

Flutter Clearance for Captive Carry Flight Testing of the GOLauncher 1 Inert Test Article Mounted on C-20A Aircraft

CRASTE: June 27, 2018

Natalie Spivey¹, Shun-Fat Lung² & Robert Roglin³

(¹NASA-Armstrong Flight Research Center, Edwards AFB, CA; ²Jacobs Technology, Inc., Edwards AFB, CA; ³Generation Orbit Launch Services, Inc., Atlanta, GA)

Agenda

- Presentation will discuss details of NASA Armstrong's flutter clearance airworthiness approach required to clear the GO1 Inert Test Article (GO1-ITA) for captive carry flights
- Flutter Clearance Airworthiness Approach
- UAVSAR & ITA Comparison
- ITA Finite Element Model Development
- C-20 + ITA Ground Vibration Test
- ITA Moment of Inertia Test
- Finite Element Model Update
- ITA *mini-*Ground Vibration Test Checkout
- Flutter Analysis
- Flight Instrumentation
- Captive Carry Flutter Flight Testing

- Objective: Demonstrate the aeroelastic airworthiness for flight testing of the C-20 in a captive carry configuration with GO's ITA
- Requirements: Numerous project requirements, but the main level 1 requirement that drove all the other dynamics related requirements and the flutter clearance work was...
 - C-20 aircraft with the GO1-ITA installed shall maintain a 20% margin on the flutter boundary

Four major tasks for dynamics were executed for airworthiness approach

- 1. Finite Element Model (FEM) Development
 - Multiple ITA FEMs were created with increased complexity over the project life cycle
- 2. Ground Tests
 - C-20 + ITA Ground Vibration Test (GVT) July 2017
 - ITA Moment of Inertia (MOI) Test Oct. 2017
 - ITA *mini-*GVT Checkout Nov. 14, 2017
- 3. Flutter Analyses of C-20 + ITA
 - Multiple C-20+ITA flutter analyses were performed over the project life cycle as complexity of the FEM increased and FEM was updated with GVT & later MOI data
- 4. Captive Carry Flutter Flight Testing (envelope clearance)
 - Supported flight planning, developed control room displays & supported flights

- C-20 aircraft was structurally modified in 2006 with a fuselage centerline pylon and MAU-12 ejector rack interface to serve as a test bed for a variety of flight research experiments
 - Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) pod has flown on centerline pylon for over 10 years
- Armstrong desired to use past UAVSAR pod analyses as much as possible for comparison by similarity for the ITA clearance \Rightarrow to save cost & schedule
 - ITA was 2x longer than UAVSAR pod & had significantly higher I_{YY} (pitch inertia) & I_{77} (yaw inertia)
 - UAVSAR was not a good representation of the ITA

UAVSAR & ITA Comparison

ITA Wing structure only

(no fins or

body flaps)

- Multiple ITA FEMs were created with increasing complexity over the project life cycle
 - Used existing pylon & torque box FEM from UAVSAR FEM
 - 1) ITA <u>Stick FEM</u>
- GO's ITA mass properties modeled with a lumped mass
 - 2) ITA ANSYS detailed FEM converted to ITA Nastran Equivalent Beam FEM
 - 3) ITA ANSYS detailed FEM converted to ITA Nastran Detailed FEM
 - Center body used solid elements
 - 4) ITA ANSYS detailed FEM converted to ITA Nastran Detailed FEM
 - Center body used shell elements

5) ITA ANSYS full detailed FEM converted to ITA Nastran Full Detailed FEM

- ITA FEM included wing, fins & body flaps
- Center body used shell elements

C-20+ITA GVT

- C-20 + ITA GVT conducted for July 5-13, 2017 on TN502 at Armstrong's 703 facility
- GVT required to update & validate the ITA FEM
- Objectives:
 - Primary Objectives
 - Measure primary frequencies & mode shapes of the ITA rigid body modes (pitch, roll & yaw)
 - Measure first ITA flexible bending frequencies & mode shapes
 - Secondary Objectives
 - Measure ITA frequencies & mode shapes of the control surfaces
 - Measure lower (up to 20 Hz) C-20 frequencies & mode shapes with ITA installed
 - Measure C-20 main gear door frequencies with the doors extended and the ITA installed
- Setup:
 - C-20 with empty fuel configuration & on *soft* tires
 - GO's ITA installed in *near* final flight configuration
 - Body flaps & fins were not in the final flight configuration

C-20 + ITA GVT (July 2017)

- Total of 135 external accelerometer locations measuring \approx 236 DOFs
 - C-20: fuselage, wings, winglet, engines, T-tail, landing gear & gear doors
 - ITA: center body, wings, fins & body flap
 - Centerline pylon
- Excitation used electromagnetic shaker(s) & impact hammer
- Excitation configurations:
 - Config. A: 1 Shaker, ITA aft fuselage
 - Config. B: Impact hammer, ITA aft fuselage
 - Config. C: Impact hammer, C-20 Main Landing Gear Doors
 - Config. D: 3 Shakers, C-20 wingtips & ITA aft fuselage

Excitation Locations

Config. A – ITA Shaker

CRASTE 2018

GVT Test Display Model

Config. B – ITA Impact Hammer

- Total of 35 GVT test runs were acquired
- All primary & secondary test objectives were satisfied
- ITA GVT rigid body frequencies were very close together (within ≈ 1 Hz) & much lower than UAVSAR and yaw & pitch modes switched order
 - ITA mode order & frequency \Rightarrow Roll, Yaw, Pitch
 - Two ITA roll modes measured: one clean ITA roll mode & one ITA roll mode coupled with C-20
 - UAVSAR mode order & frequency ⇒ Roll, Pitch, Yaw and much higher than ITA (not a good ITA representative)

Mode	Description
1	ITA roll
2	ITA yaw
3	ITA pitch
4	ITA right body flap coupled with slight C-20 mode
5	ITA left body flap coupled with slight C-20 mode
6	ITA wing antisymm
7	ITA fin antisymm In-Phase w/wing antisymm
8	ITA fin antisymm Out-Of-Phase w/wing antisymm
9	ITA wing symm
10	ITA vertical bending
11	ITA fin symm
12	ITA fin fwd/aft symm

C-20 + ITA GVT Modes Measured

ITA Mass Property Testing at GO

- ITA Moment of Inertia (MOI) testing conducted at GO in Oct. 2017
 - GO developed a MOI test stand based on inverted pendulum method utilizing a spring assembly
 - Measured roll, yaw & pitch inertia $(I_{XX}, I_{YY}, I_{ZZ}) \& I_{XZ}$
 - Suspected error in roll inertia, I_{XX} which also affected I_{XZ} so project used I_{XX} & I_{XZ} results from updated CAD

ITA MOI Testing

Final GO1-ITA Mass Properties at ITA CG

	Updated CAD Anchored to MOI test data	Measured from MOI test	Sim, Target Values	FEM w/ MOI results	Final Properties	Final Properties	Final Properties for Load Analysis
Weight (<u>lbm</u>)	1,206.7	1,206.8	1,200.0	1203.9	1,206.8	1,206.8	1,206.8
CG_X (in)	99.61	99.61	99.80	99.61	99.61	99.61	99.61
CG_Y (in)	-0.02	-0.21	0.00	-0.208	-0.21	-0.21	-0.21
CG_Z (in)	0.34	0.35	1.36	0.351	0.35	0.35	0.35
	Undated CAD						
	Anchored to MOI test data (Ibm-in^2)	Measured from MOI test (Ibm-in^2)	Sim, Target Values (Ibm-in^2)	FEM w/ MOI result: (Ibm-in^2)	Final Properties (Ibm-in^2)	Final Properties (lbm-ft^2)	Final Properties for Load Analysis (slug-ft^2)
İxx	Anchored to MOI test data (lbm-in^2) 204,318	Measured from MOI test (Ibm-in^2) TBD	Sim, Target Values (Ibm-in^2) 199,152	FEM w/ MOI result: (Ibm-in^2) 179,900	Final Properties (lbm-in^2) 204,318	Final Properties (lbm-ft^2) 1419	Final Properties for Load Analysis (slug-ft^2) 44
lxx lyy	Anchored to MOI test data (lbm-in^2) 204,318 5,738,382	Measured from MOI test (Ibm-in^2) TBD 5,754,859	Sim, Target Values (lbm-in^2) 199,152 5,503,680	FEM w/ MOI result: (lbm-in^2) 179,900 5,770,000	Final Properties (lbm-in^2) 204,318 5,754,859	Final Properties (lbm-ft^2) 1419 39964	Final Properties for Load Analysis (slug-ft^2) 44 1242
lxx lyy lzz	Anchored to MOI test data (lbm-in^2) 204,318 5,738,382 5,718,991	Measured from MOI test (lbm-in^2) TBD 5,754,859 5,747,653	Sim, Target Values (lbm-in^2) 199,152 5,503,680 5,486,400	FEM w/ MOI results (lbm-in^2) 179,900 5,770,000 5,740,000	Final Properties (lbm-in^2) 204,318 5,754,859 5,747,653	Final Properties (lbm-ft^2) 1419 39964 39914	Final Properties for Load Analysis (slug-ft^2) 44 1242 1241
lxx lyy lzz lxy	Anchored to MOI test data (lbm-in^2) 204,318 5,738,382 5,718,991 8,224	Measured from MOI test (lbm-in^2) TBD 5,754,859 5,747,653 0	Sim, Target Values (lbm-in^2) 199,152 5,503,680 5,486,400 -259	FEM w/ MOI result: (lbm-in^2) 179,900 5,770,000 5,740,000 -7,720	Final Properties (lbm-in^2) 204,318 5,754,859 5,747,653 8,224	Final Properties (lbm-ft^2) 1419 39964 39914 57	Final Properties for Load Analysis (slug-ft^2) 44 1242 1241 2
lxx lyy lzz lxy lxz	Anchored to MOI test data (lbm-in^2) 204,318 5,738,382 5,718,991 8,224 62,080	Measured from MOI test (lbm-in^2) TBD 5,754,859 5,747,653 0 TBD	Sim, Target Values (lbm-in^2) 199,152 5,503,680 5,486,400 -259 17,136	FEM w/ MOI results (lbm-in^2) 179,900 5,770,000 5,740,000 -7,720 71,100	Final Properties (lbm-in^2) 204,318 5,754,859 5,747,653 8,224 62,080	Final Properties (lbm-ft^2) 1419 39964 39914 57 431	Final Properties for Load Analysis (slug-ft^2) 44 1242 1241 2 1241 2 13
lxx lyy lzz lxy lxz lyz	Anchored to MOI test data (lbm-in^2) 204,318 5,738,382 5,718,991 8,224 62,080 174	Measured from MOI test (lbm-in^2) TBD 5,754,859 5,747,653 0 TBD 0	Sim, Target Values (lbm-in^2) 199,152 5,503,680 5,486,400 -259 17,136 -14	FEM w/ MOI results (lbm-in^2) 179,900 5,770,000 5,740,000 -7,720 71,100 -2,150	Final Properties (lbm-in^2) 204,318 5,754,859 5,747,653 8,224 62,080 174	Final Properties (lbm-ft^2) 1419 39964 39914 57 431 1	Final Properties for Load Analysis (slug-ft^2) 44 1242 1241 2 2 13 0

Project's Final mass properties from MOI test & CAD updated to match MOI test results

- After the GVT, the FEM model updating process began to match the GVT data and was done three different times with increased FEM complexity & FEM design variables
 - 1st time: ITA <u>Detailed Post-GVT FEM</u> manually tuned the ITA's center body composite Young's Modulus for matching ITA rigid body modes only
 - 2nd time: ITA <u>Detailed Post-GVT FEM</u> manually tuned the ITA's center body composite Young's Modulus & connection stiffness for matching ITA rigid body modes only
 - 3rd time: ITA <u>Full Detailed Post-GVT FEM (included fins & body flap) manually</u> tuned to adjust the ITA's wings, fins and body flaps stiffness & mass properties
- After MOI testing, the FEM was updated and manually tuned a final time to better match the ITA mass properties

- C-20 + ITA mini-GVT Checkout conducted for Nov. 14, 2017 on TN502 at 4801
 - Required due to many changes to the ITA since the July GVT
 - Closed several RFAs & put to rest the MOI testing issue with roll inertia, I_{xx}
- **Objectives:** To measure ITA rigid body (roll, yaw & pitch) & ITA fins and body flaps frequencies & mode shapes
- Setup:
 - C-20 with empty fuel configuration & tires fully pressurized
 - ITA installed in <u>final</u> flight configuration
 - 24 triaxial accels installed on ITA, centerline pylon and pylon to aircraft connection
- Results: All ITA rigid body & control surface frequencies increased

C-20 + ITA mini-GVT Checkout (Nov. 14, 2017)

 Mini-GVT showed all ITA rigid body & control surface frequencies increased, so the final flutter analysis using the final updated FEM was deemed conservative due to the lower analytical frequencies

C-20+ ITA Flutter Analysis

- ITA only flutter analysis was conducted & NO ITA flutter or divergence was found
- Match point flutter analysis done at 0.87M & 0.95M in ZAERO
 - Analysis done with both aircraft heavy & light fuel
- Flutter analysis assumed 0% damping more conservative
- 20% flutter margin requirement was met with ITA installed
 - Flutter margin & flutter mechanism details are Gulfstream Aerospace Corporation proprietary
 - Final ITA FEM update did not change the flutter results after GVT
- ITA slightly changed the typical C-20 flutter mechanism, but ITA roll modal participation factor was low
 - Past NASA experiments have not changed the C-20 flutter mechanism
 - External stores/pods normally have higher frequencies like UAVSAR frequencies

Flight Envelopes with 20% Flutter Margin

 $\times 10^4$

- C-20 & ITA accelerometers were telemetered from ITA to Armstrong's control room
 - ITA's instrumentation system provided signal conditioning for both C-20 & ITA accels
- After Combined System Test (CST) & prior to 1st flight some of the Safety of Test (SoT) ITA accelerometers were changed
 - ITA accels showed little amplitude response during CST due to accel type & resolution (10 mV/g, ±500g's)
 - Replaced ITA nose accels with 2 higher resolution triaxial accels, PCB T356A16 (100 mV/g, ±50 g's)
- C-20 & ITA accels were either Safety of Test (SoT) Go/No-Go or Technically Desired (TD) parameters during envelope clearance flights. All SoT accels had backups
 - C-20: 9 uniaxial accels, 6 SoT & 3 TD parameters
 - ITA: 8 triaxial accels & 12 uniaxial accels, 2 SoT & 20 TD parameters
 - Pylon: No accels

15

- Build-up approach was used for envelope expansion
 - Dynamics Maneuvers: Steady-state and Raps (not done above 250 KCAS)
- Flight accels used to assess C-20 & ITA aeroelastic characteristics
- Dynamics control room staffing \Rightarrow Required minimum of two, desired four
- Control room operations:
 - Conducted steady-state maneuver, dynamics evaluated data quality then gave clearance to next test point
 - Dynamics 2 & 3: Conducted IADS time-domain analysis to estimated frequencies & damping (note: analysis failed/could not be computed due to the TM/packet dropouts)
 - Conducted raps (pitch, roll & yaw), dynamics evaluated data quality then gave clearance to next test point
 - Dynamics 2 & 3: Conducted IADS frequency-domain analysis to estimate frequencies & damping
- After 1st flight control room operations slightly changed

- Developed control room displays using IADS to monitor real-time C-20 + ITA • aeroelastic responses for envelope expansion flights
- Dynamics had 4 displays available in the control room •

- Monitor all C-20 & ITA Safety of Test accels
- Monitor for diverging oscillations
- Clears test points
- Logs dynamics event markers

- C-20 wing & tail accels
- Switches between tabs to conduct time & frequency domain analyses to estimate frequencies & damping then log values
- ITA vertical & lateral accels
- Switches between tabs to conduct time & frequency domain analyses to estimate frequencies & damping then log values

ITA accels

Dynamics 1 (Lead): Monitored all Safety of Test accels using 1st tab "Overall & SoT"

– Maneuver shown: 30° Flight Angle Launch Abort Release maneuver

• Dynamics Observations after 1st flight

- Flt #1 evaluated modal characteristics during steady-state maneuvers only (highest Qbar≈114 psf), no raps conducted before RTB was called
- Steady-state maneuvers provided enough broadband excitation to excite both the aircraft & ITA modes of interest (very nice, unexpected)
 - Dynamics evaluated data quality then gave clearance to next test point, then conduced IADS frequency-domain analysis to estimate frequencies & damping
 - Frequencies & Damping followed expected trends
- IADS Time-domain Random Decrement (RD) + Time History Curve Fit (THCF) analysis failed/could not be computed due to the TM/packet dropouts

• Dynamics Go Forward Plan for 2nd flight

- Dynamics-continued to evaluate frequencies & damping with PSDs from steadystate maneuvers as higher dynamic pressures were cleared
 - Frequencies & damping were evaluated
 - In flight \Rightarrow Frequencies & damping followed expected trends, so dynamics eliminated rap maneuvers and ITA captive carry flight envelope was cleared

Dynamics 3rd flight

- Monitored accels during the ITA launch abort release maneuver starting with a 15° pitch attitude and the desired 30° pitch attitude

Structural Dynamics Conclusion

- ITA GVT rigid body frequencies were close together (within ≈ 1 Hz) & much lower than UAVSAR
- Mini-GVT showed an increase in the ITA rigid body & control surface frequencies for the final ITA flight configuration which was good for flutter

- Final flutter analysis using FEM updated with MOI data showed adequate flutter margin for flight testing
- A build-up approach was used for envelope expansion flights & dynamics monitored C-20 & ITA accelerometers
 - Dynamics maneuvers ended up being only steady-state test points (no raps)
- ITA captive carry flight envelope was cleared with no aeroelastic issues