group are then combined into nxn Ak* matrices

such that

v v v

A= E A*, B= E B C= E C
k=l k k=l k k=l k (5.30)

Then, by selective nulling of rows and columns (setting all elements in

selected row and column to zero), each triplet (Ak*,Bk*,Ck*)n is decoupled to

become (Ak**,Bk**,Ck**)n.

It might be suspected that the same procedure can be centered about

singular value decomposition (SVD), wherein the expansion of the square matrix

is relative to its singular values instead of its eigenvalues. If practical,

the SVD procedure would have certain advantages (e.g.: singular values are

always non-negative real); but the SVD procedure is not practical because it

can be applied only to symmetric A matrices as shown below.

5.3.2.2 Matrix Decomposition

As implied above, there are at least two basic approaches to decomposing

a square matrix: 1. separation of eigenvalues in a spectral decomposition

(SD), and 2. Separation of singular values in a singular value decomposition

(SVD). The formulae for the two decompositions are of identical form:

A = EAR' for spectral decomposition (5.31)

A = UZV' for singular value decomposition * (5.32)

where A and Z are diagonal matrices of eigenvalues and singular values

respectively; and E, R, U, and V are matrices of corresponding eigenvector

sets as follows:

* This formula is true for rectangular matrices in general (not necessarily

square) if the matrix is mxn with m < n.
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E is the set of eigenvectors of A, normalized such that complex pairs are
conjugate, and arranged according to the sequence of eigenvalues in A.

R is proportional to the corresponding set of normalized eigenvectors of
A'. The pr6portionality constant is such that the corresponding vectors
of E and R are orthonormal; i.e., E'R = I.

U is the set of normalized eigenvectors of AA', a'-anged ac-ording to the
sequence of singular values in E.

V is proportional to the corresponding set of normalized eigenvectors of
A'A. The proportionality constant is ±1, with the sign selected such
that VZ = A'U.

Considering the similarities between the two matrix decompositions, why

can't the SVD method be used for model-order reduction? The problem is that:

q= Aq is a valid transformation of x = Ax; but q = Eq is valid only if A is

symmetric. This is explained as follows:

Given that

x Ax + Bu (5.33)

and letting x = Eq, then

R'AEg + R'Bu , RI =

with R'AE = A. On the other hand, substituting Equation (5.32) into Equation

(5.33)

x = UMV'x + Bu

Letting x = Uq,

= ~ZV'Uq + U-IBu , V' * U- 1
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It should be noted that V'U * I because (AA')' * A'A, except when A is

symmetric.

Derivations of Equation (5.31) and Equation (5.32) are included in the

following subsections. These include derivations of well known telationships

that are commonplace; nevertheless they will be derived here to explain

clearly their applications to the problems of model-order reduction.

5.3.2.2.1 Singular Value Decomposition - A left singular vector ii of the

matrix A is defined by

AA'ui2 = i2ui (5.34)

where ai2 and ui are the ith eigenvalue and eigenvector respectiPely of AA'.

Assuming that A'ui is an eigenveetor vi of A'A (right singular vector of A),

then

A'A(A'ui ) =: ai
2 (Alu i ) = Alai

2 u, (5.35)

The above assumption is known to be true because of Equation (5.34);

therefore

A'ui = Vi  (5.36)

and

A'Avi = ai2 vi  (5.37)

What is the length of vi relative to that of ui? This can he computed as

follows:

IviII 2 = vi'vi = (A'ui)'(A'ui) = u4'AA'ui = (AA'ui)'u i  (5.38)
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Then substituting from Equation (5.34) into Equation (5.38):

i 12= (U.2 Uj)'Ui = ai21lu,11 2

So,

11lvill1 = aiH1u il (5-39)

From Equation 5.34) and Equation (5.36)

Av i = ai2 ui  (5.40)

Dividing Equation (5.40) by Equation (5.39)

Avi I HlViH = Oi 2 ui / ai 11ui 1I

Then

Avi = ai ji (5.41)

In the above derivation, vectors in the equations preceding Equation (5.41)

are intentionally not underlined. The underlined vectors in Equation (5.41)

are normalized. The two sets of n vectors in Equation (5.41) can now be

grouped into a matrix equation;

AV =U (5.42)

where

V ll 2 . n. , U =( 1 u 2 "" un

and where Z is the diagonal matrix of singular values. Note that V is

nonsingular and orthonormal. Therefore, this concludes the derivation of

Equation (5.32), because Equation (5.42) and Equation (5.32) are equivalent.
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5 .3 .2 .2 .i Spectral Decomposition - From First Principles - The state vectors

in Equation (5.1) can be resolved into a new set of coordinates, which is the

set of eigenvectors corresponding to the matrix A; and then can be decomposed

into separate equations describing the state of the system along each

eigenvector coordinate. By a tran~formation of variables

x = Eq (5.43)

where E is the matrix of eigenvectors

E = (el 2 ... tn] (5.44)

Then

= AS + E-IBu , y = CEq (5.45)

where A = E-1 AE is a diagonal matrix of the eigenvalues of A.

A = Diag (X1 X2 ... Xn)

This means that the component equations in Equation (5.45) are decoupled.

That A is a diagonal matrix of eigenvalues can be seen from the fundamental

relationship for eigenvectors with respect to the matrix a and its transpose:

Aei = Xi 2i (5.46)

A'rj = Xj rj (5.47)

Transposing Equation (5.47) and postmultiplying by ei

E.' Ae Xj - j' i (5.48)
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Premultiplying Equation (5.46) by rj'

rj' Aei = Xj rj' i (5.49)

Subtracting Equation (5.49) from Equation (5.48)

(Xj - Xi) rj' 2i 0

Then, if

i Xi

j? ei = 0 (5.50)

showing that the vectors are orthogonal. Furthermore, if the eigenvectors are

normalized such that,

i K i = 1 i = 1, 2, ..., n (5.51)

then the vectors are orthonormal, and the product of the matrices

[rl r2 ... rn]' [el e2 ." en]

is a unit matrix, which is identical to the expression R'E = I.

Expanding

R'AE = [r r2 ... r n ]' A [ el e2 ... en ]

and substituting Equations (5.48), (5.50), and 5.51) yields the p, oof that

R'AE = A is the diagonal matrix of eigenvalues.
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Also, by pre- and post-multiplication

A = EAR' (5.52)

Thus, eigenvalues anJ eigenvectors, although usually pictured only as

functions associated with a matrix, can be regarded as basic elements from
which the matrix is constructed. The spectral decomposition of a matrix into

its basic elements can be observed from the above relationship, which when

expanded is

n n
A = Ze i Xi Eli = Z Ai (5.53a)

i=1 i=l

The spectral decomposition of B is, to a large extent, analogous to that

above. B = ER'B and, therefore, can be expressed as

n n
B =Z ei K'i B = Z Bi  (5.53b)

i=l i=1

Similarly

n n
C = Z C i E' = Z Ci  (5.53c)

i=l i=l

Writing the state-space Equation (5.1) as the sum of its spectrally

resolved components yields:

n n
E xi = Z (Ai x + Bi u) (5.54)
i= 5 i=1
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In accordance with Equation (5.43)

n
= l ql + "+ + en qn = E ek qk (5.55)

k=1

showing the components of x along the axes of the eigenvector coordinate

system. The control vector u and output vector y also have components in this
system as shown in Equation (5.45). This means that elements of the vector

R'B u are in the system of eigenvector coordinates and are independent of each

other. The matrix R'B is called the control influence matrix. It should be

noted that a row of zeros in this matrix means that the corresponding

frequency mode cannot be influenced by the control vector, u. Similarly CE is

the measurement matrix.

Substituting from Equation (5.43) into the left-hand part of equation

(5.45) and premultiplying by E

= E (Acq + R'B u) (5.56)

The projection of the above derivative into the i th eigenvecror is

i = i (Xi qi + ri' Bu) (5.57)

Now, from the definition of Ai in Equation (5.53) and from Equations (5.55)

(5.50), and 5.51,

n
Aix = i Xi _i' E k qk

k=1 (5.58)

=i -i qi = Xi i
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Then, Equation (5.57) becomes

xi = Ai x + Bi u, (i = 1, 2, ..., n) (5.59)

or

i = Xi ?i + Bi j (5.60)

The Laplace transform solution of Equation 5.60) is

Xi(s) = (xi(0 ) + Bi U(s)) / (s - Xi )

After summing all of the spectral components,

X(s) = EXi(s) = E(xi(O) + Bi U(s)) / (s -Xi)

From Equation (5.58)

xi = Ai X / Xi

Then, denoting

Ai/Xi = Ei

X(s) = E(Ei x(O) + Bi Y(s)) / (s - Xi) (5.61)

Therefore, the spectral components of the A and B matrices are exactly

analogous to the coefficients of a partial fraction expansion. Clearly, from

the development, each numerator in Equation (5.61) is a function of all modes,

even though some of the modes in the "partial fraction expansion" are dropped.
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5.3.2.3 Criterion for Decoupling with Spectral Decomposition

The degree of coupling which exists among the state vector elements can

be determined by inspecting each of the Ei matrices. The Ei's are all

singular matrices, each having only one non-zero eigenvalue.

With spectral decomposition, the non-zero eigenvalue is always +1; and,

because the trace of a matrix is equal to the sum of its eigenvalues. the

trace of Ei is always unity. This provides the criterion for reducing the

matrix. Any element in the diagonal of Ei with a modulus much less than unity

can be deleted without significantly affecting the value of the trace,

provided that the absolute sum of such elements is also much less than unity.

The corresponding rows (and columns) in each of the equations represented by

Equation (5.60) can be deleted. This can be easily justified as follows.

The transient solution of Equation (5.60) is

Si(t) = xi(O) exp (Xit)

If all the elements in xi (0) were identical, then all equations (rows)
in

!i=Ai

would be duplicative. Clearly, the ones which are of no particular interest

(the ones corresponding to negligible elements on the diagonal in Ai) can be

deleted. The result of these deletions will be negligible if they do not

significantly change the eigenvalue Xi; i.e., if they do not change the value

of the trace of Ei significantly from its unit value.

Determination of what spectral components are combined into the

corresponding Ak*, Bk*, and Ck* matrices depends upon the overlaps of

significant diagonal terms in the Ei's. Then, after computation of each

Ai (= XiEi) and each Bi (=EiB), and each Ci (=CEi), those which should be

combined are added to yield the corresponding (Ak*,Bk*,Ck*)n. These in turn
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are then decoupled to become the (Ak**,Bk**,Ck**)n triplet by appropriate

nulling of rows and columns corresponding to the negligible diagonal elements

in the selectively combined Ei's.

The Algorithm for Spectral Decomposition

A summary of steps in the spectral decomposition approach is as follows:

1. Compute the eigenvalues and the corresponding eigenvectors of A and

A'.

2. Compute the complete set of Ai matrices (n in number and nxn in

dimension).

3. Null any row and corresponding column in each Ai where its diagonal

element is negligible. Now it is apparent that, associated with each

eigenvalue, there are certain components in the state v cror which

are thus identified as being insignificant.

4. Null the corresponding rows of Bi and the corresponding columns of Ci
in Equation (5.53).

5. A new (A,B,C)n realization is formed by summing only those
(Ai,Bi,Ci)'s which are associated with the eigenvalues in the

frequency cluster of interest.

6. The n-k insignificant states are then removed to form the minimal

realization (A,B,C)k.

5.3.2.3.1 Example: Rigid-Body Model

The following example will serve to illustrate the spectral decomposition

and decoupling procedures. An intuitive approach for approximating the short

period and phugoid modes of an airplane are presented in Sections 4 and 5 of

Dynamics of the Airframe, Bu Aer Report AE-61-4II, Northrop Norait. September

1952 Reference 121]. Here the same airplane equations are used as a model for

demonstrating the application of the spectral decomposition method.

Substituting the appropriate data into the corresponding longitudinal

equations, then re-writing the equations in state-space form yields the

following:
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u -.00970 1.0560 0 -32.170 u 0

-.00015 -1.4300 1 0 cc .1058

.00012 -14.282 -2.7780 0 26.'1

0 0 1 0 e[ 0 (5.62)

The eigenvalues of the square matrix, A, are -2.1 + j 3.72 and -. 00451 +

j.0626. Corresponding to the first eigenvalue, -2.10 - j 3.72, the matrix

elrl' is

-.00003 2.8218 .56345 -.00079

-j .00011 -j 1.6526 +j .65658 -j .00023

-.00001 .50001 -.00001 -.00007

-j .00002 +j .09074 +j .13445 -j .00011
E= -.00006 .00062 .50004 -.00035

-j .00002 -j 1.9207 -j .09052 +j .00033

.00001 .39116 -.03921 -.00003

-j .00001 +j .22153 +j.11229 +j .00011

The diagonal elements of E1 add to unity, and the first and fourth

elements are negligible. E2 , which corresponds to the second eigenvalue, is

the conjugate of E1 . Then Al + A2 = E1 X 1 + E2 X2 =

- .00034 - 12.083 1.2557 .00083

- .00007 - .71481 .49998 - .00025

A1 * = 2 .00006 - 7.1431 -1.3888 .00198

- .00006 .00062 .50004 - .00035

and B1 + B2 = (E1 + E2 ) B

14.95

BI* = 2 .05253

13.01

-.978
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Similarly, corresponding to the third eigenvalue, - .00451 j .0626 the

matrix e3 E'3 , is

.50003 - 2.8218 - .56345 .00079

- j .03599 + j 201.11 - j 20.086 - j 256.7R

- .00001 - .00001 .00001 .00007

E3  + j .00000 - j .00311 + j .00031 + j .00396

.00006 - .00062 - .00004 .00035

- j .00000 + j .02468 - j .00247 - j .03151

- .00001 - .39116 .03921 .50003

+ j .00098 - j .03845 + j .00215 + j .04156

Again, the diagonal elements add to 1, and the second and third -lements

are negligible. E4 , which corresponds to the fourth eigenvalue. is the

conjugate of E3 . Then A3 + A4 -

- .00451 12.611 - 1.2557 - 16.086

0 - .00019 .00002 .00025

A2* = 2 0 .00155 - .00015 - .00198

.0006 - .00062 - .00004 .00035

and B3 + B4

- 14.95

= 2 .000368

- .00115

.978

Nulling the first and fourth rows and columns of Al* and the sec:ond and

third rows and columns of A2* yields
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.00902 0 0 - 32.18

0 - 1.430 1 0

A** 0 - 14.29 - 2.778 0

.00012 0 0 .00070

Similarly, nulling the first and fourth rows of BI* and the ,cond and

third rows of B2* yields

- 29.90

B** = 2 .1051

26.01

1.956

The corresponding matrix equation is

u -.00902 0 0 - 32.18 u - 90

= 0 -1.320 1 0 + .1051

O 0 -14.29 - 2.778 0 26.01

6 .00012 0 0 .00070 8 1.56

Writing the decoupled equations separately, the short period equation is

1 .4 3 0 I 1 0 5 1 6 P( . 3
[8 60= + [.151 (5.63)

e14.29 - 2. 778 26.01

with eigenvalues: - 2.10 + j 3.72; and the phugoid equation is[- .00902 - 32.180 [u ] [ 29. 90 8P (64[ ~ ]= ] + ](5.64)
.00012 .00070 [ [ 1.956

with eigenvalues: - .00416 + j .0620

The state space equations corresponding to the approximations presented

in the reference are, for the short period,
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[ 1.430 1 a .,[x jI (5.65)
9 -14.18 - 2.778 + -26.n1

with eigenvalues: - 2.10 + j 3.72; and, for the phugoid,

- .0 9 - 2.7 (5.66)

.000145 3 ] .1 0 5 8]

with eigenvalues: - .00485 + j .0681.

Comparison between the two short period approximations Equations (5.63)

and (5.65) shows them to be almost identical; but comparison between the two

phugoid approximations Equations (5.64) and (5.66) shows significanr

differences, although the eigenvalues are in fair agreement. The '-pe(ial

decomposition method yields accurate results for both the short petiod and the

phugoid. But, as pointed out in the reference, the phugoid approximation by

the intuitive approach yields impulse responses with large amplitude and phase

errors.

The transients responding to Se impulses of magnitude .02 for Equation

(5.64) the reduced realization are easily computed to be

-.00416t
u = -20.3 e sin .0620t

-.00416t
e = .0391 e cos .0620t

The corresponding phugoid responses computed from the 4 x 4 qystem,

Equation (5.62) are

-.00451t
u = -20.1 e sin .0626t

-.00451t
e = .0393 e cos .0626t
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5.4 EXAMPLES

The two methods discussed in this report are: (1) balanced

approximation, and (2) spectral decomposition. The balanced app,,,imation

approach is better known,, having been thoroughly developed and diiscussed in

the technical literature since about 1979. The spectral decompo-ition

approach was developed and used by Lockheed, beginning in 1974, rhl,,ing studies

that led to the development of the L-1011 Active Control System.

More recently, Lockheed has been examining two forms of frequenc y

compensation which supplement the balanced approximation approach: but these

topics are beyond the scope of this report. The first of the frequency-

compensation methods, developed by Honeywell, applies a balancing glRorithm to

a full model which includes frequency-dependent weighting. The -,-ond method,

developed by the University of Southern California, truncates th model using

approximate balancing; then applies the balancing algorithm to thp truncated

model after bilinear frequency weighting.

Comparison of results from the U.S.C. method and from the two methods

which are the subject of this report are illustrated in this section. It

comprises excerpts borrowed directly from Reference [221.

Two versions of the U.S.C. method are included in the Bode pilotq

(Paragraph 5.4.4) which follows the numerical examples. They ai' labeled:
"asymptotic balancing" and "pre-cleaned to 5th order."

5.4.1 Advanced Supersonic Transport Flexible-Body Model

The model used in this comparison is for the Advanced Supersonir,

Transport (AST) shown in Figure 5-3. It is a linear eighth orde, Iongitudinal

system which includes the two lowest frequency structural modes: the first

and second fuselage bending modes. The four inputs included in 'h control

vector are the elevator, throttle, canard, and elevon. The statp gpace model

Is given in Figure 5-4.

5-50



Figure 5-3. Advanced Supersonic Transport (AST)

where: ia F1-0.0127 -0.0136 -0.0360 0.0000 0.0000 0.0000 0.0000 0.0000 U

-0.0969 -0.4010 0.0000 0.9610 19.5900 -0.1185 -9.2000 -0.1326

0.0000 0.0000 .0.0000 1.0000 0.0000 0.0000 0.000%4 0.0000

-0.2290 1.7260 0.0000 -0.7220 -12.0200 -0.3420 1.8420 0.8810 q

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 X2I

*1 0.0000 0.1204 0.0000 0.0496 -44.0000 -1.2740 -4.0300 -0.5080 * 1

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 X 2

Lx 0.0000 0.1473 0.0000 0.3010 -7.4900 -0.1257 -21.7000 -0.8030

0.0000 0.0194 0.0000 0.0000 6
-0.02'15 0.0000 -0.0040 -1.7860 t

0.0000 0.0000 0.0000 0.0000 .5
-1.0970 0.0000 0.3660 -0.0569 5

0.0000 0.0000 0.0000 0.0000

-0.6400 0.0000 0.1625 -0.0370

0.0000 0.0000 0.0000 0.0000

L-1. 8820 0.0000 0.4720 -0.0145J

and C I is th* identity matrix.

Figure 5-4. AST Longitudinal Flexible-Body Model.
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The eigenvalues of the unaugmented system show the short period to be

statically unstable.

Short Period 0.6687 (Unstable)

-1.7755 (Stable)

Phugoid -0.0151 +0.0886i

1st Fuselage -0.7257 +6.7017i
Bending Mode (X1 )

2nd Fuselage -0.3122 +4.4484i
Bending Mode

To illustrate these methods of model reduction, the original eighth order

model will be reduced to a fourth order system. The eigenvalue matrix is a

diagonal matrix with elements:

X1 = -0.7257 + 6.7018i

X2 = -0.3122 + 4.4485i

X3 = -1.7756

X4  = 0.6687

X5 = -0.0151 + 0.0886i

X6 = -0.0151 - 0.0886i

X7 = -0.7257 - 6.7018i

X8  = -0.3122 - 4.4485i
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The corresponding matrix of eigenvectors is:

Columns 1 through 4

0.0002 +0.0006i 0.0001 +0.0008i 0.0017 -0.0142i 0.031'7 +0.0345i

0.2694 -0.1506i 0.3879 -0.1877i 0.0659 -0.539°i -0.2q'7 -0.2839i

8.0079 +0.0335i -0.0504 +0.0671i 0.0597 -0.4888i -0.5 )' -0.5455i

-0.2306 +0.0288i -0.2826 -0.2453i -0.1059 +0.8679i -0.3771 -0.3648i

0.0630 +0.1123i 0.0098 +0,0306i 0.0001 -0.0011i -o.orn -0.0005i

-0.7980 +0.3406i -0.1390 +0.0339i -0.0002 +0.0019i -0.0001 -0.000,1i

0.0236 +0,0341i -0.1109 -0.1403i -0.0010 +0.0081i -0.00 ,7 -0.0065i

-0.2460 +0.1335i 0.6586 -0.4497i 0.0018 -0.0144i -0-00'' -0.0044i

Columns 5 through 8

V( - 8) -0.5991 +0.1935i -0.5560 -0.3166i 0.0007 -0.0022i -0O0.n' *0.0012i

-0.1362 +0.0273i -0.1299 -0.0553i 1.0180 +0.5465i +0.2J',' -1.2391i

0.4891 +1.4772i 0.7927 -1.3683i 0.0275 -0.1261i -0.0cn) +0.2361i

-0.1383 +0.0211i -0.1332 -0.0497i -0.8649 -0.09311 1.0711o +0.2307i

-0.0003 +0.000li -0.0003 -0.00 Ii 0.2285 -0.4242i 0.08" +0.0309i

0.0000 -0.0000i" 0.0000 +0.0000i -3.0085 -1.2237i 0.1 50 +0.3852i

-0.0027 +0.0005i -0.0026 -0.0010i 0.0862 -0.12931 0.5ZI 40.0133i

0.0000 -0.0003i -0.0001 +0.0002i -0.9291 -0.4838i -0.10j' -2.3324i

5.4.2 Spectral Decomposition

Model reduction using spectral decomposition is accomplished hy

separating the rigid body motion from the structural dynamics.
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Calculating the spectral decomposition u4 (-l) 4 for the unstable short

period of 0.668 gives:

T

0.0357 +0.0345i 0.3338 -0.3227i

-0.2937 -0.2839i -0.9445 +0.9130i

-0.5643 -0.5455i -0.0180 +0.0174i

u 4 (u-1) 4  . -0.3774 -0.3648i -0.5937 +0.5739i

-0.0005 -0.0005i -0.8696 +0.8406i

-0.0004 -0.0004i -0.3103 +0.2999i

-0.0067 -0.0065i 0.8037 -0.7769i

-0.0045 -0.0044i. 0.3829 -0.3701i

0.0230 -0.0652 -0.0012 -0.0410 -0.0600 -0.0214 0.0555 fl.0244

-0.1897 0.5366 0.0102 0.3373 0.4941 0.1763 -0.-5r n.2175

-0.3644 1.0309 0.0196 0.6481 0.9492 0.3387 -0.8773 n..217q

a -0.2437 0.6894 0.0131 0.4334 0.6348 0.2265 -0.5867 n.27q5

-0.0004 0.0010 0.0000 0.0006 0.0009 0.0003 -0.0008 M.0904

-0.0002 0.0007 0.0000 0.0004 0.0006 0.0002 -0.0006 n.0003

-0.0043 0.0123 0.0002 0.0077 0.0113 0.0040 -0.0105 n.0050

-0.0029 0.0082 0.0002 0.0052 0.0076 0.0027 -0.0070 n.0033

The diagonal of this matrix is used to identify the cross cnupling

between the states and the unstable short period. This diagonal is:

0.0230

0.5366

0.0196

0.4334

D4 = 0.0009

0.0002

-0.0105

-0.0033

n
The sum of the diagonal terms .Z d. = 1.
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It is seen that the unstable short period is primarily desciihed by the

state of components z (angle-of-attack) and q (pitch rate).

Similarly, the spectral decomposition u3 (u-
1 )3 for the stable short

period at -1.77 gives:

-0.0006 0.0117 0.0000 -0.0094 -0.0068 0.0084 0.0197 -n.0057

-0.0221 0.4443 -0.0004 -0.3579 -0,2586 0,3221 0.7191 -0.2173

-0.0200 0.4022 -0.0004 -0.3240 -0.2341 0,2916 0.6782 -0.1167

V3  (-1 )3= 0.0355 -0.7142 0.0007 0.57)3 0.4157 -0.5178 -1.2043 0.3q2

0.0000 0.0009 0.0000 -0.0007 -0.0005 0.0006 0.0015 -00004

0.0001 -0.0015 0.0000 0.0012 0.0009 -0.0011 -0.002A n.0008

0.0003 -0.0067 0.0000 0.0054 0.0039 -0.0039 -0.0117 0.0033

-0.0006 0.0118 0.0000 -0.0095 -0.0069 0.0086 0.011"  n.0 58

Identifying the cross coupling between the states and the stable short

period, it is again seen that it is primarily described by the states a

(angle-of-attack) and q (pitch rate).

-0.0006

0.4443

-0.0004

0.5753

D3 = -0.0005

-0.0011

-0 .011:

-0.0058
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Computing the spectral decomposition for the complex phugoid at -001'

+0.088i gives:

Columns 1 through 4

0.4888 + 0.0814i 0.0268 - 0.2901i 0.0006 + 0.1'381i n n;52 - 0.0656i

0.1051 + 0.0302i 0.0132 - 0.06291 -0.0049 + 0,0J35 n.o0072 - 0.0137i

0.1923 - 1.2095i -0.7175 - 0.0609i 0.4904 - 0.0052i n.11.25 - 0.0610i

0.1043 + 0.0353i -0.0162 - 0.0627i -0.0069 + 0.0435i noo7q - 0.0135i

0.0002 + 0.O001i 0.0000 - 0.0001i 0.0000 + 0.0001i n.nno00 - 0.0000i

0.0000 + 0.O000i 0.0000 + 0.O000i 0.0000 - 0.0000i n.0000 + 0.Oi

0.0021 + 0.0007i 0.0003 - 0.0013i -0.0001 + 0.0009i n.0002 - 0.0003i

5  U 5 (V-l)5 Columns 5 through 8

0.0305 - 0.2091i 0.0064 - 0.1357i -0.0361 + 0.0620i n.0102 + 0.1428i

0.0120 - 0.0451i 0.0048 - 0.0296i -0.0095 + 0.0127i n.nn58 + 0.0310i

-0.5174 - 0.0717i -0.3355 - 0.0132i 0.1539 + 0.0880i n.'A32 * 0.0225i

0.0141 - 0.0448i 0.0062 - 0.0295i -0.0101 + 0.0123i .n.0073 + 0.0310i

0.0000 - 0.0001i 0.0000 - 0.0001i 0.0000 + 0.0000i 0.0000 + 0.0001i

0.0000 + 0.0o00i 0.0000 + 0.O000i 0.0000 - 0.0000i n 0o0 - 0.oOOOi

0.0003 - 0.0009i 0.0001 - 0.0006i -0.0002 + 0.0002i n.0001 + 0.0006i

0.0001 + 0.0000i 0.0001 + 0.0000i 0.0000 - 0.0000 . 0.0000i

Columns 1 through 4

0.4888 - 0.0814i 0.0268 + 0.2901i 0.0006 - 0.1984i 0.0252 + 0.0656i

0.1051 - 0.0302i 0.0132 + 0.0629i -0.0049 - 0.0435i 0n.072 + 0.0137i

0.1923 + 1.2095i -0.7175 + 0.0609i 0.4904 + 0.0052i n.1'.25 + 0.0610i

0.1043 - 0.0343i 0.0162 + 0.0627i -0.0069 - 00J35j nno0Q + 0.0135i

0.0002 - 0.0001i 0.0000 + 0.0001i 0.0000 - 0.00010i .ooo + 0.0000i

0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i .o0noo - 0.ooooi

0.0021 - 0.0007i 0.0003 + 0.0013i -0.0001 - 0.OOOQi A.0002 + 0.00031

-0.0001 - 0.0002i 0.0001 - 0.O000i -0.0001 - 0.o00Oqi n0.00 - 0.O000i

E6 = u6 (u )6 = Columns 5 through 8

0.0305 + 0.2091i 0.0064 + 0.1357i -0.0361 - 0.0620i A.0102 - 0.1426i

0.0120 + 0.0451i 0.0048 + 0.0296i -0.0095 - 0.01271 00.58 - 0.0310i

-0.5174 + 0.0717i -0.3355 + 0.0132i 0.1539 - 0.0880i 0 'n I 2 - 0.0225i

0.0141 + 0.0448i 0.0062 + 0.02951 -0.0101 - 0.0123j n0073 - 0.0310i

0.0000 + 0.0001i 0.0000 + 0.0001i 0.0000 - 0.0000i noo - 0.0001i

0.0000 - 0.O000i 0.0000 - 0.0000i 0.0000 + 0.O000i n 0on 4 0.oooi

0.0003 + 0.0009i 0.0001 + 0.0006i -0.0002 - 0.0002i 0n0001 + 0.0000i

0.0001 - 0.O000i 0.0001 - 0.O000i 0.0000 + 0.0000i n.no01 + 0.0000i
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Eliminating the imaginary parts of the matrices by adding the complex

conjugate pairs:

0.9775 0.0535 0.0013 0.0503 0.0611 0.0127 -O.n7ll. -0.0203

1 0.2101 0 0264 -0.0098 0.0144 0.0240 0.0097 -0O 1n 0 .0117

0.3847 -0.4351 0.9808 -0.3251 -1.0349 -0.6710 0 ,l' 0.7064

E 5 6  =E 5  + E6 = 0.2086 0.0324 -0.0138 0.0157 0.0283 0.0125 -0o-nn -0.0146

0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 o nnno 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0042 0.0006 -0.0002 0.0003 0.0005 0.0002 -Or
n .
ifl -0.0003

-0.0002 0.0002 -0.0002 0.0000 0.0002 0.0001 0OnOnn 0.0001

Identifying the cross coupling between the states and the phtigoid using

the diagonal of this matrix,

-0.9775

0.0264

0.9808

0.0157

D5 6 = 0.0000

0.0000

-0.0004

-0.0007

it is seen that the phugoid is primarily described by the states ,, (velocity)

and e (pitch attitude).

The transformed system is computed by taking each matrix ui(' ])i and

multiplying each element by its associated eigenvalue Xi . The s,,m (Xi ui

(u-l)i is then computed, including each state which has a significant

influence on the dynamics of the modes of interest. Thus, the transformed

system becomes:
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6
A = A3 + A4 + A5 + A6 = V i vi (v-)i

i=3

-0.0127 -0.0137 -0.0360 0.0001 0.0080 -0.0055 -0.0077 0.0028

-0.0962 -0.4192 0.0001 0.8633 0.7972 -0.4490 -1.6375 0.2350

0.0004 0.0077 0.0000 1.0245 1.0788 -0.2789 -1.8112 0.0551

-0.2353 1.7397 0.0000 -0.7295 -0.3062 1.0759 1.7440 -0.8123

A -0.0002 -0.0009 0.0000 0.0017 0.0015 -0.0009 -0.0012 0.0005

-0.0003 0.0032 0.0000 -0.0019 -0.0012 0.0021 0.0042 -0.0015

-0.0037 0.0202 0.0000 -0.0043 0.0008 0.0114 0.0129 -0.0092

-0.0009 -0.0155 0.0001 0.0203 0.0173 -0.0134 -0.0400 0.0080

Computing the eigenvalues of this system as a computational check gives:

-1.7756

0.6687

A = -0.0151 +0.0886i

0, 0, 0, 0

Note that the eigenvalues of interest have been preserved, while the

other eigenvalues have been set to zero. From this analysis, it is seen that

the important states to describe the rigid body dynamics are the first four

state components (u, a, 0, q). Extracting the upper left 4 x 4 submatrix

gives the reduced system A1 l:

-0.0127 -0.0137 -0.0360 0.0001

-0.0962 -0.4192 0.0001 0.8633

All 0.0004 0.0077 0.0000 1.0245

-0.2353 1.7397 0.0000 -0.7295

The transformation from B to B is computed as T' B as follows:
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1.0000 0.0000 0.0000 0.0000 -0.0057 -0.0002 n.nnio 0.0004

-0.0016 1.0073 0.0000 -0.0062 0.2594 0.5080 n "73 -0.4465

0.0003 -0.0019 1.0000 -0.0010 -0.3198 -0.0407 ninsp. 0.09186

T Z Ui(u- ) = 0.0004 0.0077 0.0000 1.0245 1.0788 -0.278q I .112 0.0551

0.0000 0.0019 0.0000 0.0000 0.0005 0.0010 n nnnr -0.0008

-0.0002 -0.0009 0.0000 0.0017 0.0015 -0 OO.0n n.nn32 0.0005

0.0002 0.0063 0.0000 0.0134 0.0157 -0.0001 n n7l -0.0020

-0.0037 0.0202 0.0000 -0.0043 0.0008 0.0111 0 )1 ,) -0.0092

-0.0006 0.0194 0.0001 0.0000

0.5003 0.0000 -0.1345 -1.8110

-0.1455 0.0000 0.0363 0.0037

T=TB = -1.0493 0.0000 0.3556 -0.0625

0.0010 0.0000 -0.0003 -0.0034

-0.0021 0.0000 0.0007 0.0015

-0.0107 0.0000 0.0038 -0.0119

0.0143 -0.0001 -0.0042 -0.0362

Retaining the upper four rows of 1, which correspond to the znte

components of interest, gives:

-0.0006 0.0194 0.0001 0.0000

0.5003 0.0000 -0.1345 -1.8110

B -0.1455 0.0000 0.0363 0.0037

-1.0493 0.0000 0.3556 -0.0625

The final state equation describing the rigid body dynamics is thus:

-0.0127 -0.0137 -0.0360 0.0001 -0.0006 0.0194 0.1345 n.no00 e

- -0.0962 -0.4192 0.0001 0.8633 - 0.5003 0.0000 -0.13d5 1.0110 bt
X x+

0.0004 0.0077 0.0000 1.0245 -0.1455 0.0000 0.0303 nn037 6c

-0.2353 1.7397 0.0000 -0.7295 -1..0493 0.0000 0.3556 nn(2-. 5

where

U
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Similarly,

1.0000 0.0000 0.0000 0.0000 -0.0057 -0.0002 11.0030 0.0004

-0.0016 1.0073 0.0000 -0.0062 0.2594 0.5080 0.2736 -0.4465

0.0003 -0.0019 1.0000 -0.0010 -0.3198 -0.0407 0.1088 0.0918

= C'T = 0.0004 0.0077 0.0000 1.0245 1.0788 -0.278q 1.8112 0.0551

0.0000 0.0019 0.0000 0.0000 0.0005 0.0010 0.0006 -0.0008

-0.0002 -0.0009 0.0000 0.0017 0.0015 -0.0009 -0.0032 0.0005

0.0002 0.0063 0.0000 0.0134 0.0157 -0.0006 -,).(1221 -0.0020

-0.0037 0.0202 0.0000 -0.0043 0.0008 0.0114 ,1.0129 -0.0092

Retaining tne first four columns of C gives the output equation:

u 1.0000 0.0000 0.0000 0.0000"

at -0.0016 1.0073 0.0000 -0.0062

e 0.0003 -0.0019 1.0000 -0.0010

y q = 0.0004 0.0077 0.0000 1.0245 x

XI  0.0000 0.0019 0.0000 0.0000

I -0.0002 -0.0009 0.0000 0.0017

X2 0.0002 0.0063 0.0000 0.0134

2 -0.0037 0.0202 0.0000 -0.0043

5.4.3 Balancing

Calculating the reduced order model using balancing requires computing

the stable projeciton of the AST model from Figure 5-4. Removing the unstable

short period pole from the model results in the following first nuder unstable

and seventh order stable models:
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Unstable Projection G_(s):

Au = [ 0.66871

Bu = [-0.1634 -0.0071 0.0908 -1.88461

-0.0633

0.5205

1.0000

Cu = 0.6687

0.0010

0.0006

0.0119

0.0080
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Stable Projection G+ (s):

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

-45.4405 -1.4513 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

As = 0.0000 0.0000 -19.8865 -0.6245 0.0000 0.0000 0.0000

0.000U 0.0000 0.0000 0.0000 -1.7756 0.0000 0.0000

0.0000 0.0000 0.0000 0.000 0.0000 0.0000 1.0000

0.0000 0.0000 0.0000 0.0000 0.000 -0.0081 -0.0301

-0.9031 0.0000 0.2286 -0.0360

2.2821 0.0000 -0.5677 -0.2025

-1.5990 0.0001 0.4009 0.0323

Bs = 0.7315 0.0000 -0.1617 -0.2178

0.9417 0.0007 0.2942 1.2568

-0.5125 0.0075 0.1112 2.5962

0.0016 0.0040 0.0007 -0.0590

0.0000 -0.0001 -0.0004 0.0002 -0.0163 0.0657 4.5647

-0.3497 0.0056 0.5400 0.0180 -0.6221 0.0042 0.9997

0.0025 -0.0058 -0.0973 0.0076 -0.5632 1.0000 0.0000

Cs - 0.2655 0.0110 -0.1510 -0.1020 1.0000 0.0000 1.0000

-0.0319 -0.0220 -0.0088 0.0087 -0.0012 0.0000 0.0020

1.0000 0.0000 -0.1723 -0.0142 0.0022 0.0000 -0.0001

-0.0147 -0.0070 -0.0314 -0.0503 0.0093 0.0000 0.0200

0.3178 -0.0045 1.0000 0.0000 -0.0165 -0.0002 -0.0006

Using the AST model from Figure 5-4, the resulting balanced system is:

-0.2036230E-01 -0.7858880E-01 -0.7396749E-02 -0.2084407E-02 -0.1557507E-01 0.2265723E-02 0.1889674E-02

0.1007108E 00 -0.9248873E-02 0.2168032E-02 0.8971239E-03 0.8634662E-02 -0.1086024E-02 -0.7199143E-03

0.1065996E-01 -0.8821540E-02 -0.2255822E+00 O.4181750E+01 -0.1347317E+00 0.4317310E-01 0.5369037E-02

- .5305186E-02 -0.5965348E-02 -0.4614011E+01 -0.4391062E00 0.7906792E00 0.1029887E CC -0.6150533E-03

0.3492083E-01 -0.2548000E-01 -0.5439826E+00 -0.8968613E00 -0.1866259E+-I 0.2929760E 00 -0.8364052E+00
-0.6318043E.03 -0.1368483E-02 -0.4369408E+00 -0.68C-701E+00 -0.1408282E,01 -0.1222905E 01 -0.6684445E+01

-0.6901658E-02 0.4934998E-02 0.9053631E-01 0.9063240E-01 0.1196825E,01 0.6535209E+01 -0.9803707E-01
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0.2323941E 00 0.1076423E-01 -0.4590957E-01 -0.1390716E-01

-0.2356257E+00 0.2880195E-0: 0.5724683E-01 0.8909944E-00

-0.8289558E+CO 0.8390716E-04 0.2126706E+00 0.2197501E+00

-0.1171844E 01 0.8376337E-04 0.2947332E00 -0.2158914E-01

-0.8687418E 00 0.4592771E-03 0.2709870F.C0 0.1067235E.01

-0.8848588E+00 -0.5661499E-04 0.2171498E+00 -0.1766557E 00

0.1216242E+00 -0.1401305E-03 -0.4328787E-01 -0.2203461E 00

C.3936411E 00 0.5038438E00 -0.4706008E-02 C.5285127E-03 -0.1779815E-01 0.2385362E-02 C.191328E-02

0.1147306E+00 0.9297478E-01 0.1462935E+00 0.5397737E000 -0.7535492E 00 -0.1919983E-00 -^.9788920E-01

-0.1347486E01 0.7600453E+00 -0.2C96338E00 -0.4638257E-01 -0.5585050E+00 0.7292331E-C! C.5712261E-C1

= 0.8156066E-01 0.1154051E 00 0.5496500E 00 -0.39640750.01 0.1027327E+01 0.!0445140=00 -3.3026464E-01

0.2310383E-04 0.1996241E-03 -0.2306706E-01 0.3324961E-01 0.2696158E-01 -0.3238327E-C 3.1214753E0.C

0.4221588E-04 -0.4880759E-04 -0.1374297E+00 -0.1012023E+00 0.1701929E+00 0.8440623E*CC C.182C389 0.0

0.1402238E-02 0.2635938E-02 0.2172917E+00 -0.1348816E-00 -0.1757253E-01 -0.3678231E-02 0.4792444E-01
0.9461917E-03 -0.5863078E-03 0.5886990E+00 0.9901341E-01 -0.4065918E-01 0.3077923E-00 0.3556501E-01

with transformation matrix T, obtained as eigenvectors of the (WM) where W and

M, are controllability and observability grammian

-0.2082414E-03 -0.6597499E-^5 C.5310647E-03 0.20C2548E-03 0.8635179E-02 -0.4591832P-00 3.3550501EI01

0.6035055E-04 -0.7355415E-06 0.5061510E-04 -0.6234115E-04 -0.5173666E-02 0.4885302E0-0 0.6285399E 01

-0.3883044E-01 -0.3110237E-03 0.3827676E+00 -0.1611084E+00 0.1438251E00 -0.3965853E-02 -0.6325808E-02

T - -0.5358829E-02 -0.9387191E-02 0.7852067E+00 0.1083092E+-) -0.2315098E-01 -0.1461919E-02 0.2621500E-02

0.1607577E+00 -0.1331345E-02 -0.5543575E-01 0.3214354E-01 0.8928460E+00 -0.1586629E-01 -0.1029357E-01
0.1145134E+01 0.3550512E-01 0.6771160E-02 -0.3542887E-01 -0.1126888E+00 0.2131459E-02 0.1401021E-02

0.1081826E-02 -0.1688358E+00 -0.2005733E+00 -0.5198703E-02 0.2044477E+00 0.3007044E-02 0.1218405E-03

The diagonal of the observability and controllability grammians are:

Diag. [ 48.8769 46.1411 1.7304 1.6631 0.5272 0.3522 0.33261

It is desired to reduce the model to a third order system. Let Tnk

comprises the first 3 columns of T, and Skn comprises the first 3 rows of T - 1.

Then, the reduced order system

A A A

$:, , = (Skn A Tnk, SknB, C Tnk)
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is given by

[-0.2036230E.01 -0.7858880E-01 -0.7396749E-02
A = 0.1007108E+00 -0.9248873E-02 0.2168032E-02

0.1065996E-01 -0.8821540E-02 -0.2255822E+00
:0.2323941E+00 0.1076423E-01 -0.4590957E-01 -0.1390776E+01

B = -0.2356257E+00 0.2880195E-01 0.5724683E-01 0.8909944E+00

-0.8289558E+00 0.8390716E-04 0.2126706E+00 0.2197501E+00

0.3936411E+00 0.5038438E+00 -0.4706008E-02
0.1147306E+00 0.9297478E-01 0.1462935E+00
-0.1347486E+01 0.7600453E+00 -0.2096338E+00

C = 0.8156066E-01 0.1154051E+00 0.5496500E+00
0.2310383E-03 0.1996241E-03 -0.2306706E-01
0.4221588E-04 -0.4880759E-04 -0.1374297E+00
0.1402238E-02 0.2635938E-02 0.2172917E+00
0.9461917E-03 -0.5863078E-03 0.5886990E+00

Appending the unstable short period results in the following fourth order
system:

-0.2036230E-01 -0.7858880E-01 -0.7396749E-02 0.0
0.1007108E+00 -0.9248873E-02 0.2168032E-02 0.0 i
0.1065996E-01 -0.8821540E-01 -0.2255822E+00 0.0
0.0 0.0 0.0 0.6687

[0.2323941E+00 0.1076423E-01 -0.4591226E-01 -0.1390774E+01 &e
-0.2356257E+00 0.2880195E-01 0.5724683E-01 0.8909937E+00 &t
-0.8289558E+00 0.8390716E-04 0.2126706E+00 0.2197501E+00 &c
-0.1634 -0.0071 -0.0908 -0.8846 6a
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u 0.3936411E+00 0.5038438E+00 -0.4706008E-02 -0.0633

atO.1147306E+00 0.9297478E-01 0.1462935E+00 -(1.5205

e -0. 1347486E+01 0.7600453E+00 -0. 2096338E+00 1.0000

- q 0.8156066E-01 0.1154051E+00 0.5496500E+00 0.6687

O1 .2310383E-03 0.1996241E-03 -0.2306706E-01 0.0010

il0.4221588E,-04 -0.4880759E-04 -0.1374297E+00 0.0006

X20.1402238E-02 0.2635938E-02 0.2172917E+00 (10119

k2j 0.9461917E-03 -0.5853078E-03 0.5886990E+00 '0-0080

5.4.4 Comparison of Methods

The frequency responses generated using the fourth order models from the

previous section are shown in Figures 5-5 through 5-8. The gradient fit

method and the asymptotic balancing method are described in Referince [221.

These are the single-input single-output responses u/Se, OL/Se, e/8e. and q/&e.

As expected, the fuselage bending modes are excited by the elevator input,

and thus are seen in those frequency responses. Because of the frequency

separation between the rigid body modes and the fuselage bending modes,

spectral decomposition provides a very good approximation to the high order

system. For those "rigid-body" responses excited by an elevator input,

spectral decomposition matches the high order system up to the filselage

bending modes. It does deviate from the high order system at low frequencies

for a/ e, although the amplitude is very low in this region.
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SECTION 6

HYDRAULIC ACTUATOR EQUATIONS FOR AEROSERVOELASTIC MODELINC

6.1 INTRODUCTION

A fly-by-wire (FBW) actuation system has two major tasks: (1) to convert

an electric command signal into a hydraulic command signal, and (2) to amplify

that signal into a powerful output which can operate on the intended control-

surface load. These tasks are performed by the "secondary" and "power"

actuators respectively.

The secondary actuator drives the control valve in the powei actuator

system. Its power requirements are not very important, because tho driver

needs only to provide sufficient force to overcome friction, pow", valve flow

forces, and emergency jam-breaking forces. Therefore, both hydiliic and

electric drive actuator systems are candidate approaches.

On the other hand, in the case of power actuators, the hydratilic type is

the accepted standard for flight control applications. Its advantages over a

corresponding lightweight electric power actuator (designed with the new

lightweight magnetic materials) are its high force gain and stiffnpqs and its

ease of configuring into redundant systems; e.g., no rotary gear which can be

a single point failure.

The power actuator requirements depend on the characteristic of the load.

As dynamic pressure increases, control-surface hinge moments in'riease. As

vehicle size increases, control-surface areas increase. At low dynamic

pressure the control surfaces must be capable of large deflections with

relatively high angular velocities. At high dynamic pressure, corresponding

small deflections and high stiffness are required.

The power actuator piston is sized by the maximum torque, whirh occurs

during a high-speed run at sea level. Maximum actuator rate of tfvel is

required at high speed at high altitude. Maximum actuator strokc is defined

by a low-speed landing.
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Aside from the usual specifics of maximum hinge moment and velocity, the

requirements unique to actuation systems for large, high-speed aircraft are

related to static and dynamic stiffness, frequency response, availability in

redundant configurations, weight, and relative power consumption.

The ideal actuator characteristics would be linear, without offset, and

having exactly the prescribed gain. This is a reasonable assumption for

secondary actuators, but primary actuators under load are signifir(antly

nonlinear due to the square-law valve flow characteristic of a hydraulic

orifice. The equations which yield the flow and pressure functin of the

selected valve (four-way or three-way) should be included in a computer

simulation for comparison with corresponding results for a lineatized system.

Among the specifications for a linearized model of a power qervo are

pressure gain and flow gain. The pressure gain is specified on thp basis of

stiffness requirements and of the prescribed position error. The flow gain is

specified on the basis of the prescribed a,.tuator frequency response.

Specifications relative to thresholds and hystereses are determined by

computer simulation, such that their static and dynamic effects are

negligible.

Input signals to the secondary servos originate at various sensors and

are processed by a computer (athdlog ot digital). The dynamic characteristics
of most sensors are of sufficiently high frequency bandpass, that they can be

neglected, except that typically in accelerometers, a first-ordpi 'ut-off is

designed for noise attenuation inside the force-balance servo loop. The

effective transfer function of the accelerometer is

6n 1
6nc- Tn s + 1
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Although the resonant frequency mode of an accelerometeu - tate gyro is

typically neglected, the real transfer function includes second ,,Idpt poles.

This factor

1
s)2 s(s) + 2C (o) + 1

must be included when the sensor is used for controlling a stru,',,al mode,

unless the natural frequency wo is at least one decade above th- flq'Iency of

the structural model.

To keep the natural frequency of the actuator spring-mass -,- m above

the aerodynamic flutter frequency requires that the "fluid sprinv" h,' as stiff

as possible for a given surface inertia. The bulk modulus of h .. iring

fluid, in combination with associated structural compliances. d-f iner: the

actuator stiffness.

As with sensors, the dynamic characteristics of secondary ', ,o' (series

or parallel) are of sufficiently high bandpass that they usually -an he

neglected. If a structural mode is to be controlled, then the dvnamis of the

corresponding servo, up to one decade above the controlled strut,tal mode,

will be included in the model.

6.2 ACTUATOR SYSTEM MODEL

A mechanical schematic used for analysis of a particular si,,t.l' hydraulic

actuator is shown in Figure 6-1. The indicated coordinates repi--.tt motion

at (1) the servo input XI, (2) the valve Xv, (3) the actuator XP. ;rid (4) the

load XL. The additional coordinates are: (5) Xs to represent th', input

system dynamics coupled from the pilot to the servo input throir, ,hr, cable,

(6) Xo to represent motion of the feedback linkage pickoff point. dnd (7) Xc

to represent the cylinder dynamics against the backup support. It iq assumed

that the valve module is at the reference position. All coordiat'- ,. except

at the valve, are chosen conveniently to represent motion refet',,,=-, ,1ith

respect to the piston. Therefore SXI/X o = 1 and SXv/SXI = -6X ,-,, GI. the

feedback linkage ratio.

6-3



XL X0  XC XPp

KC

LOAD L
DYNAMICS (

BC

ax,_ - MV, By. KV

a O . -I VALVE FOW IS REPRESENTED AS
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® OPM BYPASS
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BSt - .

Figure 6-1. Hydraulic Servo-Dynamic Model

Hydraulic flow from the valve is shown divided into four components

representing (1) piston velocity, (2) fluid compressibility, (3) load-pressure

attenuation and leakage bypass due to load, and (4) bypass flow through the

pressure modulated orifice for stability compensation.

6.2.1 Hydraulic Model

The schematic details of the hydraulic system are shown in Figure 6-2.

It is represented as an equivalent electrical circuit in Figure 6-3. The

pressure elements, analogous to voltage sources, are: (1) PS , the pressure

source, (2) 6P, the load-induced pressure across the act itor piston, and

(3) Pk and PFB, the two differential pressures across two small pistons in the

pressure modulating device. The impedance elements are: (1) R1 and R2 ,

orifice impedances of the four way control valve, assumed symmetrical, as

sketched in Figure 6-2; (2) R3 , the line and manifold impedances into the

valve module, assumed to behave as if it were an equivalent orifice; and

(3) RO and RBP, the orifice impedances of the pressure modulating device.
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P,3- 
2-8F8

Figure 6-2. Hydraulic Component Interface

The flow variables are denoted by q as indicated. The diode in the pressure

line represents the hydraulic check valve.

The equations of that part of the bridge network in Figure 6-3 comprising

the valve impedances R1 and R2 , the pressure source PS, and the load-induced

pressure at the cylinder AP are:

PS - A= R1 q1
2 Sgn qj

PS + 6= R2 q2
2 Sgn q2

qa = qj - q2
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R2 + R q 2
2 R, 3 1 2

2 2

E q2 
ql

1 RBP

qBP

DEFINITIONS: -

PS SUPPLY PRESSURE + - I + ,F

aP - DIFFERENTIAL LOAD PRESSURE

PF8 - PRESSURE DRIVING OPM BYPA3S VALVE t o

PK - PRESSURE DRIVING OPM METERING SPRING
R1. R2 - VALVE IMPEDANCES qo

Figure 6-3. Hydraulic System Analog

Then the magnitude of flow through the cylinder is:

IqaI= - -l

where R1 and R2 are functions of the valve stroke.

The quadratic flow characteristic is explained by the fact that the

pressure drop corresponding to flow chrough an orifice is proportional to the

square of the flow; i.e., p = Rq2. Thus, the effect being similar to Ohm's

law in electrical theory, Kirchoff's laws can be applied to yield the above

set of nonlinear equations. For mathematical convenience, the square law can

also be used as an approximation for high-velocity flow through tubes. (with

Reynold's number above 3000 the relationship is p = Rql' 75.)

6-6



6.2.1.1 Bernoulli's Equation

Bernoulli's equation simply states the conservation-of-ene,.; pi inciple

as it pertains to hydraulic flow and pressure relationships. Expli-ing the

total energy change in a mechanical system to be equal zero:

1/2 Mv2 + Fd + Wh = 0

where the kinetic energy is one half mass times velocity squared (1/2Mv 2 ): the

applied work is force times displacement (Fd); and the potential -netgy is

weight times height (Wh).

The mechanical expression is converted to the hydraulic expi-inn

(Bernoulli's equation) by substitution and division as follows.

First, to convert the expression to a conventional form in ,-,,m:- of

"head", divide by weight and substitute appropriate parameters 11i,h are:

mass density x volume: pV = M

pressure x area: pA = F

mass x gravity: Mg = W

The total head (velocity head, pressure head, and elevation head) is thus

shown to be:

v2/2g + p/pg + h = 0

Then, for the more conventional Bernoulli form, multiply by w-ight

density (pg):

1/2 pv2 + p + pg h = 0
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The flow q through an orifice is derived from Bernoulli's el,,tq"ion by

neglecting the velocity on the source-pressure side and equating thp o'irce

energy to the energy on the load-pressure side. Then:

Pl + pgh = 1/2 pv2 + P2 + pgh

Substituting flow in place of velocity (v = q/a), then the pl,,Z,,re drop

is

&p = 1/2 pv2 sgn v = 1/2 p (q/a)2 sgn q

where a is the cross-sectional area of the orifice.

Dropping the notations, sgn and 6, except as needed:

q = a /2p P

An "orifice loss" reduces the flow by a factor of Cd: so

q = CdaI2p/p

If the area is variable (a function of valve stroke) and w i-' the width

of the orifice, then

a=wx

and

q = CdW x '2p/p

Therefore,

q2 = p/R
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where

R = p/2 (Cd wx) 2

6.3 FOUR-WAY HYDRAULIC VALVE

The control valve described here is a conventional four--a ,,dl',ilapped

valve, which has well-defined flow and pressure characteristics ijillirl the

null region.

The equations representing the orifice areas of an underlapi-i four-way

valve are

al = ao + w x - ao/w < x < x max

a2 = ao - w x x min < x < ao/w

The valve orifice impedances are derived as follows

q12 = (Cdal) 2 2p/p = p/(R 1 /2)

Therefore

R1/2 = p/2(Cdal) 2 = (Co(aowx))- 2  -ao/W < x < max

where

CO = Cd /2/p

Similarly,

R2/2 = (Co(ao-wx))-
2  -x min < x < aoV

If the operation were always within the underla, zone, the,, th

constraining definitions could be ignored.
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When the valve spool is fixed at a displacement in either direction

beyond the underlap region, one of the two impedances approaches infinity, and

the cylinder flow-pressure relationship is parabolic. When the valve stroke

is within the underlap egion, the relationship is the difference between two

parabolas. The flow-pressure, flow-valve, and pressure valve characteristics

are sometimes assumed to be linear, except in the regions approaching load

stall or valve saturation.

Figures 6-4, 6-5, and 6-6 show these static characteristics as obtained

from an analog simulation of the system represented in Figure 6-1. In Figure

6-4, the load pressure was varied while the valve position Xv was held at

various constant values. In Figure 6-5, the valve stroke was varied with no

load pressure; and in Figure 6-6, the valve stroke was varied with the

actuator blocked (no cylinder flow). Corresponding hardware characteristics

are routinely measured in the laboratory.

0.08 0.068

0.04 - 12 ~ \N3

80
0 .0 2 ............

0.01 40r, ,,,

-3000 O.O05B-f 000_

-'-J -2 0 p (PSI)
O0.005

,4 - 0 
0.0 2

_ 0.04

0 .078 0.06

Figure 6-4. Valve Characteristics - Flow vs Load Pressure
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VAVLVE CHARACTERISTICS
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Figure 6-5. Flow vs Valve Stroke

3000-

AP 2000-

1000-

I
.08 -0.06 -0.04 .002 0 0.02 0.04 0.06 0.08

Xv- (IN)

Figure 6-6. Load Pressure vs Valve Stroke
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6.4 DIFFERENTIAL PRESSURE MODULATOR (DPM)

If stability compensation is required, a differential pres-,,t mndulator

(DPM) can provide it by use of a frequency-variant bypass orifi,-, ;":ross the

piston, as shown schematically in Figure 6-2. Its operation is dicribed as

follows:

If the differential pressure, (P1 - P2 ), is constant, the swvrem

establishes an equilibrium with (P3 = P2 ), so that the piston nf area AFB

is centered by the centering spring KFB; and the piston of ;lira AK is at

an equilibrium position XK.

Then, if the differential pressure is suddenly stepped, thc. AV piston

moves toward a new equilibrium, generating a change in the pt,mtre P3,

and driving the AFB piston against its centering spring.

This opens the bypass between the two sides of the main act,, to, piston.

Equilibrium, with the bypass valve centered, is reestablish-,4 aq flow

through the orifice Ro is reduced to zero. The rate at which equtilibrium

is reestablished depends upon the size of the orifice R. and ,pon the

size of the springs (KK and KFB) and pressure areas (AK and AFR). Thus

the bypass remains closed with steady AP and responds to vat iAions of AP

as a function of frequency. Obviously, the DPM dynamic chataereristics

are nonlinear due to the orifice impedances.

The mathematical model for the differential pressure modulart, iq that

part of the hydraulic network in Figure 6-2 comprising all except the control

valve. The equations are:

AK XK = qK

AK PK = KK XK

PK + PFB = 6 P

AFB PFB = KFB XFB

AFB XFB qK - qo
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PFB Ro qo
n

where n = 2 for nonlinear analysis

n = 1 for a linear approximation.

Combining the first three equations:

2AK d
qK =- t (6P - PFB)

Combining the last three equations with the linear approxim;tion

dP FB KFB PFB)

- 2 (qK

dt AFB Ro

Let KK KFB

2- = CK  2 CFB

AK AFB

Then from the above results:

dPFB = { d (P PFB) PER°}
it CFB CK  dt -_

The corresponding transfer function is

PFB KLTL S
aP TLS  + I

where CFB Ro (CFB + CK)
KL j- I L =CFB+CK CFB CK
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A corresponding nonlinear analysis using the additional eqititions:

/Ro = (C. a,)2

I RBP q2 BP

I/RBp = (Co WBP XFB)
2

yields a nonlinear differential equation which can be solved by ,,- of
"separation of variables." This leads to a corresponding "psejd, ransfer

function":

PFB KNL TNL

AP TNL S + 1

where ereCKNL = Co WFB KL

AFB CFB

tNL= CFB dAP
=CFB + CK Ro

Here dMP is a step-function change in AP which excites an exponpiial

transient with an equivalent "time constant." The equivalent tim- onstant

produces the same initial-slope transient as that of the corresp',,,ding linear

time constant.

6.5 DYNAMIC INERTIAL LOAD MODEL

A flexible control surface cannot be represented properly a,- single

lumped mass, because its fundamental bending mode is at a comparitively low

frequency - lower than that due to the corresponding mass and a, tnro,

stiffness. In order to obtain a more accurate model, the suf[i, iH:

considered to be composed of several span-wise segments (say eiit p, side),

arranged as shown in Figure 6-7. Each is represented by lumped 'I'm~nts with

degrees of freedom corresponding to bending a torsion of a swept h(am. The

size and position of each element depends upon the true span-wi ,, man!cP and

stiffness distribution. The chordwise distribution determines th- position of

each element relative to the swept elastic axis.
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A frequency analysis of this distributed-parameter model determines the

resonant and anti-resonant frequencies. An equivalent model having only four

lumped masses (two per side) is shown in Figure 6-7. It can be derived by

neglecting all modes above a certain frequency and then matching the lower

mode dynamics (position/force, function of frequency) as computed at the

unrestrained actuator drive points when the model is-driven symmetrically.

The center spring shown in Figure 6-7 represents the stiffness of the center

box between the two sides of the control surface. Its value is specified in

accordance with servo tracking requirements. When the two sides Are driven

symmetrically (F1 = F2), the center spring has no influence. Therefore, the

parameter values on each side (two masses and one spring) are determined by

three known quantities: the first resonant frequency, the first anti-resonant

frequency, and the sum of the two masses. When driven unsymmetri-"lly, the

antisymmetrical modes approximate those of the real system.

6.6 LINEARIZED SYSTEM MODEL

Figure 6-8 represents a linearized, simplified math model of the total

actuator system (Figure 6-1). The load model in Figure 6-8 represents the

symmetrically-driven structure in Figure 6-7. Any load model (e.g.. a

sophisticated state-space model) with correct force/position transfer

functions at the points of actuation may be coupled into the math model in a

manner similar to that shown in the block diagram (Figure 6-8).

The block diagram also shows how the flow gain and pressure gain are used in

the linearized math model. In this model, t1e higher-frequency dynamics are

assumed stable and are therefore neglected; i.e., Mp, Bp, MV, BV . KV . Mr, BC,

and 1/KC are assumed to be negligible. With the piston mass and friction are

neglected, the hydraulic compressibility I/KB can be lumped together with the

structural compliance inside the feedback loop, thus resulting ii the

effective compliance

1/C = i/KB + 1/Kp
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The hydraulic compressibility is a nonlinear function of th" piston

position. Denoting the cylinder length as L, and the piston diqplnrement from

center as z, the volumes of the two hydraulic columns supporting th9 piston

are A(z + L/2) and A(-z + L/2).

Fluid compressibility is defined (per unit volume) as the ii,,emental

volume change resulting from an incremental pressure change:

1/1 = (dV/dp)/V

The reciprocal of fluid compressibility, 1, is called the li)Jk modulus.

The corresponding hydraulic "spring rate" of a fluid volume, VI  ALu. is

computed as follows. Since

V1 (dF/dz)/A
2

then

K B 1 = .A2 / V 1

Therefore, the sum of the two "spring rates" supporting the pistn is

KB = KB1 + KB2 = 8A2 (1/V1 + 1/V2 ) = OAL/((L/2)
2 - z2 )

The compliance (i/KB) is a parabolic function whose value is zero' at each end

of the piston stroke and whose maximum value is at the midstroke (z = o).

It is usually acceptable to represent the hydraulic "spring rate" as a

constant at its conservative (minimum) value. Then

KB = 40A2/V
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A linearized approximation of flow in the valve underlap is obtained by

use of small-perturbation theory. The differential flow

Sq Sq

dq = dXv + - dAP6Xv  Sa p

Let the flow gain 6q/6Xv be denoted as a constant Kq; and 1--t the

pressure gain -6SP/&X v be denoted as a constant, Kp. Then

dq = Kq dXv - (Kq/Kp) dAP

Recognizing that the differential symbols are replaced by rhp

corresponding symbols which denote small perturbations:

qv = Kq Xv - (Kq/Kp) AP

A normalized form of the flow-pressure equation in subsecti,,, 6.2.1 is:

q = (l+y) v'(l-p) - (l-y) 1-(1+p)

where the normalized flow is

q = qa/aoCo iPs/ 2

and where p is the normalized pressure AP/Ps and y = wx/a o is th-. tatio of the

valve stroke to its corresponding maximum; i.e., in the underlap region, the

maximum stroke is the magnitude of the underlap. The corresponding normalized

partial derivatives, which represent flow gain, flow attenuation (hte to load,

and pressure gain are:

6q/y =-- /(l-p) + l(l+p)

&q/gp = .5 (ly) +(--y))

v'(l-p) /(l+p)
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21(1-p) I-+p + (1+p) Vl-pj

(l+y) /l+p + (l-y) /i-p

Note that if the normalized load pressure is relatively small 5,,,1 that

/l+p Z V1-p then each of the derivatives would be nearly constaiii. thiis

supporting the linear approximations within the underlap region.

6.6.1 Dynamic Stability

In order to understand the stabilizing influence of the pr":-,,.

modulating device, consider a single mass with light damping as 1h( load.

Beyond a certain loop gain to establish the hydraulic servo freq,,u.n(v

bandwidth the quadratic roots will become unstable. A common mpnh"id of

damping such roots in electrically driven servos is to use velocit-V feedback,

as shown in the feedback path of Figure 6-9.

The inner loops of Figure 6-8 reduce to the models of Figur, h Q as

follows: letting K = 0 and Fa = 0, the load model of Figure 4-R tpduces to

M1 S
2 . Moving the load attenuation summing point to the right of the piston

block and closing the compressibility and load attenuation loops. the inner

loop transfer function becomes

XL C/M1
X2  S2 + C/Bq s + C/M1

where Bq = K pA2/Kq

Closing the velocity feedback loop of Figure 6-9.

XL C/M1

XI s + (C/Bq + KFBC/M1) S + C/M1

KGB

The ddmping coefficient has been increased by F over what it .,milI have

been without the feedback path.
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x i 1 -+, X 2 C I M 1 X L
v\ s2 .- CiBqs + C/M1k, XL

(a) TYPICAL SERVO MODEL WITH VELOCITY FEEDBACK

Iv 2- + 12 CIM 1  XL

1A 2  + Cjqs + CIM 1

QFB

(b) CORRESPONDING HYDRAULIC MOOEL

Figure 6-9. Velocity Feedback Models

A possible method of implementing this effect in hydraulic servos is to

use hydraulic flow bypass through an orifice. As seen in the block diagram of

Figure 6-9, qfb is produced by the load acceleration XL, which is then
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integrated through the piston to appear as velocity feedback. Tli,: iq the

linear equivalent to placing a hole through the actuator piston. Th- feedback

flow in Figure 6-9 corresponds to the washed-out feedback flow ill rigire 6-8.

The washout (provided by the DPM) maintains "stiffness" of the ;,t,,itov fluid

column during static conditions.

6.7 STATIC STIFFNESS

The purpose of the servo is to drive a load which is both d nami" and

static. A static load driven by the compensated servo will reqi,'i additional

flow through the control valve to supply the leakage through the bvpas

orifice. Furthermore, the static stiffness might be degraded, a- will be

shown. These objections can be avoided by the addition of a de,;ir, which

makes the size of the bypass orifice variable with the frequency nf the

dynamic load force. A practical transfer function to produce thiH effect,

called a "washout," is s/(s+a).

The operation of the washout can be explained as follows. Consider the

system (Figure 6-8) to be inertially unloaded (Ml = M2 = 0). The compliance

transfer function (output position response to aerodynamic force on the piston

rod) is

XL 1 s2 + (a + C/Bq + Ck/A) s + Ca/Bq

Fa  C s2 + (KfKq + a) s + KfKq a

A A

Note that the output compliance in response to a high frequency (nice is

independent of the compensation device and depends only upon the inherent

servo compliance. This fact can be seen by

(XL) =1/C

Fa I

Note also that the static compliance with the washout (a * 0) is d ependent

only upon the pressure gain of the valve as operated through thb feedhack

path.

6-21



(XL) 1

Fa Is 0 KpKfA

However, when the washout is removed (a = 0) the static compliane

looking back into the servo is increased, thus allowing appreciahl'l position

error due to static load.

(XL) 1 k

Fa a 0 KfKp A KfKq
s =0

Thus, it is seen that the washout negates the increased static :tir[ness

caused by the pressure feedback. The value of the washout pole. a. must be

chosen carefully, because intermediate frequency compliance can I, degraded by

an improper choice.

6.8 AEROSERVOELASTIC INTEGRATION

The structural dynamics of a control surface couples into th- main

structure as a function of the applied actuator forces. If the zlirfare is

comparatively flexible, then special equations which reflect thp -rv-n load

must be represented as

F = Hi (s) Xin - Hp (s) XL

where F is the actuator force; XL is the elongation of the actult(,,: and Xi,,

is the commanded elongation. The above expression takes into a,',tint all

static and dynamic loads applied by the actuator to the connectiug points

between the airframe and the control surface. These points are i,'iided in

the state vector of the structural model.

The computation of the above force includes effects due to ,h-. hydraulic

flow and pressure characteristics of the control valve and of an%- load

compensating device.
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Again considering Figure 6-8, a more useful model for aero-.,'.'-elastic

integration of the actuator system is obtained by inverting thr, I,,Ad model and

"sensing" F through the compressibility spring, i.e.,

F = C (Xp - XL)

Denoting the existing load model (with no Fa) and F/XL = IG(s). tho inverted

load model is XL/(Xp-XL) = CG(s); and the variable F is found b-t','Pn blocks C

and G(s) in the revised model. Now an expression for F, independ-nt of G(s),

can be derived from this revised version of Figure 6-8.

F = (als + bl) Xc - (s 2 + a2s - b2 )XL

d2 s2 + dl s + do

where

al = KfKq/A

b I = a1 a

a2 = a1 + a

b2 = a1 a

do = 1/Bq a

dl - a/C + k/A + I/Bq

d2 = 1/C

6.8.1 Required Representation of Servo Nonlinearities

As described previously, the hydraulic servos can usually b- ,eptesented

with linear models. In order for the assumptions to be acceptah]'-, however,

care must be taken that excessive flow rates not be commanded Z1,, .. to

exceed the saturation level corresponding to the maximum va]-P,, .l, , If

rate saturation does occur, it sharply lowers the cutoff freqteii,. "t the

linearized first-order model.
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Other important nonlinear effects might be due to DPM effe,,': o, to the

parabolic characteristic (flow versus pressure) of the valve. A tim

condition with the quiescent design load near stall is unusual. , 't-,curs

only in cases where load limiting is required, such as for spoil-i li rudder

blowback, or in cases where parallel systems have failed. If opp.,tion

requires high inertial loads at high frequencies, then the valv'." paiabolic

characteristic becomes very significant; and the model must inchi,l 'nme

linear representation, such as a describing function, whereby fi, 1,,nv and

phase characteristics are functions of actuator displacement amplldes.
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GLOSSARY

Dextral:
Right handed.

Elastic structure:
Assumed linear. This implies that the elastic limit of thc, marterial is
not exceeded. This also implies that as the component of th. jrh
restoring force is proportional only to the corresponding -mponent of
the jth component of deformation: that is, [K] is constant (,irh respect
to (q}).

Inertial reference frame:
That reference frame of the vector space for which the second rime
derivative relative to this reference frame of a point masc i
proportional to the net force applied to the point mass.

Sub-body:
A finite rigid structural member of the airframe.

Panel:
A linearly-varing member of the aircraft surface.

Element:
A member of a matrix or a differential member of a rigid sul hody.
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ACRONYMS

ASE Aeroservoelastic Modeling

MFA Modeling Flexible Aircraft

fgrav Forces Due to Gravitation Acceleration

Tgrav Gravitational Force Matrix

GAM General Aerodynamic Matrix

taero Aerodynamic Torque Equal to Sum of Rolling, Pitching and Yawing
Moments.

Faero Aerodynamic Loads

Cshuf Shuffle Matrix

SSMP Simplified Structural Modeling Program

ASTROS Automated Structures Optimization System

FEM Finite Element Method

CDMS Configuration Data Management System

CADS Computer Aided Design System

MFAAP Modeling Flexible Aircraft Program
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SYMBOLS

UPPER CASE

A Aircraft.

A Flexible vehicle skew-symmetric stiffness matrix.

A n-i flexible vehicle apparent stiffness matrix.

As  Rigid sub-body of A.

AV Reduced variable total vehicle apparent stiffness matix.

AVR Total vehicle apparent translational stiffness matri:x.

AVT Total vehicle apparent rotational stiffness matrix.

AVjk Partition of flexible vehicle mass matrix:
(0=U,un;k=5,Un) •
(j = , f , , ).I

Ajk Partition of flexible vehicle apparent stiffness matui:-!

(0:U,un;k_5,Un) •
(J=u,un;k= , n)"
(j= , Oh; k -i, Un)•-
(j = 1, On; k= D, n) .

A' Arbitrary skew-symmetric stiffness matrix.

A4 Skew-symmetric torque stiffness matrix.

A4 Skew-symmetric force stiffness matrix.

B Rigid massless body.

C Direction cosine matrix relating (a) relative to (b).

Cs  Direction cosine matrix relating {as) relative to (a).

Csj Euler angle relating [as) relative to (a) (j=1 to 3).

CM Vehicle mass center.

D Arbitrary dyadic.

D Flexible vehicle symmetric damping matrix.

D n-i flexible vehicle damping matrix.

DR  Internal torque damping matrix.

Dr Internal force damping matrix.
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SYMBOLS (Continued)

Dik Partition of flexible vehicle damping mass matrix:
(j =,un; k=, Un).
(J =U,un; k= 1, On)"
(j = 0, 13n; k=u, Un) •
(j = 1, n; k= 1, On) •

DI Arbitrary symmetric damping matrix.

DR Symmetric torque damping matrix.

DRT Rotation on force damping matrix.

D Symmetric force damping matrix.

DTR Translation on torque damping matrix.

E Unit dyadic.

E Matrix of unit dyadic magnitudes.

E(M) Unit matrix of dimension JX j.

F External vehicle force.

FB Column matrix of stiffness forces on B.

Fs Force acting on As at Ps.

Fs  Column matrix of Fs magnitudes.

G Flexible vehicle skew-symmetric damping matrix.

G n-i flexible vehicle apparent damping matrix.

GV  Reduced variable total vehicle apparent damping matriy.

GVR Total vehicle apparent rotational damping matrix.

GVT Total vehicle apparent translational damping matrix.

GVjk Partition of flexible vehicle mass matrix:
(j =U,Un;k=u, Un) •
(j = 1, N; k= 1, N) .

Gjk Partition of flexible vehicle apparent damping matri-"

(j=U,Un;k=uUn)-
(j = U, Un; k= 1,13n) .
(j=j3, n;k=u, Un) •
(j , ;k= ,In
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SYMBOLS (Continued)

G' Arbitrary skew-symmetric damping matrix.

Gj Skew-symmetric torque damping matrix.

G Skew-symmetric force damping matrix.

HS Inertial angular momentum of As about PSI

I Inertial dyadic of A.

I Matrix of A inertia dyadic magnitudes.

Iij Element (i,j) of I (i,j=l to 3).

Is Inertial dyadic of As about Ps.

is  Matrix of A. inertia dyadic magnitudes.

Isij Element (i,j) of Is (i,j=l to 3, ,O).

K Flexible vehicle symmetric stiffness matrix.

Kn-i flexible vehicle stiffness matrix.

KA Stiffness matrix of flexible aircraft.

KPBq Stiffness sub-matrix of forces on B due to q.

KFBUs Stiffness sub-matrix of forces on B due to us (s=l tn n.B).

KFBOs Stiffness sub-matrix of forces on B due to Os (s=1 to n.B).

KLqq Stiffness sub-matrix of loads on As due to q.

KLquB Stiffness sub-matrix of loads on As due to uB.

KLqi3B Stiffness sub-matrix of loads on As due to OB.

KR Internal torque stiffness matrix.

Internal force stiffness matrix.

KTBq Stiffness sub-matrix of torques on B due to q.

KTBUs Stiffness sub-matrix of torques on B due to us (s=1 t,, n.B).

KTBN Stiffness sub-matrix of torques on B due to 0s (s=1 In n.B).

KqBq qB due to q via the vehicle stiffness.
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SYMBOLS (Continued)

Kq Bq qB due to q via the vehicle stiffness.

KqBqn  qB due to qn via the vehicle stiffness.

Kun- un due to U via the vehicle stiffness.
uu n due to via the vehicle stiffness.

K n Un due to u via the vehicle stiffness.

K,3n- On due to u via the vehicle stiffness.

Kjk Partition of flexible vehicle stiffness matrix:

(j=u,un;k=u,un)•
(J=U, un; k=13, n)"
(j = 1, On;k=u, Un) •
(j = 1, n; k= j, N) .

K' Arbitrary symmetric stiffness matrix.

KR Symmetric torque stiffness matrix.

KRT Rotation on force stiffness matrix.

K Arbitrary symmetric force stiffness matrix.

KTR Translation on torque stiffness matrix.

LA  Internal stiffness loads.

L Flexible vehicle load matrix (column).

'n-i flexible vehicle apparent load matrix.

Lq Column matrix of sub-body stiffness loads.

V  Total vehicle apparent load matrix.

LVR Total vehicle apparent torque matrix.

LVT Total vehicle apparent force matrix.

Lj Partitioned column matrix apparent sub-body load (j=,.,,,,B).

L' Arbitrary load matrix (column).

Lj Torsion matrix (column).

'4 Force matrix (column).
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SYMBOLS (Continued)

H Flexible vehicle mass matrix.

R n-i flexible vehicle apparent mass matrix.

MA Total vehicle mass.

MR Sub-body inertial distribution matrix.

MT Sub-body mass distribution matrix.

MT n-l sub-body mass distribution matrix.

MV  Reduced variable total vehicle apparent mass matrix.

MVR Total vehicle apparent inertia matrix.

MVT Total vehicle apparent mass matrix.

MVj k Partition of flexible vehicle mass matrix:

(j=u,un;k=u,un).
(j= 13n; k= , in) .

Mjk Partition of flexible vehicle mass matrix:

(j=u,un;k=u,un)•
(J =U,Un;k= , On).
(j =, O ; k=u, Un) .

(j =, On;k= , 13n).

H' Arbitrary mass matrix.

Torque mass matrix.

MForce mass matrix.

0 origin of B.

0' Inertial origin.

PS Mass center of As .

Ps Inertial location of Ps.

a Point at which A is attached to B.

R Location of Q relative to 0.

R Column matrix of R component magnitudes.

Ri Element j of R (j=1 to 3).
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SYMBOLS (Continued)

RI Column matrix of R.

jR' n-I column matrix of R.

T External vehicle torque.

TB Column matrix of stiffness torques on B.

Ts Torque acting on AS at Ps"

Ts  Column matrix of Ts component magnitudes.

V,w Atbirary vectors.

V,W Column matrix of V,W Component magnitudes.

Vj,wj Element j of V,W (j=l to 3).

X Inertial location of CM.

X Column matrix of X component magnitudes.

Xj Element j of X (j=l to 3).

X' Column matrix of X.

RF n-1 column matrix of X.

LOWER CASE

a Rigid body acceleration.

(a) Orthogonal unit vector base fixed to A (undeformed).

aj Unit vector j component of [a) (j~l to 3).

(as) Orthogonal unit vector base fixed to As.

2sj Element j component magnitude of [as)
(j=l to 3,c,).

(L) Orthogonal unit vector base fixed to B.

bj Unit vector j component of (b} (j~l to 3).

c Location of 0 relative to CM.

c Column matrix of c component magnitudes.

cj Element j of c (j=l to 3).
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SYMBOLS (Continued)

dm Differential mass element of A.

[e) Arbitrary unit vector base.

f Column matrix of external force magnitudes.

Tn-i column matrix of external force magnitudes.

fn nth column matrix of external force magnitudes.

fl,f2 Arbitrary reference frames.

{i} Inertial orthogonal unit vectors.

Unit vector j component of (i (j=l to 3).

ms  Total mass of AS.

MS  Mass matrix of AS.

mj Diagonal element j of ms .

n Total number of As elements.

R Location of dm relative to 0.

Pj Element j component magnitude of p (j=l to 3).

q Column matrix of scalar unknowns.

q Column matrix of 6n-6 independent unknowns.

qn Column matrix of 6 dependent unknowns.

SA Flexible vehicle deformations.

q' Arbitrary column matrix of unknowns.

rs Location of Ps relative to 0 (undeformed).

rs  Column matrix of rs component magnitudes.

rsj Element j of rs (j=l to 3).

r' 0Column matrix of rs.

rt n-i column matrix of rs.

t Column matrix of external torque magnitudes.
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SYMBOLS (Cnntinued)

tn-i column matrix of external torque magnitudes.

tn  nth column matrix of external torque magnitudes.

UB Column matrix of components of translational deformati-i of (b)
relative to [a).

un  Column matrix of dependent u..

us Translational deformation of As.

us  Column matrix of us component magnitudes.

Usj Element j of u. (j=l to 3).

ut Column matrix of us .

v Rigid body velocity.

GREEK

_OB Rotational deformation of [b) relative to {a).

%B Column matrix of OB component magnitudes.

OBj Element j of % (j=l to 3).

1s Column matrix of dependent s.

fs Rotational deformation of As.

0s Column matrix of Os component magnitudes.

osj Element j of N (j=l to 3).

131' Column matrix of 3s .

r Rotational deformation of }i) relative to [b).

r Column matrix of r component magnitudes.

rj Element j of r (j=1 to 3).

r* Column matrix components of (i} relative to (b), initiLv.

0 Direction cosine matrix of (b} relative to [i).
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SYMBOLS (Continued)

lis  Ratio of ms to MA-

p Location of dm relative to CM.

PS Location of dm relative to Ps.

2a Angular velocity of A relative to B.

S a Column matrix of Qa :omponent magnitudes.

2a' Column matrix of 2a.

_Qs Angular velocity of As relative to A.

Qs Column matrix of Qs component magnitudes.

Inertial angular velocity of B.

40 Column matrix of w component magnitudes.

ccs Inertial angular velocity of As.

0)' Column matrix of (a.

of n-i column matrix of w.

f2 Lfl Angular velocity of f2 relative to fl.

OPERATORS

c(*) Cosine(*).

s(*) Sine(*).

IIT Matrix transpose.

[r 1  Matrix inverse.

[12  Square.

]1' Matrix expanded to j partitions of : (j=n,n-1).

]R Identifies torque variable or coefficient.

[IT Identifies force variable or coefficient.

]jk Matrix representing result on j due to input k.

Ik Element summation index (k=l to n).
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SYMBOLS (Concluded)

[is Element index (s=l to n)

( ) First inertial time derivative.

( ) Second inertial time derivative.

Skew-symmetric matrix of column elements.

Matrix associated with reduced variable.

{} Column matrix or extra parentheses.

[] Square matrix or extra parentheses.

X Vector cross product.

Vector inner product.

E Summation.

I Integration.

kd First time derivative relative to k reference frame

i-t (k=i,b,,s,fl,f2).

Kd2  Second time derivative relative to k reference frame
-- (k=i,b,a,s,fl,f2).
dt2

1 jAn Matrix constant multiplier.

E
n nX n matrix summation.

[] n nX 1 column summation.
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APPENDIX A - SIGN CONVENTION AND DEFINITIONS

AERODYNAMIC SIGN CONVENTION

ITEM POSITIVE WHEN

Lift, L Up

'rag, D Aft

Pitching Moment, M Nose Up

Side Force, Y Right

Yawing Moment, N Nose Right

Rolling Moment, L Right Wing Down

Angle of Attack, aFRL Nose Up From Relative Wind Velocity

Angle of Yaw, T Nose Right of Relative Wind Velocity

Angle of Sideslip, 0 Nose Left of Relative Wind Velocity

Stabilizer Angle, SH Trailing Edge Down

Elevator Angle, 6e Trailing Edge Down

Rudder Angle, 6r Trailing Edge to Left

Total Aileron Angle: Trailing Ed, L)wn on Left Aileron
6a = &aLeft + 6aRight

Spoiler Angle, 8Sp Trailing Edge Down

* Lift
CLT Lift Coefficient, Lift principally affects theCLT qOS

phugoid mode, with both damping and the period are
decreasing with an increase in CL . In addition,
because many of the lateral derivatives are
functions of CL, the lateral dynamics are affected.
The main effect is a decrease in Dutch roll damping
with an increase in CL.
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STABILITY DERIVATIVE MEANINGS

CL@HM Lift Coefficient Measured in Wind Tunnel @ &HM

CDT Drag Coefficient, Drag main contributor to the
qoSw"

damping of the phugoid moment.

C Pitching Moment Coefficient, Pitching Momentm
qocvSw

the aerodynamic pitching moment coefficient about
the center of gravity required to balance the moment
coefficient due to thrust, when the aircraft is in
equilibrium flight. The major contributions are
from a trim elevator deflection. It principally
affects the longitudinal phugoid mode, where
positive values will tend to decrease the period of
oscillation.

Cmo Pitching Moment Coefficient at Zero Lift

C1  Rolling Moment Coefficient, Rolling Moment
qobwSw

Cn  Yawing Moment Coefficient, Yawing Moment' qobwSw

Cy Sideforre Coefficient, Sideforce

Cno= aCn/8 Directional Stability Derivative, 1/Deg.: the
change in yawing moment coefficient with variation
in sideslip angle. It is usually referred to as the
static directional derivative, or the "weathercock"
derivative. It is very important in determining
lateral dynamic stability and control
characteristics. A high value aids the pilot in
executing coordinated turns, and prevents excessive
sideslip and yawing moments in extreme flight
maneuvers and in rough air. It primarily determines
the natural frequency of the Dutch roll mode, and is
also a factor in determining the spiral stability
characteristics.

A-2



STABILITY DERIVATIVE MEANINGS

C = aC y/aO Sideforce Derivative, 1/Deg.: the change in
sideforce coefficient with changing sideslip angle.
It can be referred to as the sideforce damping
derivative. The major portion usually comes from the
vertical tail. It is fairly important to lateral
dynamics because it contributes to the damping of
the Dutch roll mode. A large negative value would be
desirable, however, a large value may create an
undesirable lag effect in the airplanes response
when an attempt is made to hold the wings level in
rough air, or to perform aileron maneuvers.

Cl = 1/a Dihedral Effect, 1/Deg.: the change in roiling
moment coefficient with variation in sideslip angle,
usually referred to as the "effective dihedral
derivative." It is very important in lateral
stability and control. To improve the Dutch roll
damping characteristics, small negative values are
desired, but to improve spiral stability, large
negative values are desired. Since at least some
"positive dihedral effect" is necessary for good
maneuvering qualities, the design value must be a
compromise between the static lateral requirements
of "positive dihedral effect", and the dynamic
lateral requirement of satisfying Dutch roll damping
and spiral stability.

Cn6 aCn/a 6a Adverse Yaw Due to Aileron, 1/Deg.: the change

a in yawing moment coefficient with change in aileron

deflection. It is quite important in determining the
lateral control qualities of an airframe; for good
response to aileron deflection, it should be zero or

a very small positive value.

C16 = acl/a 6a Rolling Moment Due to Aileron, 1/Deg.: the
a change in rolling moment coefficient with change in

aileron deflection, it is commonly referred to as
aileron effectiveness or aileron power. In lateral
dynamics, this is the most important of the control
surface derivatives. The aileron effectiveness in
conjunction with the damping in roll(Cl ) estab-
lishes the maximum available rate of roll, which is
a very important consideration in fighter combat
tactics at high speed. The aileron effectiveness is
also very important at low-speed flight (take-offs
and landings) where adequate lateral control is
necessary to counteract asymmetric gusts which tend
to roll the aircraft. Desirable values for a
particular fighter can be obtained by the Navy and
Air Force specification that the value of the wing
tip helix angle during a rolling maneuver for full
aileron deflection should be at least pb/2U = .09.
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STABILITY DERIVATIVE MEANINGS

CySa = aCy/a6a Sideforce Due to Aileron, 1/Deg.: the change
in sideforce coefficient with aileron deflection.
For most conventional aircraft, the magnitude of
this is zero; however, for certain aircraft (highly
swept wings of low aspect ratio) a value may be
obtained. The effect on lateral stability is of
second order.

Cn = aCn/asr Rudder Directional Control Parameter, 1/Deg.:

r the change in yawing moment coefficient with

variation in rudder deflection, commonly known as
rudder effectiveness, or rudder power. The design
value for a jet-powered airframe is usually
determined by considering such requirements as
counteracting adverse yaw in rolling maneuvers,
directional control in crosswind take-offs and
landings, antisymmetric power, and spin recovery
control. An additional factor which can be
influential in determining a design value is
introduced when an automatic pilot operates the
rudder.

C1 6 f 3CI/a6r Rolling Moment Due to Rudder, I/Deg.: the change

r in rolling moment coefficient with variation in

rudder deflection. In lateral control, its effects
are of second order.

Cyr= aCy / 6 r Sideforce Due to Rudder, i/Deg.: the change in
sideforce coefficient with variation in rudder
deflection. If the airframe alone is considered, the
effect on lateral stability is of second order.
However, when an autopilot is considered, it should
not be neglected in the design analyses because its
influence on the combined airframe plus autopilot
may not be negligible.

CLm Lift Due to Angle of Attack (a): the change in lift
coefficient with varying angles of attack, commonly
known as the " lift-curve slope." Important
contributor to the damping of the longitudinal short
period mode.

CL6H = aCL/3&H Lift Control Due to Stabilizer, 1/Deg.

CL6e = aCL/age Lift Control Due to Elevator, 1/Deg.: the change in
the lift coefficient with changes in elevator
deflection. On conventional aircraft, the horizontal
tail is an appreciable distance from the center of
gravity thus its effects are of second order.
However, on tailless aircraft, it can be
comparatively large and cannot be neglected.

A-4



STABILITY DERIVATIVE MEANINGS

CLsp = CL/aSSP Lift Control Due to Spoiler, 1/Deg.

Cma Pitching Moment Due to Angle of Attack (a): the
change in pitching moment coefficient with varying
angle of attack, commonly referred to as the
longitudinal static stability derivative. The
magnitude and sign are a function of the center of
gravity. It is very important in longitudinal
stability and control. If the center of gravity is
ahead of the aerodynamic center the value of CmL is
negative, and the airframe is said to possess static
longitudinal stability. Conversely, if the center
of gravity is aft of the aerodynamic center, the Cma
value is positive, and the airframe is statically
unstable. It is perhaps the most important
derivative as far as longitudinal stability and
control are concerned. It establishes the natural
frequency of the short period mode.

Cm6 H = aCm/a6H Pitching Moment Due to Stabilizer, 1/Deg.

Cm6 = aCm/aHe Pitching Moment Due to Elevator, 1/Deg.: the

e change in pitching moment coefficient with changes

in elevator deflection, commonly known as the
elevator effectiveness or elevator power. The
design value is essentially determined by the
anticipated fore and aft center of gravity travel of
an airframe.

Cm6sp = aCm/assp Pitching Moment Due to Spoiler, 1/Deg.

CD Trim Drag Correction for Center of Gravity Change
cg from .25 w

CD6sp = aCd/aSSP Drag Due to Spoiler

CL ac/a f2 v Lift Due to Pitch Rate, 1/Rad.: the change in the
q lift coefficient, with no change in angle of attack

of the airplane as a whole with varying pitch
velocity. In longitudinal stability, it has a second

order effect.
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STABILITY DERIVATIVE MEANINGS

C ac/a Moment Due to Pitch Rate, 1/Rad.: the change in
q m 2VJ pitching moment coefficient due to varying pitch

velocity, commonly referred to as the pitch damping
derivative. It is very important in longitudinal
dynamics, because it contributes a major portion of
the damping of the short period mode in conventional
aircraft.

CL. = acL/a (-t Lift Due to Plunge, 1/Rad.: the change in lift
Lcoefficient with variation in rate of change of the

angle of attack. It is sometimes referred to as CL
the change in lift coefficient with vertical
acceleration. In longitudinal dynamics, it's
effects are of second order.

ac/a Moment Due to Plunge, 1/Rad.: the change in
C pitching moment coefficient with variation in the

rate of change of angle of attack. It is sometimes
referred to as Cm* the change in pitching moment
coefficient with change in vertical acceleration.
It is quite important in longitudinal dynamics
because it is involved in the damping of the short
period mode. A negative value increases this mode,
and consequently, high negative values of this
derivPtive are desirable.

Cn aC / a ,Pb Yawing Moment Due to Roll Rate, 1/Rad.: the change
p in yawing moment coefficient with varying rolling

velocity, arises from two main sources, the wing and
the vertical tail. It is fairly important in lateral
dynamics because of iLs Influence ufl the Dutch roll
mode.

ac 1a ({} Rolling Moment Due to Roll Rate, 1/Rad.: the change
p in rolling moment coefficient with change in rolling

velocity, usually known as the roll damping
derivative. It is quite important in lateral
dynamics because it alone, essentially, determines
the damping of roll characteristics of the aircraft.
Normally, small values are more desirable than large
ones because the airframe will respond better to a
given aileron input, and will suffer fewer flight
perturbations due to gust inputs.
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STABILITY DERIVATIVE MEANINGS

Cyp aCy/a ( VSideforce Due to Roll Rate, 1/Rad.: the change in
p /sideforce coefficient with variation in rolling

velocity. In lateral dynamics, its effect is of
second order, therefore, it is common practice to
neglect this derivative in lateral calculations.

Cn = Ca {- Yawing Moment Due to Yawing Rate, 1/Rad.: the
r the change in yawing moment coefficient with change

in yawing velocity, also known as the yaw damping
derivative. The main contribution is made by the
vertical tail (80-90Z). It is very important in
lateral dynamics because it is the main contributor
to the damping of the DuLch roll oscillatory mode
(large negative values are desirable).

C aC1/a b Rolling Moment Due to Yawing Rate, 1/Rad.: the
r the change in rolling moment coefficient with change

in yawing velocity. In lateral dynamics, its
effects are of second order, since it has only a
slight effect on the Dutch roll damping characteris-
tics. In the spiral mode, however, it is desirable
that the value be small and positive. It is not
usually considered a preliminary design parameter.

C 3C C/3 (E- Sideforce Due to Yawing Rate, 1/Rad.: the change in
y 2sideforce coefficient with variation in yawing

velocity. In lateral dynamics, it's effect is of
second order and, therefore, it is common practice
to neglect this derivative in lateral calculations.

C n V Yawing Moment Due to Rate of Change of SideslipCna V Angle. the chinge in yawing moment coefficient with
variations in rate of change of the sideslip angle.
Its effect on lateral dynamics is mainly in the
Dutch roll mode; to increase damping, positive
values are desirable.

C = ac /a (} Sideforce Due to Rate of Change of Sideslip Angle
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APPENDIX B

DEFINITION OF AXES SYSTEMS

B.1 STABILITY COORDINATES

The equations of motion commonly used for analysis of transient maneuvers

involving all six degrees of freedom of the rigid airplaneiemploy four

different axes systems; these axes systems are designated ground axes, body

axes, stability axes and wind axes. The definition of these axes and their

functions are as follows:

Ground Axes - Ground axes are a set of orthogonal axes fixed with
respect to the ground. The z axis is coincident with the weight
vector. The x and y axes are arbitrary but the equations are
simplified if either the x and y axis is chosen to coincide with the
horizontal component of the wind relative to the ground. Ground axes
are required to define components of weight and ground winds in the
other axes systems.

Body Axes - Body axes are a set of orthogonal axes through the airplane
c.g. which remain fixed relative to the body. The y axis is chosen
normal to the plane of symmetry (for most airplanes there is a plane of
symmetry and this plane is designated the xz plane). The x axis is
usually the horizontal reference axis. The moment equations are in the
body axes system because inertia properties remain fixed with respect
to these axes.

Stability Axes - Stability axes are a set of orthogonal axes through

the airplane c.g., the y axis of which is coincident with the body y
axis. The x axis is coincident with the velocity component in the xz
plane. The velocity is defined as the velocity of the airplane
relative to the air surrounding it. Aerodynamic forces and moments are
usually defined in the stability axes system.

Wind Axes - Wind axes are a set of orthogonal axes through the airplane
c.g., the z axis of which is coincident with the z-axis of the
stability axis system. The x axis is coincident with the resultant
airplane velocity vector. Again, the velocity is the airplane velocity
relative to the air. The force equations are simplest when written in
the wind axes syqtem.

The relationships between ground, body, stability, and wind axes, are

shown in Figure 1-2.
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APPENDIX C

AERODYNAMIC EQUATIONS

This section presents the aerodynamic equations in the three degree-of-

freedom longitudinal maneuver.

The equations presented for lift, pitching and moment and drag include

rigid airplane component contributions and the corresponding flexibility

correction factors.

The equations are developed in the stability axis system. Provisions are

included for transferring the forces and moments to the airplane center of

gravity.

C.1 AIRPLANE RIGID ANGLE OF ATTACK

The solution of the equation of motion provide a value for a flexible

airplane angle of attack, =F, at every discrete time t. Before oF can be used

to determine rigid airplane aerodynamics coefficients, it must be converted to

a rigid value. This is accomplished by subtracting a theoretical flexible

increment at the zero lift angle.

The aerodynamic coefficients were measured on a wind tunnel model built

to a mid-cruise shape. Theoretical airplane flexibility correction factors

were calculated based on a jig wing shape. Therefore, an additional increment

must be subtracted to account for the above shape difference. Thus the rigid

airplane angle of attack is defined as follows:

LaR = aF - (6aO)F - (Lao) jig (1)

C.2 AIRPLANE LIFT CHARACTERISTICS

The total flexible airplane lift equation related to the stability axis

system may be expressed as follows,

LIFT = qS CLT (2)
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where the total lift coefficient is,

= (CL) + (CL) + (CL) + (CL) + (CL).CL C) )6H 6e q

+ (AL) + (CL) + (CL) (3)
6 SP qn z

The individual flexible components are defined as follows:

Lift coefficient due to angle of attack at 6H = 6e= 0*

(CL) =L [(L) (L 6 H] (L/CLR (4)

where

C C6H R R * C]

Lift coefficient due to horizontal stabilizer deflection

(CLI =MH. CL.. /CL ] 6H (5)

Lift coefficient due to elevator deflection

L e t CM6e R e e R I * S(6)

Lift coefficient due to pitching velocity

(CLq = (CLq] * (CLqF/CLqR*2 * q (7)
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Lift due to plunging velocity

(CL). = (CL.] * (CL /CL- I * ivj*(8

Lift due to spoiler deflection

n
A~C L E "J CL *CL CL * S (9)

L6  SP i=1 S8 JR SP F L SPRJJ

where n = number of spoilers

Lift due to angular acceleration

(C)=(C)*q (10)

Lift due to normal load factor

(L nz = - CL nz* (11)

If Equations (3) through (11) are substituted into Equation (2), and the

terms rearranged, the lift may be expressed as follows:

LIFT = qS [CL + (c/2v) * C2L + CL q - CL * n ] (12)
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where

1 *L L, L ] /CL qL RCL (C @ R " RRJ (] *

t H HF  HR OF

+ ~ ... CM ] [ L F CL~H * Se C CL J *8~

+/ L
i=l 6SPIR L SPF SPR J

+ L 2 L L F R)CL

C L CL-
3 q

C L-4CLn

= L

L4 nz
z

Equation (12) is used in the solution of the equations of motion as Fk.

Since the sign convention for the equations of motion defiaes Fk as positive

downward, the final expression for the lift is:

Fk = - LIFT (13)

C.4 AIRPLANE DRAG CHARACTERISTICS

The total airplane drag equation related to the stability axis system may

be expressed as follows:
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DRAG = qSCD (14)

where the total drag coefficient is

CDT = (CD)a + (aCD)cg + (6CD)6SP + (6CD)h (15)

The individual components are defined as follows:

Trim drag due to basic lift

(CD) = CD @ CL (16)

where

CLBASIC  (CL)a + (CL) H + (CL) e (17)

Drag due to spoiler deflection

n
6~CD] E 1 C J * (18)

1 6SP i=l P] i *[S

when n = number of spoilers

Reynold number correction for profile drag.

(ACD)h = (30,000 - h) (4.5) x 10-8 (19)

and (ACD)cg = trim drag correction for center of gravity shift from c/4

Equation (14) is used in the solution of the equations of motion as Fi.

Since the sign convention for the stability axis defines Fi as positive

forward, the final expression for drag is:

Fi = - DRAG (20)
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C.3.1 Airplane Pitching Moment Characteristics

The rigid pitching moment data are referred to the cw/4 and WL = 200 in

the stability axis system. The total flexible airplane pitching moment

equation about any center of gravity may be expressed as follows:

MCG' qSCCM/ 4 + S co a + CDT s (Xcg - XREF

+ S(CLT sin SF - CDT cos SF) (WLcg - WLREF) (21)

where the pitching moment coefficient at c/4 is,

CM CG (CM) + (CM) H (CM) e+ (CM)q +(Y

+ ("CM)6SP + (CM) + (CM)n, (22)

The individual flexible components are defined as follows:

Pitching moment due to angle of attack at 6H = Se = 0

(CH)ft r S [( M)R -(C"6H]) * 8H]~ + 'SCM/CL) *(CL)O

+ ("C) + (C M )• (23)

Pitching moment due to horizontal stabilizer

(CM)H = r &H). * (CM8  6%] 'H (24)

Pitching moment due to elevator deflection

-(CM M6 e)R * (C6 F/C ] R j e (25)
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Pitching moment due to pitching velocity

(CM)q =(Mq] 2v qC/~ ]2 (26)

Pitching moment due to plunging velocity

(CM). =(M.] * .(Cm 1 M}* . (27)

Pitching moment due to spoiler deflection

n

- [IL~~p i MSP R tiS~PF/C 6SP (28

where n = number of spoilers

Pitching moment due to angular acceleration

(CM o f.) * q (29)

Pitching moment due to normal airplane load factor

(M)n = -Mnz) * nza (30)

If Euations (22) through (30) are substituted into Equation (21), and

terms rearranged, the pitching moment may be expressed as follows:

MCG = qSc CM + - * C + k q - C * nz]

- F * c (XZCG1) - F, * c (CXCG2) (31)
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where

C = MSM + (WCM/CTLIF * (CLa + +"M) ' aM~i

" (CM ) R CM /CM ) &H *I H - SM

+ C * mCM cCM L* + + M
"~~'M M Se IR MeciMSeR

+ r S SP~PFC 6p

CM = C )1 (CM /C] R * M S F C 6S R

CM c CM.
3 q

c4 
c Mn

XZCG1 -[cos a (Xcg - XREF) + sinft(WLcg - WLREF)]/C

XZCG2 [S in a(X cg - X REF) cos a (WL cg - WL REF)]/C

FK qCLT
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APPENDIX D

FIXED LONGITUDINAL FLEXIBLE STABILITY DERIVATIVE PROGRAM P-107

This program generates rigid stability derivatives, flexible stability

derivatives, flexible/rigid ratios, incremental flexible stability derivatives

and flexible inertia derivatives for a fixed airplane, airplane less tail and

tail only configuration.

The stability derivatives generated by this program consist of two

distinct sets. One set, referred to as fixed stability derivatives, reflects

the effects due to the application of airload distributions only. The second

set, referred to as fixed inertia derivatives, reflects the effects due to the

application of unit inertia distributions only.

Rigid and flexible derivatives are calculated for up to five altitudes

per Mach number for up to five Machs. Appropriate flexible/rigid ratios,

flexible increments and inertia derivatives are inserted into output matrices

compatible with the automatic plotting routine of Program P-115.

The following sections present a description of the above procedures.

D.1 FIXED STABILITY DERIVATIVES DUE TO AIRLOAD ONLY

The rigid and flexible fixed stability derivatives are a function of

theoretical airload distributions only, and may be generated for up to nine

separate angle distributions, as listed below:

Unit Angle Distributions Input Symbol

1) Unit angle of attack for the complete airplane FORMED

INTERNALLY

2) Angles of attack due to a unit pitching velocity ez

3) Reference airplane camber and twist angles of
attack %6.
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4) Unit angles of attack for the tail plane only cr

5) Unit deflection angles for the horizontal stabilizer 8H

6 Unit deflection angles for the elevator 6e

7, 8 & 9) Arbitrary unit angle distributions for user ei
specified component; i = 1,2,3

The input order of eZ, aC&T and ,T must be as listed above at all times.

If this order is not followed, all output parameters for ao , Cm0 , Co, de/da

and ( will be incorrect.
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BASICIINPUT
DATA

RIGID STAB INERTIA STAB.

STC NRISTACK INERTIA L STAKB. iO
DERY.- ERI. f) OE INCE NT

[ cifi [c0.C iC ]L

Figure E D.1. .FieFogtdnL STABilt DEXatv INRTIA

OERIV. ~ ~ ~ ~ D 3EI.ORV ~z



ASSIGN4 DATABASE P4TEMP DAVID OLD
MAPOL
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
S S
S LOCHEED AERONAUTICAL SYSTEMS COMPANY - BURBANK S

S IR ITT EN BY DAVID DINGE MAN S

s $
SFIXED LONGITUDINAL STABILITY S
SDERIVATIVES PROGRAM S

s S
5PROGRAM: VERSION 1. 11 S
SDATABASE' EDITION 7 S

S S

$ CREATED: KO~CH 11, 1988 S
5 REVISED: KAY 24, 1988 S
S S

S STATUS: -TESTED, STABILITY DERVS MATCH GREAT S
S INCLUDES INCRDEETAL STAB. DERVS. S
$ -INCLUDES THE fw?'"A STAB DERVS. S
$ -RUNS FOR SEVEN MACES AND FIVE Q' S s

$ -'@R.EST0RE IV BEFORE RUNNIYG .

s 3
ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

nROC FLEX ( JAI, rri tDYT1. IDZTI. Mo, InY)
S S

MATRIX JAI, [OXTI, (D'tTI, (DZTJ;
S S

REAL E0, DYDA, CLAD. CHAD. AOAP. CMOAP;
REAL CXCLAP, AOAT, CM0AT. C.4CLAT, CR2, CLAT;

S S
REAL MO;

S S
REAL OKO, DEA. DAD, DCA. DMA;
REAL OAT, OCT, OMY, RCD, RCM;

S S
REAL DEOI, DEAL, DAOI, DCAl, OMAI;
REAL DATI. OCT1, OMTI, RCDL, RCM1;

s S
REAL TNPI. TMPZ. T11P3, TMP4, TflP5;
REAL TMP6, TNP7, THP8. TMP9, TNPA;

SS
INTEGER INT;

S S
S CR2 *ZLt/CBAR - 2[FS(HT)-FS(AERO)I/CBAR S

CR2 :. .95333;
S s

CALL EXREAL ( AI.,3,CLAT);
CALL MIELOP ( AI,3,3.(Ahf4,5.4,EO);
CALL ELOP ( AJ,4,5,[AJ,l.5.2TIP1);

S S
DTOA :.-TUPt I CLAT;
CLAD :mTHPI *CR2;

s S
CALL MIELOP ( (AJ,4,6,[AI.1.6,,TMPZ);

S S
CHqAD :. TMP2 CR2:;

$
CALL MXELOP ( JAj,3,1,[AJ,l,1,4,ThP3);

AOA? :. -TMP3;
s S

CALL MXELOP (Al,1,Z.[AI,1,1,A,TNP4);
CALL EEAL (,(AI,3.1.TMPS);
CALL EEAL (,(Af,3.,HP6);

s s
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C.40AP :-THP6 - TNPS * INP4.;
c0ICLAP :. T24P4;

CALL MXELOP [A1,3,3,[AI,1,3,4.TM?7);

AOAT :- -TNP7;
S S

CALL MXELOP ( AI,1,.,([AI,1.3,4,T1P8);
CALL LUREAL ( jAh.3.3.ThP9);
CALL MUEAL j Aj,3.4,TMPA);

S S
CMOAT :. TNPA -TMP9 * MS

S S
CALL MXELQP ( AJ,j,4,[AI,1,2,4,CMCLAT);

PRINT (

PRINT ( IX, 4F3.6).'!0,DTDA.CLAD,CtAD);
PRINT (l(I,'ALPELA-O A/P',4X,'CI-O A/P',1OZ.'C.I/CL- A/P')-);
PRINT ( "(, 3Fl3.6),-AOAP,CM1QAP,CXCLAP);
PRINT ( "X9'ALPUA-0 A-T',3X,'CM-0 A-T',1OX,'CM/CL A-T')-);
PRINT ( "(1 3Fl3.6),AAT,C40AT,CMCLAT);

S S
IF INT -0 THEN

0201 :- 2;
ORAl :- DA
01 :-AOAP:

OCAl :.C4OAP;

DMAL : C4CLAP;
DATI : AOAT;

Own : CMtCLAT;
RCOI :.CLAD;
RCM1 :-CfAD;

S S
CALL MXONE (,(OXTI, 1. 6, 2 )
CALL MXONE C , (Dm. 1, 6, Z )
CALL MXONE ( [DZT], 1, 6, 2 )
CALL PKRPEAL ( (ZTJ, 1, 1, M( )
ENDIF:

S
IF rNT - 1 THEN
020 :. 2 - 0201;
OEA :. TDA - DEAl;
DAD : ADA? - DAO1;
DCA :.C40AP - DCA1;
DMA :-CNCLAP - ONAl;
OAT :.AOAT - DATI;
OCT M.C~AT - OCTI;
WIT :.CNCLAT - DNT1;
RCD : CLAD / RCDl;
RO .4 CM.Ak / RCll;

sS
CALL M1.EAL ( OXTI, 1, DED )
CALL PKP.EAL ((OXTI, 1, 6. OEA )
CALL PKREAL ( (XTI. 1. 1, DAD )
CALL PICREAL ( (XTI, 1. 2, OCA )
CALL PgIREAL ([DTl 1, 2, DMA )
CALL PICREAL ( (XTI, 1, 3, OAT )
CALL PKREAL C (OXT. 1. 4, OCT )
CALL PKREAL C(OTT), 1, 4, WIT )
CALL PKREAL C(OT, 1. 5, RCD )
CALL PKREAL C DITI, 1. 6. RCM )
CALL PKREAL C IZT], 1, 2, MQ )

SS

D-5



PRINT (l(X,'*. * * . * *******

PRINT ( lX,'DEL7,A EPS-0',10X,'DEL (DE/DA)')");
PRINT ( (lX, 2F13.6),"DEO.DEA);
PRINT ( (XDEL ALP-0 A/F' ,4X.'DEL CMi-0 A/P',iOX.'DEL CM/CL A/P')*);
PRINT C (IX. 3FI3.6),*DAODCA.DMA);
PRINT (l(X,'DEL ALP-0 A-T'.3X,'DEL CN-O A-T',LOX,'DEL C01/CL A-T')");
PRINT (lCX. 3Fl3.6),"DAT,DcT,DMT);
PRINT (l(X.'RLAT CL-AL DOT',1OX,'RAT Ct-AL DOT')*);
PRINT " (U. 2F13.6),"RCD,RCM);

S S

ssssssSssssssssssssssssssssss5sssssssssssssssssssssssssssssssSssssSSsssssSs
RELATION CASE;

S
INTEGER GSIZE, IMACS, NMCH, IQ, NO;
INTEGER LtNT. IFLG. IRES, ITST;

S S
S Scalar Declarations: S

S S
REAL. C!, CZ;
REAL QS1, 011;
REL MACE, NTST;

Matrix Declarations:
SS

MATRIX (DZ1i41, [ONII. [TSZi, (AC:110l;
M,.RIX [aSIC!, (ADST], [PinG!, (CLRGd, (CLCMI;

SS
MATRIX (OLDS-1OCI, (QREALI.CQ(7)l, (MC:41;

S
MATRIX (AD11i31, (AD2lI61. (AD3ii7l1, (AD41181;
MATRIX [ASJ, [A61, CATlI, (A'rZl. (AT3l;
MATRIX (Ar'!. (AT5I, [AT61, IAT7I;

SS
MATRIX (C?11, (evil, (C?3l. JC?4J, (C?SI. ICP6), (CP7I;
MATRIX (CPSI. (C?9l, (C?IOI, (CPU!1, (CPU!I, (CP131, (CP141;
MATRIX [RTMP1I.[RTMP2I;

$ S
MATRIX VIiJ. JViIO1J. (W21021, (VdA). (V51, (V31031;
MATRIX [V7J, (WSJ, jug), (Viol, [WJill, [(l1ZI;
MATRIX (VI31. (Vi41, (WlI5;

S S
MATRIX (VlT11, ([T21, (IlT31. (UT41, [VT31, (WT61;
MATRIX (WT71. (JlT8, (WTr9l, (WT1Il, ("Till, (irri2l;
MATRIX (JTi31, [VNJ;

S $
MATRIX (P11, (pz7Rwlo,6j, (PZTH2iO51, fF41, (P51, (PZT931C'i1;
MATRIX (P71, (Pj, [P91, (PiOl, [P111, 1P121;
MATRIX (P131. (PI41, (PIS];

S S
MATRIX [PT1I, JPTZ1, (PT31, (PT41. (7151, (P161;
MATRIX (P71 IPT8I. (Tg, IPT101. (PTiI, JPT121;
MATRIX IPT131, (PNI;

$ S
MATRIX (VSICI, (PSIC!, [SUNVI, (SIT!], (001!;
MATR.IX (DmH1081, (11071, [01;
MATRIX (DINY!, (CLFJ, JCLII;

S$
MATRIX (CUIFI. (III fDCXI, [OCTI, JDCZI;
MATRIX (CLNU(35)J, (CLNT(3S)I, (RTIO(35)1;
MATRIX [CLNZ(35)1, JCLTE(35)J, (RATIO(35)3;

S Initialize Scalars:

NMCU :- 7; S NUMBER OF MACS'SS
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NO :u5 S NUMBER OF O'S FOR EACE MACH $
KNT -1; S INITIALIZE COUNTER OF TOTAL LOOPS S
ITST :.0; S INTEGER TEST IF 0 - 0 S
NTST I- .; S REAL TEST IF 0 - 0 S

S S
C1 : 3456.0; S CI - S (FTxFT) S
CZ : 1014336.0; S CZ - S x CBAR (FTxFrxIN) S

S S
S Initialize matrices: $
S S

CALL IFP( GSIZE )
S S
S * MACE LOOP * 5
S S

FOR INAC3 . 1 TO NMCS DO
SS

CALL 07-EAL ( IMCI 1, IMACE, MACE )
(QLDS100j :- CQ(IMACS)J;

SS
PRINT (I(X,'~**** * * * * * * *

PRIMr ( 'X,'*** MACE CASE 0',I),"IMACH);
PINT ( (X,'-* MACHE ',F6.3),"MACS);

SS
S S
S Matrix Calculations: S
S S

[OSICI : (DZI11 * ffLDS1OOJ;
SS
$ Stack of Alpha Matrices: S
S S

CALL MXONE (ON11, 1. 152. 2
CALL COLMERGE( lAThJ, [ONI!, (THZI. [C?1I )
CALL COLMERGE( (AT2I, (ATI. [ACTI101, [CFZ )
CALL COLMERG( [AT31, (ATZI. (AD11SJ. (CP31 )
CALL COL2IERGE( [AT4I, (AT31, (Afl21161, [CP4j )
CALL COUIERGE( (AT51, (AT41, (AD31171. (CPSI )
CALL COL.MERGE( [AT61, [AT51, (A041181, JC?61 )
CALL COLJ4ERGE( (AT7I, (AT6I, [A31. (CP71)
CALL COL14ERGE( (ADST],(AT7I, (A61, [CPS] )

S S
IFLG :0 S FLAG - 0 FOR RIGID DERIVATIVES S
(PZRGI :- OSICI *(ADSTJ;
ICLRGI :. CLCMI *LFZRGI;
CALL FLEX ( (CLRGI. jDCXI, (DCTJ, (DICZI. MACE, IFLG )

SS
S Stack of Veight Matrices:
SS

CALL COLJIERGE( [WTI], [VII, (WJl1011, [CPu )
CALL COLMERGE( (Vrr2j, 1ur11, (V21021, (CPZI )
CALL COLMERGEC [VT31, (VT2J, (VAJ1, (CP3I )
CALL COLMERGE( (WT4j, (VJT31, (V51, CCP'I )
CALL COL'IERGE( (Vrr51, (IJ-41, (V31031, (CP51
CALL COLN4ERGE( (JT61, (MrS1, (V71, (CP61 )
CALL COLJIERGE( (UT7J, (Vr61. (V81, (C171 )
CALL COLJIERCZ( l'rrSI, (VT71, [V9, 1 [ CPSI
CALL COLiIERGE( (VT91, luT81. (VIOl, [CP9I )
CALL COLNERGE( [UT101, [UT91, lVIii. (CP1OI )
CALL COLI4ERGE( IIJT11I, JVT101. (VIZI, (CP11I )
CALL COUIERGE( (VT121. (UT111, 1VI31. (CP1ZI )
CALL COUIERGE( [VT131, [WT121, (V141, (CP1J )
CALL COLHERGE( IINI. (Vrr13J, [VlI5. (CP14I )

S Stack of PzTheta Matrices:5

CALL COLIIERGEC (PTI I, [P11. [PZT31IOAJ, (CP1 )
CALL COLMERGE( (PT21, (PT11, I ZTH 105 1, LCP2J )
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CALL COLJIERGE( IPT31, (7T21. (P41, (CP3J )
CALL COLMERGE( (P'r41, (7r21, (P51, [CP4] )
CALL COLMERGE( (PT51, [774]. fPZTJI21O6), [CPS] )
CALL COLMERGE( (PT61, (PT51, (P71. ICP61 )
CALL COL'IERGE( (PT71, (776], (PSI, (CP7I )
CALL COL'4ERGE( (PTSl, (PT71, (P91. 1CYSI )
CALL COLMERCE( [PT9I, IPM 1, IP101, (CP9] )
CALL COLMERGE( (PT1O], (7791. (P111, (cPIOI )
CALL COLJIERGE( (PT11], (7710], [P12], JCPu] )
CALL COLMERCE( (PTIZI, (77111, (P131, [CF1ZJ )
CALL COLMERGE( (PT13], IP7121, (P141, (CPU] )
CALL COL'4RRGE( JPH], (PT131, [P15], ICP14J )

S S
(WSIC] :. DZ1141 * [WNI;
(PSIC] :. (Z1141 * [PHJ;

S s
(SUNVI (Cl) ICLCI * (VSIC];
(SITTI :.(C2) (CLC.41 * JPSICI;
(QDE] :. [SICI * [0711108] * [E1071;

(CLNR(IT)J I. (CLCI]1 * (ODE] * (VSIC];
(CLNT(ICNT)J :-(CLOI] * (ODE] * (PSICI;

s S
CALL NflDENT C I,156, 2 )

$ s
S *~ 0 LOOP S
S S

FOR 10 - 1 TO NO DO
S S

CALL EXREAL ( . JQREAL], IMACR. 10,O 1 );
CALL RLCNPR ( QSi. NTST. 6, LRES

S S
IF rRES > ITS? TREW
Oall: 1./QSI;

ELSE
all : 100000.;
PRINT ( " X,' - 0 OUT OF BOUNDS **,S3,S)
PRINT ( (lX,'*** INVERSE OF 0 *.l3.OI;

END IF;
S S

PRINT ( (IX,'*~ . * * * * * **
PRINT ( (X.'*** a CASE .1)0;
PRINT ( (lX,'*-* a . ,F8.3). *QS1);
PRINT (l(X,'*** INV 0 - ,F .)0I;

(Dl : (II - [(OSi) (ODE]];
S S

(orNvi : INV( (0] )
s S

(CLF! :- CLCMI . (DINV];

(CLII : (011) ([CL?] - CLCMII;
S S

jCLNZ(KN~T)I :.(CLII f VSICI;
(CLTH(KNT)j : (CLI] * PSIC];

S S
(CLNII]: (CLF] * (PZRGI;

S S
IFLG :.1; S PLAG a 1 FOR FLEXIBLE DERIVATIVES S
CALL FLEX ( (CLNFJ, (DCXI, (OCTI, (DCZI, 051, IFLC )
CALL MIDYD ( , [CLNII?] (CLRGI, (RTIO(KNT)I )

CALL COLHERCE( (RTMP11. (RTIO(KIT)J, (DCXI, JCP91 )
CALL COLM4ERCE( (RTMPZ], (RTMP1I. (WTXI, (CPL(4 )
CALL COLJIERGE( (RATIO(KIIT)]. (RTMP21, (DcXI, (CPu] )
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S Print Matrices: 
$

CALL LrrPRT( , CLUGI, EYC~1 CrCTI
CALL LrNP.RT( , CL4~FI, JCL.-Z(Y1CI,)I, (CLTR(KN)I )

CALL rrTPR( , [LAT:0(K~T) I )
Ss

KNT :- K.'r 1;

ENDDO;

BEG:N BULK
s 

S

S Direct Matrix Input:
S 

s

DM1. Cpl. RS?, RLEC, Z, 1, ,,,.0H
*0HZ, 1, 1, 0.0, 1.0
0HZ, CPZ, RS?, REC, 3, 1, ,,..0H

.DHZ, 1, 1, 0., 0., 1.
0HZ, CP3, RSP, REC, 4 , 1. ,, O.MI

.0HZ, 1, 1, 0., 0., 0.., 1.
0111, CP4, RS?, REC, 5, 1. *OKI.0H

.0HZ, 1, 1. 0., 0., 0., 0..,, D0HZ

.0HZ. 1, 5, 1.
DIII, CP5, RS?. R.EC, 6, 1, ,, .0HZ

.0HZ. 1. 1, 0., 0., 0., 0.", -Ohl

DM1, CP6, RSP. REC, 7, 1. _, -OKI

.0HZ, 1. 1. 0., 0. , 0., 0.', Z 

.0HZ. 1. 5, 0., 0., 1.
DM1, CP7, KS?, RLEC, 8, 1, .., .0HZ

+0HZ, 1, 5, 0., 0., 0., 1.
DHZ, CPS, RSP, RLEC, 9, 1, ,, .0HZ
.OMZ, 1. 1, 0.. 0., C., 0.,., .0CH1

.0HZ, 1. 5. 0., 0.. 0., 0.,,, OMIZ

-OHZ, 1, 9, 1.
OHI, CP9. RS?, REC, 10, 1, ,, .0hl
.0HZ, 1. 1., 0., 0., 0 ., 0.,,, .011
.0HZ, 1, 5, 0., 0., 0., 0.... .0111
-OKZ, 1, 9, 0., 1.
0HZ. CPl0, aSP, REC. 11, 1, ,, .0HZ

.0111, 1, 1, 0., 0., 0., 0.,,, .0HZ

.0HZ, 1, 5, 0., 0., 0., 0.,,, -0hl

OKI, C21. KS?, REC, 1Z. 1, ,,, .011
.0111, 1, 1. 0., 0., 0., 0.,,, .0HZ

-OhZ, 1, 9. 0., 0., 0., 1.
OHZ, C?1.Z. RSP, REC. 13, 1. , ,, -OhZ

.OKI1, 1, 1., 0., 0., 0., 0._, .0HZ
.0HZ, 1, 5, 0., 0., 0., 0.,,, -0KI
.0111, t, 9, o., 0., 0., 0.,,, -0HZ

.0HZ, 1, 13, 1.
0HZ, C?].3, Ks?, REC, l.A. 1, '', .0HZ
.0HZ, 1, 1, 0., 0., 0., 0.,,, .0111
.0HZ, 1, 5, 0.. 0., 0., 0.,,, .0HZ

.0HZ, 1. 9, 0., 0., 0., 0.,,, -0Hl

.0HZ, 1, 13, 0., 1.
0HI, C?].', RSP, REC, 13, 1. ,,. .0HZ
*0HZ, 1, 1, 0., 0., 0., 0.,,, .011
-OKI. 1, 5, 0., 0., 0., 0. .0H+OK

.0HZ, 1, 13, 0., 0.. 1.
OKI, OREAL, RSP, REC, 3, 7, ,, .0HZ
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+DMI, 1, 1, 133.5, 91.8, 61.4, 39.7 ,,, +DMI
+DMI, 1, 5, 24.8, , ,,, DI
+DMI, 2, 1, 370.8, 255.1, 170.5, 110.3 ,,, iDMI
+DMI, 2, 5, 68.9, , , ,,, +DMI
+DMI, 3, 1, 646.1, 444.4, 297.2, 192.2 ,,, +DMI
+DMI, 3, 5, 120. , , ,+DI

+DMI, 4, 1, 834.3, 573.9, 383.7, 248.2 ,,, DMI
+DMI, 4, 5, 155. , , , p,, +DMI
+DMI, 5, 1, 0. , 719.9, 481.3, 311.4 ,,, DMI
DMI, 5, 5, 194.4, p F,, +DMI

-DMI, 6, 1, 0. , 826.4, 552.6, 357.5 ,,, DMI
DMI, 6, 5, 223.2, , , ,, DMI

+DMI, 7, 1, 0. , 920.7, 615.7, 398.3 ,, +DMI

+DMI, 7, 5, 248.7, , , Irv
DI, MCH, RSP, REC, 7, 1, ,,, .DNI
DmI, 1, 1, .3, .5, .66, .75,,, +DMI
+DI, 1, 5, .84, .9, .95,
ENDDATA

D-10

* [ C.S. G(VERNMENT PRINTING OF'c! : 1990 748-06 (24213)



D.2 FREE LONGITUDINAL FLEXIBLE STABILITY DERIVATIVE PROGRAM P-137

MADOL Program P-137 generates rigid stability derivatives, flexible

stability derivatives, flexible/rigid ratios and incremental flexible

stability derivatives for a free airplane, airplane less tail and tail only

configuration.

The stability derivatives generated by this program reflect the effects

of the application of airload and inertia load distributions to an

unrestrained, or free, balanced airplane.

Rigid and flexible stability derivatives are calculated for up to five

altitudes per Mach number for up to ten Machs. Appropriate flexible/rigid

ratios and flexible increments are inserted into output matrices compatible

with the automatic plotting routine of program P-115.

The following sections present a description of the above procedures.

D.2.1 Free Stability Derivatives

The rigid and flexible stability derivatives are a function of

theoretical airload distributions, inertia load distributions and applied

external load distribution for a balanced airplane. Stability derivatives are

generated for the following independent distributions:

Type of Distribution Input Symbol

1) Unit angle of attack for the complete airplane FORMED

INTERNALLY

2) Fuselage station of control points XCp

3) Reference airplane camber and twist angle of OtC& T

attack

4) Unit angle of attack for the tail plane only MT

5) Unit deflection angles for the horizontal stabilizer SH

6) Unit deflection angles for the elevator Se
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7) Arbitrary unit angle distribution 04

8) External applied load distribution at load points APZ1

9) External applied load distribution at load points 6PZ 2
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ASSIGN DATABASE PDEM P DAVID OLD
NAPOL
sS~SSSSSSSSSSSSSSSSSSSSSSSSSSSsSSSSSSSSSSSS$SSSSSSSSSSSSSSSSSSSSs$SSSSSS
$ S
S LOCKREED AERONAUITICAL SYSTEMS COMPANY - BURBANK

S ~vRnTEN BY DAVID DINGEMANS

5 FIXED/FREE LATERAL STABILITY -S

$ DERIVATIVES *TEST* PROGRAM5

S PROGRAM: VERSION 1.0S
$ DATABASE: EDITION I

SCREATED: MARCE 31, 1988$
SREVISED: JUNE 13, 1988

S STATUS: -TESTED, SOZ ACCURATE.S

sssssssssssssssssssssssssssssssssssss$sssssssssssssssssssssssssssSSSSSSSSssssssS
RELATION CASE;
INTEGER GSIZE;

S Scalar Delarations:

REAL 01, 01, Ri, MIST, MACE;
$ S

INTEGER IMACE, NMCH, 10, NO, INT;
INTEGER ENT, IPLG, IRES, ITST, MV? NWT;

5 Matrix Declarations:S
SS

MATRIX (OZ(6)1, (OT(6)J, [EI031, 108I04I;
MATRIX ISAP1OSI, (5VT1061, [DZ1O71, [DYlOSJ;
MATRIX IDfonaI , (Dlii, (BRliZI, (BOR113J;

MATRIX IQLDSiOI, (OREALI, (0(6)], [MCE];

MATRIX (STVT136J, ISSTF1371, [5MXT1381, [SMIZ1391;
MATRIX (PY(3)j, (PzTH(3)j, (PTE?(3)1, (PITH(3)1, [PXTB(3)1;

$ S
MATRIX (02011, (12021, [PYQZO3J, [CTR2OI'1;
MATRIX (CYVT2O51. (O0E206J, (SUMlZO7J, (SUM22OSJ;
MATRIX [SUM32O91. (SUM4210J, IDBE2111, (02131;

MATRIX (DINVZ14J, (P102151, (CTZ161, (CYTr2171;
MATRIX 10012181, (FRI(90)], (FRXV(90)J,[ST1ZZ1J;
MATRIX [5122221, (MZY223J, (MXZ224i, (OPY02261;

S S
MATRIX (CYTY(90)J,[1052291, (IINV23Oj, [NY2311;
MATRIX IPYFRZ32I, [CYFR(90)I,[FR(90)I, (FRCY(90)1;
MATRIX (VrR(90)1, (DFZSOI, IST17231J, (SY2FZS2I;

MATRIX [MZTM25S, (?MF254 1. (DONY26OJ, (ST=N6IJ;
MATRIX (S1212621, (MXTN2631, (MXZN2641, (Dm651;
MATRIX [ST1P261 (STZF2671, (MXY72681, (MXZfl69J;

MATRIX (P113011, (PT13021, [Pn303J, (PX3041;
MATRIX (P305(3)1, (WS3063)j,[vVT3O71, (DPT308J;
MATRIX (CYNY309J, [CT MT3101, (CYFV(90)1;

MATRIX ISTISSOI, [5123511, (MXY3S2j, (MXZ3S3i;
MATRIX (083541, 151103551, [5Y203561, EMXT0357j;.
MATRIX (MXZO338J, 111, IT];

SS
MATRIX 11Th,. ("T21, IRT31, [RT41;

D- 14



MATRIX [RTSI, [RT61;

MATRIX [CPu1, [CP2I, [CP31, [CP41;
MATRIX [CP51, [CP6I, [CP71, [CPBJ;

S Initialize Scalars: $
S S

INT 1;S FLAG TO PERFORM COMPONENT INTEGRATION$

$ In? a 0 No COMPONENT INTEGRATION $
SINT a 1 COMPONENT INTEGRATION S

NMCR : 6; S NUMBER OF MACH'S $
NO :5; $ NUMBER OF Q'S FOR EACH MACH S
KNr 1; S INITIALIZE COUNTER OF TOTAL LOOPS S
ITST:-O; S INTGM TEST IF 0-0 $
NTST:-l.; S REAL TEST IPQ-O $
N'J : 1; S NUMBER OF VEIGET CASES $

Initialize Matrices:
S S

CALL NZIDENT 111[I, 146, 2 )
CALL MflOENT ( ETI, 3, 2 )

IF INr - 1. TREN
CALL MXNULL ( I SyVT1361, 337, 1, 2 )
CALL HDI1ULL ( , SSTF1371, 337, 1, 2 )
CALL MXNULL ( , SMX71381, 337, 1, 2 )
CALL MXNULL ( [SmXZL391, 337, 1, 2 )
ENDIF;

CALL IFP( GSIZE )

5 matrix Calculations: Part la. (Computed once per mach)
SS
$ * MACH LOOP "'S

S S
FOR IMACH - 1 TO NMCH 00

CALL KIREAL C,[MCHJ1, 1, INACH, MACH );

PRINT C"(1X, '*** *** ** *** *** *** **4***** )

PRINT C (lX,'** MACS CASE 1',I4),IMACE);

PR~tT (C1Z,~* ACH ',F6.3),*ACH);

[02011 to [JDZ1071 * [Qz(IMACH)II 1(oyioal * [QY(IMACH)II;$

S Stack of Beta Matrices:5

CALL COLMERGE( [RTIJ. [31111, [3R1121, [CPu )
CALL COLHERGE( [ET21, (RTlI, (BORiI3i, (CP2I )
CALL COLMERG3( [RT:3j, (RT21, [AD111&J, [CP31 )
CALL COLMERGE1( [RTI.JP (RT31, [AD2115], [CPA! )
CALL COLMERGEC [RT3J, (RT41, (P8ZVII1, [CPSJ )
CALL COLNERGEC 182021, [3T51, [AV1171, [CP6J )

JPT02031 :a 10201) * [3202);
ICTR2041 to (SAP1OSI * (PTQ2031;

ICTV72051 :.(SVT1O61 * (PY02031;
(00C2061 1- 02011 * I031041 * (E1031;

If INT a 1 TNEN

(SUN12071 to [SYT1361 * [QY(IMACH)1;,
(SUN22081 to (SSY1371 * (OY(IMACH)1;

[SUM32091 to ISMXY1381 * (OY(IMACH)J;
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ISUM42101 :- SNXZ1391 * [QZ(IflAcE)J;

(0112111 :(DB104I * (11031;

IST12211 a SUM1ZO71 * (32021;
(S'T2222 ISUNZZOSI * BO1$

IMXT2231 :. SUM32091 * (B2021;
JM1Z241 :. SUM421Oj * (12021;

ENDIF;
S S

$ Matrix Calculations: Part lb. (Computed once per mach)S
SS

FOR Mv a 1 T0 NVT DO

CALL COLNERGE( [RT61, [PTNT(IVr)J, [PTEP(1 M)J (CPLJ )
CALL COLMERGE( (PX13011, (RT61, (PMT(IVT)l, JCP2J )

[PT1302J := [01081 * [P113011;
(P7.3031 :-(DZ1O71 * (PZTE(fl) * (C?71;
(PX3041 :- (11091 * (PrTE(IVT)j * (CPSJ;

(P305(I :. [PY13021 * P7.3031 *(113041;

(VS306(fIT)J :- SAP1031 * [P305(IM)J;
IVVT3071 :- (511061 * IP305(M1)1;

[0PY3081 :- ODE2O61 * IP305(IVT)];
S S

(CYIT3091:. (SAPlOSI * (OPY308);
(CY17310]:. (S17106) * (DPY3O8J;

IF INi - 1 THEN
(ST13501 :- SYVTZ36I * tPX13011;
15123511 : (SSYF1371 *(PXI3011;

(11173521 :- SMXT1381 * (PX13011;
IMXZ73531 ISMXZ171391 * PZTE(IVT)J;

ID83541 :uD(031111 * (P305(M1));

IS103551 JS(UM12071 * (083541;
(S720356) a SUN2ZOSI * (013541;

(1M1Y03571 :.[SUM32O91 * 1033541;
[11110381 :.SUNA2101 * (033541;

EIDDO;

S Matrix Calculations: Part 2. (Computed once per mach and q)S

a00 LOOP 0

FOR 10 a I TO NOQ 00
S s

CALL mMAL ( IoRzALI, InaC, 10, ax )
CALL ILOIPE OX, I4TST, 6, TRES )

S S
IF IRIS > IST THEN
Ki :- ./01;

ELSI
El : 100000.;
Urnir *(1I,'* a OUTl Of BOUNDS
lrff! aim -(.1 INVERSE OF Q * ,l.3"K)
50!?;

$
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PRINT C ***k **** **** * ***#))
PRINT ( (lX,** 0 CASE #',14),*IQ);
PRINT (I(X,'-* a . ',FB.3), "QX);
PRINT (l(X,'*" INV 0 .-l.3,K)

[02131 (1)IJ (QX)[ODEZ061;

[DINV2141 : INV ([02131 )
[PY02151 :- [INV214J [PYQT2031;

[CT2161 :=[SAPIOS] * PYQZ13J;
[CTVT217J : (SVT1O61 (PYQ215J;

S nS
(DDI2181 :. DINV2141 - 11;

SS
CALL MXDVO ( J CT2161, (CTRZO41, (FRX(KNT)J )
CALL HXDVV ( (CTVT2171, [CTVT2O5], (FRXV(KNT)J )

$ S
IF INT - 1 TEEN
(BFFZSOI :a (32021 + (QX) (DBEZ111 * PYQ2151;

(SYIFZ51l : (SUMlZ071 * tBFYZSOI;
(57272521 1- SUN2208J * [BF72501;

[H17F2531 Ju SUM32091 * [3772501;
[MXZF2541 :. SUM4Z1 * [3772501;

ENDIF;

S Matrix Calculations: Part 3. (Computed once per eac-h and q) $
S S

FOR rUT - I TO NV1T DO
[DPY0226i a* (Ki) (0012181 * P305(IVr)J;

SS
[CTNT()IT)J :-SAP1OSI * IDP702261;
[CTFV(KNT)J :-SVT1061 * IDPTO2261;

(V0SZ291 :-[TI *((CfYC(T)J * (Ki) 1VS306(II;
[BI.NV23O1 :-INV ( [702291 )

S S
(NY2311 :.(-1) [BINV230J [ T] * [CYZ16I;

S S
IPYFR2321 :-(DPT02261 * .[142311 * [PTOZ15I;
[CTPR(KNT)I :. SAP1OSI * (PT7R2321;

S $
CALL MXDVV ( CTFR(KNT)j, (CYRZ04Iv [FR(KNlT)J )
[FRCY(OIT)j [SVT1O61 * [PT7R2321;
CALL MXDVD C,(FRCY(KNT)I, (CYV'rZaSj, ['TR(KT)J )

IF INT . 1 THEN
[03147601 :a [OBE2111 [ DINVZ14J * [P305(IUT)J;

(5S11N2611 :a JSUM12O71I (3142601;
IST2N2621 :- SUN2208J * [03172601;

[MXYN2631 :.S(UM32091 * (03142601;
IM1ZN2641 :. SUM/.2101 * (0814260!;

(BF72651 :-5(202) * [[DBE2111 * (QX)[F7FR2321.t7305(rlI)I*[14T231111;
S 3

(57172661 :a [SUM12071 * (8772651;
(ST222671 :a ISUM22081 * (3772651;$

p11772681 :- SUM432091 * 13772631;
[MXZF269j :. SUM42101 * (3772651;-

314017;
KNlT :. KNlT *1;
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ENDDO;
DIDDO;
DIDDO;

$ CALL1 UTNPXT ( , tCYVT2051, [CYR204J, [ cT216 1, [CTV1T2171 ) $
s CALL UThPRT ( , [FRXmNr), tFmmv(LN),,(cyNT369j, [CTyr3O )l $
S CALL UTMPRT ( , (CT7fr(KUT)J, [cyFV(Lr)j,[CYFR(Xnr)j, [FR(KNT)J ) $S CALL LJTMPRT ( , [FRcT(Y=r)J, IVTR(IOI)J );S

BEGIN BULK
S $

Direct Matrix input:$

OH!, CP1, RSP, R.EC, 2, 1, -DKI0H
#OKI, 1, 1, 0., 1.
DHZ, CP2, ISP, REC, 3, 1, ,,,.0H
+0HZ, 1, 1, 0., 0., 1.
0HZ, CP3, RSP, REC, 4, 1, +,,.0H
+0HZ, 1, 1, 0., 0., 0., 1.
0HZ, CPA, ISP, REC, 5, 1, +,,.0H

.0HZ, 1, 5, 1.
OH!, CPS, RSP, BEC, 6, 1, ,,, C0mi
.091!r 1, 1, 0., 0., 0.,v 0.,, .0HZ DK
.0HZ, 1, 5, 0., 1.
DHZ, CPE, RSP, REC, 7, 1, pop .0HZ
.0HZ, 1, 1. 0., 0., 0., 0.,,, *OKI
.0HZ, 1, 5, 0., 0., 1.
DM1, C??, RDP, UEC, 1, 3, ,, .0HZ
#0HZ, 1. 1, 0., f po *OKI0H
.0911, 2, 1, 0., 9 0 +,,.0H
+0KI, 3, 1, 1.
CHI, CPS, ID?, REC, 1, 3, ,,,.0H
.0HZ, 1, 1, 0.0, 1 ,,,, .0HZ
.0HZ, 2, 1, 1.0, , ,,, 0H
.0HZ, 3, 1, .0.0
0HZ, KCH, ISP, REC, 6, 1, OKI0H
.0HI. 1, It .3, .59 .66, .80.., *0KI
.0HZ, 1, 5, .84, .9,
OKI. GREAL, RSP, REC, 5, 6, ,, .0r
.0HZ, 1, 1, 133.5, 91.8, 61.4, 39.7 ... .0HZ
*0HI, 1, 5, 2A.8, , ,,.H
.OKZ, 2, 1, 370. 2355-1, 170.5, 110.3 ,,, .HZ
.091!, 2, 5, 68.9, , ,,.H
.0HZ, 3, 1, 646.1, "A-4, 297.2, 192.2 ++ D .0HZI
.0HZ, 3, 5, 120. , v I +,,.0H
.0HZ, A, 1, 0., 652.9, 436.6, 282.4 ,,, M0H
.0HZ, A, 5, 176.3, 0 , Ott +OHI
.0HZ, 5, 1, 0. , 719.9, 41.3, 311.4 ... .0HZ
.0HZ. 5, 5, 19A.4, 9 1 , .H
4o0M1 , 6, 1 , 0. , 826.4, 552.6, 357.5 ::'p .0HZ

wlH, 6, 5, 22.3.2,
DIDOATA
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D.3 FIXED AND FREE LATERAL/DIRECTIONAL FLEXIBLE STABILITY DERIVATIVE

PROGRAM DRSD

Master Deck program DRSD F-72 generates lateral-directional stability

derivatives for a fixed and free airplane.

The stability derivatives generated by this program consist of two

distinct sets. One set, referred to as fixed stability derivatives, reflects

the effects due to independent application of airload distributions and

inertia distributions on a restrained, or fixed, airplane. The second set,

referred to as free stability derivatives, reflects the effects of a

simultaneous application of airload distributions and inertia distributions on

an unrestrained, or free, balanced airplane.

Rigid and flexible derivatives are calculated for up to six altitudes per

Mach number. Appropriate flex/rigid ratios are inserted into output matrices

compatible with the automatic plot routine of program P-15. The following

sections present a description of the above procedures:

D.3.1 Fixed Lateral-Directional Stability Derivatives

The fixed stability derivatives generated by this program consist of two

distinct subsets. One subset, referred to as fixed stability derivatives,

reflects the effects of the application of asymmetric vertical and lateral

airload distributions only. The second subset, referred to as fixed inertia

derivatives, reflects the effects due to the application of inertia

distributions only.

Appropriate flexible/rigid ratios of the fixed derivatives and flexible

inertia derivatives are inserted into output matrices compatible with the

automatic plotting routine of program P-115.
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The following sections present a description of the above procedures.

D.3.1.1 Fixed Stability Derivatives Due to Airload Only

The rigid and flexible fixed stability derivatives are a function of

theoretical asymmetric vertical and lateral airload distribution only, and may

be generated for up to seven independent unit angle distributions, as listed

below:
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Figure D.3- Flow Chart for Longitudinal Free Stability Derivative Program
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ASSIGN DATABASE ?4TEN? DAVID OLD
NAPOL
ssssssssss~ssssssssssssssss$ssssssssssSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS$ssss
s s
S LOCKHEED AERONAUTICAL SYSTEMS COMPANY - BURBANK S
S WRITEN BY DAVID DINGENAN s
S s
s FREE LONGITUDINAL STABILITYS

S DER.IVATIVES PROGRAM

$ PROGRAM: VERSION 1. 1 S
s DATABASE: EDITION 1 (*P107 DATABASE )s
S S
s CREATED: MACH 18, 1988 s
s REVISED: JUNIE Z, 1988 s
$ S
S STATUS: -RUNS COMPLETELY S
S -MATRIX fZZ1IJ,(73I,(951 KATCO s
s -ALL RESULTS MATCH1 EXCELLENTLY s

S-INCLUDES INCREMENTAL STAB. OERVS. S
S-INCLUDES THE DELTA STAB DRS. $

s -RUNS FOR SEVENI MACIS AND FIM Q'S S
s -REMEMBER TO RESTORE DATABASE s
3 BEFORE RU121INGS

PROC FLEX ( [A]. [DrTI. [DYTIJ DZTI. MQ. INT )
S

MATRIX JAl, (DXTI, (DYT!, (OZTI;
S S

REAL £0. DTDA, CLAD, CUAD. AOAP. CMOAP;
REAL OICLAP, AOAT, CHOAT, CMCLAT, CR2, CLAT;

S S
REAL NO;

REAL 010, DKA. DAD, DCA. OKA;
REAL DAT. OCT. ON?, RCD, ACMI;

S s
REAL 0101. DEAl. DAO1. OCAl, OMAI;
REAL DATI. OCTX, ONT1, RCO1, RCM1;

REAL THPI. TN??, TMP3, THP4, TMP5;
REAL TNP6, TMP7, TMP8, TMP9, TNPA;

s $
INTEGER Iwr;

S S
CR2 :* 4.95333;

CALL EXREAL (,(AI.,5,CLAT);
CALL MXELOP ( AJ.,,AI,4,5,6b,EO);
CALL MIELOP ( AI,4,S,tAI.1,5,2,TMPl);

MYA :.-TMPI /CLAT;
CLAD :.TM~l *CR?;

CALL MU LO P ( rAl.,,[,AI,1,6,2.TMP2);

CNAD :w TN?? CK2;

CALL MXELOP ( AJ.3.1,(AI,1,1,4,TNP3);

ADA? to -TN?3;

CALL MLOP ( AI,1,2,(AI,1,1,J1,TMP4);
CALL ZRRAL (,(AI,3.1,TNPS);
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CALL EXREAL ( AI,3,Z,TMP6);

010AP :-TMP6 -TNP5 * TMP4;
CNCLAP :. rP4;

CALL MIELOP ((AJ.3,3,[Aj.1,3,4,TMP7);

AOAT :. -THP7;

CALL1 MXELOP ( tAI,l1,dA1,l.3,4,ThP8);
CALL EM.EAL ( ,(AI,3,3,ThP9);

CALL EXREAL ( , AI,3,4,TMPA);

CIIQAT :- TNPA - MP9 * TMPS;

CALL ?VMO? (Aj,l,ZA,fAJ,1,3,4,CMCLAT);

PRInT ( (1X *** ****4* e * *******

PRINT ( M(,'EPS-0',Iox,DEPS/DALP,LXCLAC,1OZ",OAC.)-);
PNT ( *(, 4Fl3.6),*E0,DTDA,CLAD,O(AD);

PRIMT ( "X,'ALPHA-0 A/?,4X.'CM-0 A/P',10X,'CH/CL Al!')*);
PRflI C (IX, 3?13.6),"AOAP,CMOAP,CHCLAP);
PRInT ( -(2X,'A12PHA-0 A-I' ,3X,'CM-0 A-T',10X,'C.MICL A-T')O);
PRLINT ( "(1!, 3Fl3.6),"AOAT,CMOAT,QCLAT);

IF fIM - 0 THEN

DEOI :. £;
DEAl :- TDA;
DA01 : AOAP;
OCM. . CI4OAP;
DMAI :.CMCLAP;
DATI :.AQAT;
OMi.: CQAT;
DMT1 : CNCLAr;
RCOI1~ CLAD;
RCHl : CtA.D;

CALL ?lXON& (OXTI, 1. 6, 2 )
CALL MXQNrE ( *[DTTI, 1, 6. 2 )
CALL MXONE ( * DETI, 1. 6, 2 )

CALL FICREAL " (DZTI, 1. 1, NO )
ENDIF;

IF MN - 1 TME
DEC E- £ - DEOL;
OZA =-DTA - DEAl.
DAD : AOAP - DA01;
DCA :. OOAP - DCAI;

DNA CICLA? - DMAl;
OAT :.AOAT - DAT1;
OCT :.CMOAT - OCrl;
ON? : CHCLAT - ONTI;
RCD : CLAD / RCl;
RCM CUQID / RCll;

CALL PKREAL ( (XTI, 1, S. DEC )
CALL PKP.EAL ( OXTI, 1. 6, DEA )
CALL PKREAL ( (XTI, 1, 1. OAO )
CALL ?KREAL ( (XTI, 1, 2, OCA )
CALL PKRZAL C DTI, 1. 2, DNA )
CALL PKREAL (DrrXi, 1, 3. OAT )
CALL MREAL ((OXTi, 1, 4, OCT )
CALL P1CIREAL ( OTT], 1. 4. OH? )
CALL PKREAL ( (0Th. 1, S, RCD )
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CALL PIREAL ( (OrrI, 1, 6, RCI )
CALL PIREAL (OZTJ, 1, 2, NO )

PINT (IX** fr *** *** ***** * *

PRINT ( lX,'DELTA KPS-0',1OX,'OEL (OEIDA)')*);
PRINT ( "(. 2F13.6),*DEO,DEA);
PRINT ( 'X,'DEL ALP-O A/P',&X,'OEL 01-0 A/P',IZ,'OEL 04/CL A/P));
PRINT ('(1X. 3F13.6),0A0,DCA,DMA);
PI1WT ( *(1X,'OEL ALP-0 A-T',3X,'0ZL 01-0 A-T',IOX,'DEL C4/CL A-T')');
PRINT ( -(11. 3F13.6),*'DATDCT,0MT);
PRINT ( -(I,'RAT CL-AL DOT',LOX,'RAT 04-AL DOT')-);
PRINT ( Q(1, 2F13.6),"RCD.RCI);

CROP;

ssssssssssssssssssssssssssssssssssSSsssssssssssssssssssss5ssssssssssssssSSss
RELATION CASE;

s S
INTEGER GSIZE, IMACS, NMCII, IQ, NO;
INTEGER IZIT, IFLG, IRES, ITST;

3 SCala: Declacationst
S S

REAL K1, 12, 13, K4, KS, K6, K7, KS;
REAL MACH. WIST;

S Macrix Daclarations: S
S S

MATRIX (OLDSIOOJ, (V1lOI1, (V121021, (V31031;
MIATRIX [PZT11XOAj,[PZTH21OSI, (PZ7931O61, [E1.071;
MATRIX (OTIr I, (IC?1O91, (ACT1lOJ, (lul1l;

MATRIX [O REA LI, 10(7)1, (MCIII;

MATRIX (1SIC1121, JZ1131, [DZ11'.J, IAD11UZJ;
MATRIX (AD2116I, [AD31171, (AD41lBI, JZ1191;
MATRIX (Z12OI, (OPZJIlzlf, (OPZ~1z2J, [Z123I;

S S
MATRIX 191P2011, (72P2021, f13P203I, (npZ12oAJ;
MATRIX I PZZ2TOS, (?Z3PZ061, IM12071, (VTOT2081;
MATRIX IXUIZ91, [tnTzloI, im2111 (ZCP&212I;

MATRIX JA12131, !QSCP214J, [P012131, (XSfl2161;
MATRIX (S22171, J1322181, (flNVZ19J, [ZSUN2201;
MATRIX (5212901, fXs212811, (S2ATZSZI, (15212831;

MATRIX (CLRGTZ11, (PZN2ZI, (PZIITZ31, (1112241;
MATRIX IXSDZZ51, [1D172261, (XST227J. (XRD228l;
MATRIX (OD92291, (TIIPII, [Q21;

MATRIX [ADE2311, (02321, f01NV2331, [ASIC2341;
MATRIX (PIAZ351. [P1AG2361, (OPAG2371;

MATRIX (1112381, (11112391, (V1.ED2.01, (IA12411;
MATRIX (UU242I, (72431, (G24A1, INEG24SJ;
MATRIX 112461, (12471, (L2'.81, E0IAZ249j;

MATRIX (01PZ250J, [01112511, (M2521, [142531;
MATRIX (12541, (R2551, [52561, [T2S71;
MATRIX (502581, IT0259j, (X2601. IZINVZ6lI;

MATRIX (U2621. (U02631, JXX02641, 1T2651;
MATRIX (D'ZT661, (OTU2671, [01268J, [00112693;
MATRIX (Mz2701, (PNET27IJ, (1A112721, (CL2731;
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MATRIX JDZ12741, [CFCR275(35)J, [C273(35)1;

MATRIX (VHO1I, JVM021, 1vx031, CVNO41, CVMOSI;

MATRIX [VM11J, (VHlZI, [VH131, ["M1'I, [VM11J;

MATRIX (V11, (VHI71, [V11, [VM191, (VMZOJ;
MATRIX [VM211, (vm2ZI, [VM231, [VMZ41, LVM251;
MATrRIX fVM261;

SS
MATRIX JCP91, (CP1OJ, [CP11I;
MATRIX tRTNP11,(RTHPZJ;

S S
S Initialize Scalars: $
S S

K3 :-0.0005787;

K4 : 0.0006814;
K5 :0.000001972;
K6 :.987.0;
K7 :.726.9;

SS
NMCI : 7;

KN4T :1;

ITST :-1;
NTST l. .;

S S
S rnicialize Matrices:
5 S

CALL IFP( GSIZZ ;

SS
S K0 ACH LOOP S

S S
FOR DUIC!3 - I TO NMC3 00

S S
CALL EXhEAL (*(MCII, 1, IMACB, MACH )
[OLOS1001 :- [0(IMAC3)l;

S S
PRINT ( (X,'*"* ***0 ***********

PRINT ("(lX,'*0* MACS CASE $',14),IMACS);
PRINT ( (Z.'* MACH * ',F6.3),MACH);

$ S
$ S
S Matrix Calculations: Part 1I

[V1P2011 :. [Z1141 * [V11011;
(112P20Z1 :- DZ1141 * [V121021;
IJl3P2O31 :-(OZ1141 * ('131031;$

S
[PZIP20'1 :. DZI141 * [PZTW11OAJ;
[Pz2P2051 :- [ZJ141 * jPZTH210SI;
[PZ3PZ061 ID[ZI141 * [?ZTH3106l;

S
1V1P2071 :. UIP2011 * (VM0lII * L(VZ?2021 * VM0211

CALLMXOK (* [V3P203J * [VM03JI;

CALLMXO ( [Zll, 1, 152, 2 )
CALL MXONE ( ,(Z1131, 156, 1, 2 )

$
(VTOT2O8I : (Z1131 * [V!P2071;
[XWI2091 :. XsIC1I2I * 171PZ071;

CALL MXDVD ( X'112091, (TrOT2OSI, IXTOT2iQI )

(THP1I : (K2) (Z11iJ;
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S XCPRZj :- (K4) [[XCP1091 - [THP111;

(A1213J : ((ZllI * (VNOAJJ * JIXCFR2121 * IVNOSIJ
[[ACT110I * [VM0611 + [[h.011151 * (aVl0711
((AD21161 * [V208fl * ([AD31171 * (VNO911
([AD4L11B * [VM1O11;

S -S

(QSCP2141 :- DZllAJ * (OLDS100J;
(P0I2131 :- (SCF2141 * AI213J;

I S-1 (12) IZU.31 - IXSICll21;
S s

(S22171 : (03) (21131;

IIINV2191 :- 7141J (Z1131 # (VKlZJ * 11312161;

CALL MD4ULT ( (ZI23J, (S22171, ISZ12801 )
CAL I WIULT ( [ZlZ31, (1522181, (ZSZIZSIJ )

[SZAT28ZJ 1 (S22171 - (32I2901;
[15212931 :- (122181 - [1S212811;

(zSUM22aJ :. VH13I * (S21171 0 * "4 * (132218J
IVNI51 * [SZAT2821 * (VN161 * [13212831 *
[YM171 * (S212'801 * [VK181 * (13U2811I;

S S
(CLRG221I : (X5UH2201 * (PO22151;
IFLG :- 0;
CALL FLEX ( [CLRGZ21J, (DCXI, [DCTJ, [DCZJ, IKACH, IFLC )

SS
CALL MXNULL ( , (PZNL~lI, 1, 251. 2 )
CALL KW4ULL ( ,(DPZN122I, 1, 251, 2 )
IPZfl2221 :a [(OPZN121J (VM1911 [[DflIIU2I (YH2OJJ;

(PZNI2231 :- DZ141 (7ZN2221;
[1U2241 IXEM24V191 *(P=I2231;

S S
CALL KXR20 (XSICl121, (I302251 )
CALL MXIDENT (, (Z1191, 156, 2
[XD172261 :a IXSD225J - (K6) [Z119J;

S 3
CALL TRZ4SPOSE( (131C1121, (IS-12271 )
CALL MIONE ( * 2120, 1, 156, 2 );

(XRD2281 I XS72271 - (K6) (21201;
[0DE2291 :. (SCP2141 * (DMIOSI * [31071;

S S
S Matrix Calculations: Part 2 (cyclic for each q) $
S Portion of flexible airplane stability derivative calculation S
S independent of gross weight. S

a** LOOP 3'
S S

FOR 10 m 1 TO NO DO
S $

CALL WXEAL (,(OREALJ, IMACH, 10. KI )
CALL RLCMPR K I, NTST, 6, IES )

3
rIm 113 IST TME

PRINT? ( U(I, *** 0 OUT OF BOUNDS *,S3Ul)
CALL ?WIULL ( , C275(KZIT)I, 12, 6, 2 )
CALL KXNVLL ( * CFCR273(KIT)j, 9, 6. 2 )

ELSE
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KS : 1. /Ki;

PRINT (Ul ****** * * * * * *

PRInT *(IX,* a CASE *,4.I)
PRINT ( (Z**a 1 ,F8.3), *K1);

JADE2311 a(K1) (QDE229I;
1D2321 :. ZI191 - [ADEZ311;
(01nV233j INV( 102321 );

$
(ASIC2341 a(KI) [QSCP2lAI;
(PWA351 a(Ki) (P012151;

[PIAG2361 a PIAZ351 (PZN2231;

S [DPAG237J (D1n72331 I P1AG2361;

$ Matrix Calculations: Part 3 (cyclic for each q and 9)S
S Portion of flexible airplane stability derivative calculation 5
S dependent on gross veight. S

CALL MX=2 ( V1P2011, [V12381 )
JV1E2391 a [12381 * (Ei071;
[V1ED240J : [W1=291 * [01nW2331;

(BAlZ4iI :a VIED240OJ (ASIC23'al (ZI11J;
LXXV2421 a (~iFZ261 * [ flP2011;
(F2431 [ f1V24Z1 (SAIZ411;

S
[G24&I :a [2431 * VMZI1;
IJNEG45) a- [ViP20iJ * VN221;
[J2461 a [WED2401 *[pLZlQ4JA * (VM231;

$
(K2'71 a VIEDl2401 C VXPZ011 * P114241;
(1.2481 a G24AI 1 [WEG2451 * (12461 (KZ471;
IDIAZZ491 a(01NV233I * [ASIC2341 * [Z1lil;

[01PZ501 :- [01NV2331 * [fnlpzoAj;
IDIV2511 :a (01NV2331 * [ 11PZ011;
(142521 (01AZZ491 * P114211;

([N2531 JO[0PZZ301 * (V1123J;
[P251 : (OrV2511 * (VN241;
JR2551 a (12521 * (1N2531 # JP2541;

[S2361 IINV2191 (1.L2481;
(T2371 :a ZNV2i9J (R=.55!;
ISO2581 a V14231 * (S2561;

[T02391 a V14261 * [T2571;
(12601 :a S02,81 * 202591;,
(ZUWZ26iJ INV( 112601 );

(112621 :a (XINV2i9J * JV1Z2391;
(112631 a V14251 * (112621;
(1102641 :- VM261 * [1214219I;

IT2651 :a (-l)U0263l *b [XX02641I;
IDZT2661 (XINV2611 * [T2651 * [DPAG2371;
(DTH2671 :a PZ421 * (0ZT2661;

S
IDZ2681 IVMl1221 * (1=T66I;
1007TB2691 :a IV14231 * (0ZT2661;
[14270J :a 41j * (0222661;

(1W1T2711 a DPAG2371 * [[01112511 * (14Z270l1
* (DinZ2o1 * 1002526911

D- 27



- rDIZz2'91 It IDTH2671J;

[PAIU~721 :a [PZ23.j] * [ADEZ311It [PNET271JJ
- (ASIC2341 * JZilZI 1DT26711;

ICL2731 :.(KB) ([XSUM22OJ * (PAIR27211;
IFLC :-1;

CALL rLE ( (CL2731, (OCXI, (OCTI, (OCZJ, K1, lIFLA

(OZI274I :. E1O7I (PNET27111
- Jz12OI ID(Z26811
[IXRD2281 *IDTH2671j;

CALL HXDVD (*[CL2731, [CLRG2211, ICFcR275(KNT)j
S S

CALL COLKERG-r( [RTMP11, jCCR275(KNT)I, (DCXJ, 1CP91 )
CALL C0LHERGE( [RTHP21, (RTHP11, [Dal!, [CP10J )
CALL COLHERCE( tC275(KNT)j, (RTMP2I. 1=c1, (CP1j )

S 3
CALL vJrxflT ( [CLRG2211, [CL2731, ICFCR275(KNr)j )

EMDIF;

EIIDO;

S S
END;
S $
S Vector Matrix Input: S
s S
3ezo BULK
OKI, VHO1, RDP, REC. 1, 3, *D,40H
.0HZ. 1, 1, 1.0, , ,, 0H
.0HZ, 2, 1, 0.0, .. *D,, 0H
.0HZ, 3, 1, 0.0
0HZ, VMOZ, RDP, REC. 1, 3, *OKI0H
.0HZ, 1, 1. 0.0, * , ... .0HZ
*0HZ, 2, 1, 1.0, , F ... .0HZ
.0HZ, 3, 1, 0.0
OKZ. VM03, 3DP, REC. 1, 3, ,,, .0H
.0HZ, 1, 1, 0.0, P too *OIZ
.0HZ, 2. 1, 0.0, P 0 too .0HZ
.0HZ. 3, 1, 1.0
OKZ, VHOA, RD?, REC, 1. 9, ,,, .0H
.0HZ, 1, 1, 1.0, , ,, 0H
*0HZ. 2, 1, 0.0, , ,, 0H
.0HZ, 3, 1, 0.0, * , 0HZ
.0HZ, 4, 1, 0.0, , ,, 0H
*0HZ, 5, 1, 0.0, .. p ,, 0H
4.0"Z1 6, 1, 0.0, 0 , ... .0HZ
.0HZ, 7, 1, 0.0, 9 ..,. .0HZ
*0HZ. 6, 1. 0.0, t #OKI 0H
*.0Z 9. 1, 0.0
OKZ, VHCS, 30?, REC, 1. 9, to, .0HZ
.0HI, if 1. 0.0, , .. ,,,.0H

.0HZ, 2, 1. 1.0, F 't, .0HZ
*0KI, 3, 1. 0.0, , .. ,,,.0H

.0HZ, 4, 1, 0.0, , #t *on,0H

.0HZ, 5, 1, 0.0, , ,, 0H

.0HZ, 6, 1, 0.0, *O ,,.HZ

*OKI, 7, 1. 0.0, P P off .0HZI
#OKI, 8, 1. 0.0, , t got *0KI
*OKI, 9, 1. 0.0
CHI, VHOE, RDP, REC, 1, 9, +,, K0H
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.0111, 2, 1, 0.0, , , ,, .11

.0111, 6, 1, 0.0, , , ,, 11

.011!, 4, 1, 0.0...*m
0111, . 1, 0.0, +E,1,9 ,, .01
.0111, 1, 1, 0.0, -OKI, .11

.011!, 8, 1, 0.0, lo p *, .11

.011!, 9, 1, 0.0
DN!, V1107, RDP, RC, 1, 9, to, .011
.011!, 1, 1, 0.0, t ,, .011

.011!, 9, 1, 0.0,1 to+K

.011!, 3. 1, 0.0, , .. ,,, 011

.011!, 2, 1, 0.0, p I ,*, I

.011!, 4, 1, 0.0, v p ,,, 011

.011!, 6, 1, 1.0, 1 p .. .0111

.011!, 8, 1, 0.0, f t +OKI011

.011!, 9, 1, 0.0
0111, V1110, ROF, NEC, 1, 9, to. .011!

.011!, 2, 1, 0.0, , ,, .011!

.011!, 3, 1, 0.0, p , ,, '0111

.011!, 6, 1, 0.0, , , ,, .11

.*OKI, U, 1, 0.0, , , ,, .11

.0111, 9, 1, 0.0,#tOM
0111, 7,111, 0.0, NEC 2, 1, . 011

011!. , V1, 0.0RC,2 ,,, 01

011!, VM093, RO?, REC,.6 1, 9 , .011!
.011!, 1. , 10.0 0, 0., . .01!
.0HZ, 1. 5, 0.0, 0OK0

.011!, 3. 1, 0.0, 1.,0.,0.,, 01

.0111, A, 5, 0.0, 0.0I
OH!, VM, 1 D? 0.0 , 6, 1, ... .011
.011!, 1, 1 .0,0 1. 0, 0.0, .. 01!
+OKI, 1, 1, 0.0, 0.0.. OK

044!, V10, ROP, REC, 6,1, 9 , .0HZ
.011!, 1. 1, 0.0, 0.0 0F0 1 . .011

.011!, 1, 1, 0.0, 00O~

OKI!, V11, RD?, NEC, 6, 1, ,,, 011
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.014!, 1, 1, 0.0, 0.0, 0.0, 0.0,, .014!M

.014!, 1, 5, 1.0, 0.0
Ohl, VT418, ROF, NEC, 6. 1, ,,- 014
.0141, 1, 1, 0.0, 0.0. 0.0, 0.0,, ...4011
*OKI, 1, 5, 0.0, 1.0
014!, V1419, lOP, NEC, 1, 9, ,,, 014
.014!, 1, 1, 0.0, f , .014!
.014!, 2, 1, 0.0, V , o ,,, 014
.014!, 3, 1, 0.0, 1 p p *., 014
.014!, 4, 1, 0.0, p p V,, .014
.014!, 5, 1, 0.0. f V ... .014!
.014!, 6, 1, 0.0, f f ,,, .0141
.0141, 7, 1, 0.0, , p ... .014!
.01' 8, 1, 1.0, , , ,, .14
.014!, 9, 1, 0.0
014!, V1420, RDP, NEC, 1, 9, ,,, 014
.014!, 1, 1, 0.0, p , ,, .14
.0141, 2, 1, 0.0, p. , ,, .14
.014!, 3, 1, 0.0, p ,, .014!
.0141, 4, 1, 0.0, , p Opp .0141
.0141, 5, 1, 0.0, p .. ,,, 014
.014!, 6, 1, 0.0, 1 1 op, .014!
.014!, 7, 1, 0.0, p p ,,, .014!
.014!, 8, 1, 0.0, p 0 it, .014!
.0141, 9, 1, 1.0
014!. VM21, lOP, REC, 1, 4, ... .014!
.014!, 1, 1, 1.0, p .. ,,, 014
.014!, 2. 1, 0.0, , .. ,,, 014
.014!. 3, 1, 0.0, 7 , o ,,, 014
.014!, 1., 1, 0.0
014!, VMZZ, RDP, REC, 1, 4, p,, O0MI
.014!, 1, 1, 0.0, p I Vo 014!M
.014!, 2, 1, 1.0, , , ... .0OK!
.014!, 3, 1, 0.0, p , ,, .04!
.0HZ. 4, 1, 0.0
0OK!, V1423. ROP, REC, 1, 4, ,,, 014
.0M14 1, 1, 0.0, f , ,,, 014
.0OKI. 2. 1, 0.0, , t ... .014!
.014!, 3, 1, 1.0, , .. ,,, 014
.014!, 4, 1, 0.0
OhlI, V1424, RDP, REC, 1, 4, ,,, 014
.014!, 1, 1, 0.0, 1 to ,,, 014
*014!, 2, 1, 0.0, , p * D 014
.014!, 3, 1. 0.0, , , 04!
.014!, 4, 1, 1.0
014!, ViIZS, ROP, NBC, 4, 2, ,,, 014
.014!, 1, 1, 1.0, 0.0, 0.0, 0.0,, .014!OK
.*OHL, 2, 1, 0.0, 1.0. 0.0, 0.0
0Oh!, VH26, ROP, REC, 4, 2, p,, *014!
.014!, 1, 1, 0.0, 0.0, 1.0, 0.0,,, .0141
.014!, 2, 1, 0.0, 0.0, 0.0, 1.0
Ohl!, CP9, ASP, REC, 10, 1, ,, .014
.014!, 1, 1, 0., 0., 0., 0.,,, .01!
.014!, 1, 5, 0., 0., 0., 0.,,, .014!
*OKI., 1. 9, 0., 1.
014!, CP1O, IS?, NEC, 11, 1,,,.0!
.014!, 1, 1, 0., 0., 0., 0.,,.. 0OKI
.0OK!. 1, 5. 0., 0., 0., 0.,,,. 014!
.014!, 1. 9, 0., 0., 1.
014I. CP11, ISP, NEC, 12, 1, ,,, .0Ohl
.0OK!, 1, 1, 0., 0., 0., 0.,., .014I
.014!, 1, 5, 0., 0., 0., 0.,,, *OKI!
.014!, 1, 9, 0., 0., 0., 1.
OKI!, QREL, RSF, UEC, 5, 7, ,,, .0M1
.014!, 1, 1, 133.5, 91.1, 61.4, 39.7 ... .014
.014!, 1, 5, 24.3, 9 pop .091!
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2DXI,2, 1, 370.A, 255.1. 170.5, 110.3 ,, +DMI
+DMI, 2, 5, 68.9, , , +Dmi
+DMI, 3, 1, 646.1, 444.4, 297.2, 192.2 ,,, 'DmI
+DMI, 3, 5, 120. , p,, OM I
+DMI, 4, 1, 834.3, 573.9, 383.7, 248.2 ,,, +DMI
+DMI, 4, -, 155. , ,,, .DMI
+DMI, 5, 1, 0. , 719.9, 481.3, 311.4 ,DMI
+DMI, 5, 5, 194.4, , , +DMI
+DMI, 6, 1, 0. , 826.4, 552.6, 357.5 , DMI
+DMI, 6, 5, 223.2, F ,DMI
DMI, 7, 1, 0. , 920.7, 615.7, 398.3 , D, I
+DMI, 7, 5, 248.7, , ,
DMI, MCH, RSP, REC, 7, 1, ,,, +DMI
+DMI, 1, 1 .3, .5, .66, .75,,, +DMI
+DMI, 1, 5, .84, .9, .95,
ENDDATA
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