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The Zimmerman–Weissenburger approach presents an innovative tool for the prediction of the onset of flutter

during a flight test. This approach computes flutter margins as the distance from any test point to that onset point by

noting that a flutter function, which relates the stability of the aeroelastic dynamics, has approximately a quadratic

dependency on dynamic pressure. The approach has assisted envelope expansion for many flight tests; however, it is

limited to the consideration of two-mode coupling for the flutter instability. This paper introduces an extension to the

Zimmerman–Weissenburger approach that accounts for multimode coupling in the flutter instability. The resulting

flutter margins are actually computed by analyzing a combinatorial set of modal pairings that may be related

through a multiplicative or norm formulation. Also, a metric of flutter confidence is formulated that associates how

well the data used to generate these flutter margins adhere to the theoretical assumptions used in the approach.

Flutter margins are computed for a modified 747 aircraft with a four-mode instability to show that the multimode

approach with associated confidence is able to accurately predict the onset of flutter.

Nomenclature

FC = flutter confidence
Ff = approximate flutter function
FM = flutter margin
F �q = flutter condition
F� = flutter function
f0, f1, f2 = coefficients of quadratic function
i, j = indices
�q = dynamic pressure
S = set of modal pairings
S = set of sets of modal pairings
� = real part of eigenvalue
� = pole of the characteristic polynomial
� = characteristic polynomial
! = imaginary part of eigenvalue

I. Introduction

F LIGHT testing for envelope expansion remains dangerous and
costly due to challenges in predicting the onset of flutter. Several

methods have been formulated for such predictions, including
extrapolating damping trends [1], an envelope function [2], the
Zimmerman–Weissenburger flutter margin [3], the flutterometer [4],
and a discrete-time autoregressive moving average model [5]. These
methods have been demonstrated on simulated data [6] and flight
tests [7] to observe the quality of the resulting predictions.

The Zimmerman–Weissenburger approach to computing flutter
margins is of particular interest to the flight-test community [8–13].
This method uses the Routh criterion to derive a flutter function,
which varies with dynamic pressure, that relates the stability of
the aeroelastic dynamics. The onset of flutter is thus predicted as the
roots of this flutter function. The traditional approach to extrapolate
damping trends can also be used to predict the onset of flutter;
however, the damping function can be highly nonlinear whereas
the Zimmerman–Weissenburger method has been shown to be a

quadratic for a classic type of flutter caused by the coupling of two
modes.

The implementation of the Zimmerman–Weissenburger approach
must recognize several limitations in the formulation. A critical issue
is the theoretical foundation that builds upon the assumption of a
two-mode coupling even though flutter for many aircraft involves
higher-order coupling of manymodes. The computation of roots that
represent the flutter margins is also built upon an assumption of
quadratic dependency even though the variation observed using
flight data is rarely a pure quadratic. As such, thesefluttermargins are
valuable but must be accepted with some level of caution.

This paper introduces an extension to the Zimmerman–
Weissenburger approach that allows flutter margins to be computed
for dynamics with higher-order coupling of more than a pair of
modes. The extension notes that the characteristic polynomial for
one system with n modes can be expressed as the product of the
characteristic polynomials for n=2 systemswith twomodes. A flutter
function is thus similarly formulated as the product of the
Zimmerman–Weissenburger formulations for each of the n=2
systems with two modes. The resulting functional retains its qua-
dratic dependency on dynamic pressure and so can compute the onset
of flutter for multiple modes that couple in the instability.

Also, a metric associated with confidence is developed for the
flutter margins. This metric relates the degree to which the flight
data have properties that satisfy the theoretical assumptions behind
the Zimmerman–Weissenburger approach. The quadratic nature of
the flutter function and the closeness to the onset of flutter are all
parameters included in the flutter confidence. The actual metric is
normalized to easily analyze the associated flutter margin.

An envelope expansion is simulated for a modified version of a
747, noted as the SOFIA, that has a flutter instability induced by
the coupling of four modes. A set of flutter margins are computed
using the traditional two-mode assumptions for the Zimmerman–
Weissenburger approach along with a four-mode formulation from
the extended approach. The accuracy of the resulting margins are
shown to correlate with the confidence metric. In this way, the
concept of a flutter margin is shown for a vehicle that violates several
assumptions of the initial Zimmerman–Weissenburger approach.

II. Two-Mode Flutter Margin

The flutter margin, as originally formulated by the Zimmerman–
Weissenburger approach [3], is an indicator of distance to flutter in
terms of dynamic pressure. The development of this method is based
on the equations of motion for a classical aeroelastic system of
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bending and torsion modes with analysis by a Routh criterion for
stability. The method was formulated for a two-mode flutter mech-
anism but has since been extended to consider one- [14] or
three-mode [15] instability or generalized multimode couplings
[16,17]; however, these methods are essentially using more terms
from the Routh criterion and, thus, may have difficulties in
implementation.

The essence of the method is to consider the characteristic
polynomial, ���; �q�, that describes the poles, �, of the continuous-
time aeroelastic system whose dynamics vary with dynamic
pressure, �q. Assume that the system is indeed a two-mode system
with two pairs of distinct poles given by �1� �q� and �2� �q� along with
their complex conjugates. Define the parameters to represent the real
and imaginary parts of these poles such that �1� �q� � �1� �q� �
|!1� �q� and �2� �q� � �2� �q� � |!2� �q�:

���; �q� � ��� �1� �q���� � ��1� �q���� � �2� �q����� ��2� �q�� (1)

� �� � �1� �q� � |!1� �q���� � �1� �q� � |!1� �q����� �2� �q�
� |!2� �q���� � �2� �q� � |!2� �q�� (2)

A flutter function, F�� �q�, is formulated by applying the Routh
stability criterion to the two-mode system. This criterion results in a
parameter that must be positive if the corresponding system is stable.
The parameter is thus written in terms of the system poles as a
function of dynamic pressure in Eq. (3):
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�
�!2

2� �q� � !2
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(3)

The flutter function is indicative of stability because any values of
dynamic pressure at which F�� �q�> 0 are guaranteed to correlate
with stable dynamics such that the roots of���; �q� haveRe���< 0 at
that value of �q; however, that correlation with stability does not
necessarily make this function useful for predicting the onset of
flutter. The concept of a flutter margin is derived by finding the
conditions at which F�� �q� � 0. Some studies have noted that this
function may be considered linear [18]; however, this paper will use
the theoretical formulation that assumes quadratic variation.

A function, Ff , is formulated to approximate F� as the quadratic
polynomial in Eq. (4):

Ff� �q� � f0 � f1 �q� f2 �q2 (4)

The coefficients ofFf� �q� are determined using data from a distinct
set of flight conditions given as f �q1; �q2; . . . ; �qng. The value of F�� �q�
is generated at each of these flight conditions and coefficients to
minimize the difference between F�� �q� and Ff� �q�, as in Eq. (5):

�f0; f1; f2� � arg min
f0;f1 ;f2

����������������������������������������������Xn
i�1
�F�� �qi� � Ff� �qi��2

s
(5)

The dynamic pressure associated with the onset of flutter
causes F�� �q� � 0 but can not be directly computed; instead, an
approximation to the onset of flutter is predicted by determining the
dynamic pressure at which Ff� �q� � 0. This onset condition is given
as F �q and results from the expression in Eq. (6):

F �q � argfFf� �q� � 0g (6)

The flutter margin, FM, is thus the difference between the
condition at which flutter will occur and the current condition. This
margin is noted in Eq. (7) using units associated with dynamic
pressure but can easily be converted to other units using the
relationships associated with a standard atmosphere:

FM � F �q � �q (7)

III. n-Mode Flutter Margin

The characteristic polynomial for a generalized system whose
instabilities result from the coupling of nmodes is defined in Eq. (9)
as ���; �q�. This polynomial can be expressed in terms of the poles,
which are complex-conjugate pairs, and associated components such
that �i� �q� � �i� �q� � |!i� �q�, where the dependency on dynamic
pressure is explicitly noted.

���; �q� �
Yn
i�1
�� � �i� �q����� ��i � �q�� (8)

���; �q� �
Yn
i�1
�� � �i� �q� � |!i� �q����� �i� �q� � |!i� �q�� (9)

The development of the flutter margin is facilitated by introducing
notation to represent pairs of modes. In this case, define S as a set of
unique pairings, �i; j�, such that every one of the nmodes is included
once and only once in the set. A commutative property is assumed
that means the pairing of �i; j� is equivalent to �j; i�, so that only
one of these pairings needs to be included in the set. For example,
a set of four modes could be grouped as two pairs with
S� f�1; 2�; �3; 4�g:

S�f�i; j�: i; j 2 �1; n�; i≠ j; j> i; i; jare used only once in the setg
(10)

The pairings are not unique, and so a set, S, is defined in Eq. (11)
to represent all possible pairings. For example, a pairing of four
modes could actually be expressed in three ways as f�1; 2�; �3; 4�g
or f�1; 3�; �2; 4�g or f�1; 4�; �2; 3�g.

S � fS: at least one pairing of �i; j� 2 S is unique to Sg (11)

The concept of pairing can be used to decompose the characteristic
polynomial. Essentially, the characteristic polynomial for n modes
can be expressed as the product of n=2 characteristic polynomials for
two modes. Define �ij in Eq. (12) as such a two-mode polynomial.

�ij��� � ��� �i���� ��i ��� � �j��� � ��j � (12)

The characteristic polynomial can now be expressed using the
pairing notation. Such an expression results from relating the
definition of ���; �q� for n modes in Eq. (9) as a product of various
�ij��; �q� for two modes in Eq. (12). For example, a system with four
modes can have�� �12�34 � �13�24 � �14�23. The resulting set of
characteristic polynomials is demonstrated in Eq. (13):

���; �q� �
� Y
�i;j�2S

�ij��; �q�: S 2 S
�

(13)

A stability analysis can be developed that exploits this set
representation for the characteristic polynomial. The fundamental
concept notes that a well-defined condition for stability is already
developed for the two-mode characteristic polynomial using the
flutter function. DefineF�ij � �q� in Eq. (14) such that�ij��; �q� is stable
if F�ij � �q�> 0:

1564 LIND

D
ow

nl
oa

de
d 

by
 T

ho
m

as
 H

er
m

an
n 

on
 F

eb
ru

ar
y 

20
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.4
03

28
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(14)

A set of scalars, ff0ij ; f1ij ; f2ijg, are defined to represent the

quadratic approximation toF�ij � �q� using the formulation in Eq. (15):

ff0ij ; f1ij ; f2ijg � arg min
f0 ;f1;f2

����������������������������������������������������������������������Xn
i�1
�F�ij� �qi� � fo � f1 �qi � f2 �q2i �2

s

(15)

A concept for a multimode flutter function can immediately
be realized by the direct multiplication of the two-mode flutter
functions. This concept suggests that, because���; �q� is a product of
a set of�ij��; �q�, then perhapsFf� �q� can be estimated bymultiplying
the coefficients of F�ij � �q� as in Eq. (16). This formulation uses each

pairing in a set, �i; j� 2 S, so that a set of flutter functions can actually
be formulated by computing Ff� �q� for each S 2 S:

Ff� �q� �

0
@ Y
�i;j�2S

f0ij

1
A�

0
@ Y
�i;j�2S

f1ij

1
A �q�

0
@ Y
�i;j�2S

f2ij

1
A �q2 (16)

A normed-pairing approach is also formulated to represent
multimode flutter margins. This approach notes that some contri-
bution fromeach pairingmust be included; however, it uses a sum-of-
squares formulation, similar in nature to a norm, to generate a
weighting for those contributions. The resulting function given in
Eq. (17) computes the value of Ff� �q�, which may be computed for
each set of modal pairings in S 2 S:

Ff� �q� �

0
@ ���������������X

i;j2S
f20ij

s 1
A�

0
@ ���������������X

i;j2S
f21ij

s 1
A �q�

0
@ ���������������X

i;j2S
f22ij

s 1
A �q2 (17)

This generalized formulation for an n-mode flutter function
encompasses the specific formulation for a two-mode flutter
function. The set, S, contains only a single pair of indices for a two-
mode system; thus, the expressions in Eq. (16) and (17) reduce to the
expression in Eq. (4) for systems with a classical two-mode
mechanism associated with the flutter instability.

This multimode formulation inherits several properties from the
underlying two-mode Zimmerman–Weissenberger formulation.
Certainly, the formulation still assumes a quadratic variation of
the flutter function with dynamic pressure, although higher-order
formulations can be considered by simply adding terms to the
minimization in Eq. (15). Also, this new formulation relies on the
same combination of modal properties in Eq. (3) and (14), which
has been shown to have greater robustness with respect to errors in
estimating damping as compared with estimating natural frequency;
however, the normed-pairing expression in Eq. (17) should enhance
the robustness due to the filtering resulting from averaging the
coefficients.

IV. Flutter Confidence

A confidence metric is an important analysis that should
accompany any prediction of a flutter margin. A concept for such a
metric can relate if that prediction is based on data that agree with
theoretical assumptions. In this case, the assumption of a quadratic
dependency on dynamic pressure used in Eq. (4) is a foundation for
the theory that can be used to determine confidence.

The first element of the confidence metric is a weighting on the
flutter margin. Essentially, the margins must be accepted with less

confidence when using data from test points that are far below
the flutter condition. Such low-speed computations do not have
sufficient data points to confidently extrapolate a flutter function.
Also, the possibility of explosive flutter must be reflected by a
reduced confidence until the testing is able to approach the flutter
condition.

The second element of the confidence metric introduces a penalty
for flutter functions that have a large degree of linearity. The ideal
prediction of flutter would result from a purely quadratic flutter
function; consequently, the linear component of Eq. (4) results
from data that have properties that are slightly varied from ideal
assumptions.

The third element of the confidencemetric is ameasure of the fit to
a quadratic function. Essentially, a least-squares minimization
generates optimal values for the coefficients in Eq. (4), although
some error in that fit exists for nonquadratic data. The norm of this
error, known as a residual, is computed using standard techniques
from numerical analysis. Obviously, a small residual indicates
the data is quadratic in nature and thus agrees with theoretical
assumptions.

A metric for flutter confidence is defined in Eq. (18) as FC, which
results from analyzing data at the set of test points given as
f �q1; �q2; . . . ; �qng. This metric has been normalized such that a value
near unity represents a flutter margin that is predicted with a high
level of confidence. An additional term is included that simply
checks the sign of the quadratic term in Eq. (4) to ensure that the
flutter function is indeed concave rather than convex.

FC� �qn� � �sgn�f2�e

�
�qn�F �q
F �q

�
e

�
� f1

�f2
1

4f2
�f0

�

	
�
1 �

��������������������������������������������������������������������������P
n
i�1�F�ij� �qi� � fo � f1 �qi � f2 �q2i �2

q
���������������������������������P

n
i�1�F�ij� �qi��2

q �
2

(18)

V. Example

A. SOFIA

The SOFIA aircraft is amodified 747 transport that accommodates
a large telescope. The inclusion of this 2.5 m reflecting telescope
required extensive alterations to the structure. The resulting vehicle
has aeroelastic properties that differ from a baseline 747 and, thus,
requires envelope expansion to determine flutter margins.

An initial study determined the computational properties asso-
ciated with flutter for the SOFIA [19]. This study indicates that
the flutter mechanism is actually a four-mode unstable coupling.
A parametric study noted that all these modes needed to be included
in the model for a flutter solution to converge. The coupling modes
are given in Table 1 and include a pair of engine modes that are quite
similar and would be difficult to distinguish when observed in flight
data.

A classical p–k analysis is performed on this model to determine
the computational predictions for the onset of flutter [19]. The modal
parameters of natural frequency and damping are presented in Fig. 1
for this model. The results indicate that mode four becomes unstable
at an airspeed of 527 knots of equivalent airspeed (KEAS) through
the coupling of all modes.

Table 1 Modes that couple forfluttermechanism

Mode Name

1 Wing antisymmetric first bending
2 Wing antisymmetric first torsion
3 Engine in-phase antisymmetric
4 Engine out-of-phase antisymmetric
5 Aft fuselage bending/torsion
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B. Flutter Margins

A set of flutter margins are computed using the original and
extended formulations of the Zimmerman-Weissenburger approach.
These margins, as shown in Fig. 2, have large variations in accuracy.
Each set of margins shows questionable accuracy at low-speed test
points, but each set ofmargins improves significantly as the test point
approaches the flutter speed.

The original formulation based on modal pairs has 10 sets of such
pairings. Of these, only the modal pair of f4–5g is consistently
accurate at all test points, as shown in Fig. 2a. The modal pair of
f3–4g never correctly predicts the flutter speed; however, the
resulting predictions are reasonably close and well behaved
throughout the flight envelope. The modal pairs of f2–3g and f2–4g
do not generate a flutter speed using data from test points less than
425 KEAS but converge toward an accurate solution, especially the
modal pair of f2–4g, once the test point reaches 475 KEAS. It seems
that inclusion of modes four and/or five are important for accurate
prediction.

The extension involving multiplicative pairs, whose margins
are shown in Fig. 2b, results in 15 combinations of modes to be
considered. The pairing of f1–5; 3–4g is the most consistently
accurate, with the pairing of f2–5; 3–4g also quite accurate at
test points above 400 KEAS. Several additional combinations are
relatively accurate and converge toward the correct prediction for
airspeeds above 450 KEAS.

The normed-pairing approach computes the flutter margins shown
in Fig. 2c for the same 15 combinations. The margins resulting from
the pairing of f2–5; 3–4g are extremely accurate using data from all
the test points, including the low-speed conditions of 350KEAS. The
pairing of f1–5; 3–4g is reasonably behaved and accurate at low
speeds but does not converge toward an accurate solution at high
speeds; conversely, many of the remaining combinations are poor at
low speeds but converge at high speeds.

C. Flutter Confidence

The confidence metric is computed for each of the flutter margins
predicted in Fig. 2 using the various approaches. Predictions that
result from data that do not violate the theoretical assumptions
received a high value of confidence. To facilitate analysis, an accu-
racymetric is also presented as the inverse of the error such that a high
value of accuracy correlates to accurate predictions.

An analysis of the original formulation for flutter margins results
in the confidence metrics and accuracy metrics shown in Fig. 3. The
confidence metric is highest for the pair of f3–4g at low speeds and
for the pair of f4–5g at high speeds; however, the accuracy is highest
for the pair of f3–5g at low speeds, then for the pair of f4–5g near 450
KEAS, and finally for the pair of f2–4g at high speeds. The pair of
f4–5g is actually the most consistent with respect to both confidence
and accuracy throughout the envelope, although the accuracy and
confidence do increase noticeably for several pairs at test points
above 425 KEAS.

The results in Fig. 4 show the confidence metrics and accuracy
metrics associated with the predictions from multiplicative pairs of
modal pairings. The coupling of f�1–5�; �3–4�g has the highest
confidence at low speeds, whereas f�2–5�; �3–4�g has the highest
confidence at high speeds; alternatively, the highest accuracy varies
between several modes without any consistency. One feature of
particular note is the increase in confidence for several couplings as
the test points increase beyond 425 KEAS along with a similar
increase in accuracy.

The approach using normed-pair couplings results in the metrics
shown in Fig. 5 associated with the flutter predictions. The coupling
of f�1–5�; �3–4�g produces the highest confidence at low speeds, but
the coupling of f�2–5�; �3–4�g produces the highest confidence at
speeds above 425 KEAS. The coupling of f�2–5�; �3–4�g also has a
consistently high accuracy, although the coupling of f�2–3�; �4–5�g
has the highest accuracy around 475 KEAS. Again, most of the
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couplings have dramatic increases in confidence as the test point
increases beyond 425 KEAS.

These results clearly show a strong correlation between the
confidence metric and the accuracy of the associated predictions for
flutter margins. The predictions with the highest confidence are not
always the most accurate; however, a prediction with a consistently
high level of confidence usually has a reasonably high level of accu-
racy. No coupling was ever consistently accurate without having a
consistently high confidence.

D. Simulated Implementation for Envelope Expansion

An implementation of these approaches to computefluttermargins
is simulated. This implementation computes a margin from each
approach at each test point; however, only the margin with the
highest value of flutter confidence is retained. In this way, a single
prediction for themost-confident flutter margin is generated from the
set of predictions that are generated by the combinations of modal
pairings for this five-mode system.

The flutter margins associated with the highest confidence from
each method are shown in Fig. 6. The margins computed using the
original two-mode formulation have reasonably high confidence
levels, although the accuracy is somewhat poor at most test points;
conversely, the four-mode formulations increase in confidence and
accuracy as the speed at each test point increases. In particular, the
confidence for each of the four-mode formulations increases rapidly
alongwith the accuracy once the test point reaches an airspeed of 425
KEAS.

This simulated implementation demonstrates that using the
formulation that accounts for multimode unstable couplings and
selecting the flutter margins associated with the highest flutter
confidence is a reasonable procedure for flight testing. The margins
generated using the original two-mode formulation have relatively
high confidence and yet low accuracy because this formulation
does not account for the influence of coupling. The new four-mode
formulation considers such couplings and so the flutter confidence is
indeedwell correlated to the accuracy of the flutter margins. As such,
choosing the flutter margins with the highest confidence allows the
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Fig. 3 Flutter margins based on original two-mode approach: a) flutter confidence, and b) accuracy.
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Fig. 4 Flutter margins based on multiplicative-pairing four-mode approach: a) flutter confidence, and b) accuracy.
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Fig. 5 Flutter margins based on normed-pairing four-mode approach: a) flutter confidence, and b) accuracy.
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sets of margins shown in Fig. 2 to be distilled to the manageable
amount of information shown in Fig. 6.

The determination to increase dynamic pressure and, thus, expand
the flight envelope can use this flutter confidence. A combination of
damping trends andfluttermarginswith associated flutter confidence
can provide additional information for deciding if another test point
can be safely visited. The actual level of flutter confidence that must
be achieved will vary with the opinions of each engineer; however,
a flutter confidence above 0.50 indicates reasonable matching
between data properties and theoretical assumptions, whereas a
flutter confidence above 0.75 indicates a strong probability that the
onset of flutter is being accurately predicted.

VI. Conclusions

The classical Zimmerman–Weissenburger approach can predict
the onset of flutter using estimates of damping and natural frequency;
however, the approach is based on upon assumptions of a two-mode
coupling for the flutter mechanism. This paper has introduced an
extension to the Zimmerman–Weissenburger approach that allows
the prediction of the onset of flutter resulting from multimode
coupling. Also, the concept of a flutter confidence is developed that
relates the extent to which the data being analyzed correlate with
properties required for accurate prediction. A set of flutter margins
and associated flutter confidences are computed for a 747 aircraft that
experiences a four-mode flutter mechanism. The results clearly show
the flutter margins with the highest confidence are able to accurately
predict the onset of this multimode unstable coupling.
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Fig. 6 Predictions: a) flutter margin, and b) associated maximum flutter confidence.
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