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FOREWORD

This document is a compilation of 19 technical papers and comments from
a panel discussion presented during a symposium on Flutter Testing Techniques
that was held at the NASA Hugh L. Dryden Flight Research Center, Edwards,
California, October 9-10, 1975. Sponsored jointly by the NASA Hugh L. Dryden
Flight Research Center and the NASA Langley Research Center in conjunction '
with the U.S. Air Force Wright Aeronautical Laboratory, the U.S. Navy Air
Systems Command, and the Aerospace Flutter and Dynamics Council, the symposium
focused on recent developments in flutter testing in flight and on the ground
and on new methods and techniques for improving flutter testing and data
analysis.

The idea for this symposium germinated during the 1974 fall meeting of
the Aerospace Flutter and Dynamics Council. There were several reasons for
holding a symposium on flutter testing; among them was the lack of a compre-
hensive forum on flutter testing since the Flight Flutter Testing Symposium
held May 15-16, 1958. 1In addition, major advances have been made in equipment
and facilities since that date. These advances have led to the creation of new
techniques for testing and analysis that have been evaluated during the develop-
ment of new aircraft from the testing of models during design to the flutter
clearance of the flight vehicles. Thus, this symposium provided an opportunity
to discuss and evaluate the state of the art for flutter testing. The sympo-
sium should also serve to encourage research in the field, resulting in further
improvements in the methods used and safer and less costly testing techniques.

On behalf of the symposium committee, I would like to thank the authors
for their fine papers, the session chairmen for their invaluable assistance,
and the panel members for sharing their experience and insight into flutter
technology.

The papers contained in this compilation have been edited only for clarity

and format. Technical contents and views expressed are the responsibility and
opinions of the individual authors.

Eldon E. Kordes
Chairman
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ON IDENTIFYING FREQUENCIES AND DAMPING IN

SUBCRITICAL FLUTTER TESTING

John C. Houbolt

Aeronautical Research Associates of Princeton, Inc.

SUMMARY

A review is given of various procedures that might be used in
evaluating system response characteristics as involved in sub-
eritical flight and wind-tunnel flutter testing of aircraft.
Emphasis is given to the means for eliminating or minimizing the
contamination effects produced by an unknown noise in the input.
Results of a newly developed procedure for identifying modal fre-
quency and damping values, and a possible way for making a de-
tailed evaluation of system parameters, are also glven.

INTRODUCTION

The purpose of this report is to give a review of various
procedures that might be used in evaluating system response
characteristics as involved in subcritical flight and wind tunnel
flutter testing of aircraft. The aim in such testing is generally
to evaluate modal damping and frequencies as a function of flight
speed. In some cases, studies aim to i1dentify the system para-
meters in greater detail, such as identifying the coefficients of
a modelled differential equation of motion.

In practical subcritical flutter testing three main problems
arise: (1) there usually is an unknown noise input, such as that
due to turbulence, and this contamination makes the system response
evaluation very difficult, uncertain, or impossible; (2) time for
a test run must often be kept short, such as less than 10 seconds
(for example, to achieve a given speed the airplane may have to be
put in a shallow dive and the interval of time over which test
conditions are reasonably constant is therefore limited), short-
ness of records in turn aggravates the noise problem; and (3) an
underlying desire 1s to be able to perform rapid analyses of the
records so that the tests may proceed almost immediately to the
next test run. The procedures presented herein represent various
attempts to cope with these problems, with emphasis being given to
means for minimizing or obviating the noise problem,



Much of the material in this report is covered in
reference 1, which contains a number of references to other work;
no other reference is therefore cited. Some new findings are
included.

RELEVANT EQUATIONS

Let the general governing differential equatlion for response
for the airplane subcritical flutter sysftem be given by

Dly = D2P (1)

where Dl and D2 are differential operators, and y 1s the

response to the forcing function P . The force P may be a
prescribed force, as obtained from a shaker, or 1t may be some
unknown quantity, such as due to atmospheric turbulence, and these
forces may be acting singly or in combination.

If the input force is a Dirac function &8(0) at t =0 ,
equation (1) defines the impulse response function h as follows

D;h = D,6(0) (2)
For a unit sinusoidal input, P = elwt , and with
y = Heiwt

equation (1) yields the frequency response function
H(w) = A(w) + iB(w) (3)

according to the equation

(Al + 1A2)(A + iB) = Nl + 1N, ()
where Al’Nl and A2,N2 are the real and imaginary parts that
are associated with fthe operators Dl and D2 . The A com-

ponent of H 1s symmetrical with respect to the frequency w
the B component is antisymmetrical.

2

The h and H functions are related by the Fourier trans-

form pair
H = fuhe‘l“"C at (5)

0



00

h = %;- Jr He 19t 4y (6)

- 00

By the superposition theorem, the sclution of equation (1),
for any general forcing function P , is given by

[0}

vy = f P(t)h(t - t)dr (7)
The Fourier transform of this equation is
Fy(w) = H(w)FP(w) (8)
from which H follows as
F
= L
H 7, (9)

Equation (8) also leads to the well-known spectral result

2

If P 1is equal to P + Q , where P is a known force, and
Q 1is an unknown "noise" force, equation (8) would appear

Fy = H(FP + FQ)

The multiplication through the complex conjugate FP leads in
turn to the spectral equation

dp, = H(bp + ¢pp) (11)

y

where ¢P is the cross spectrum between P and y , ¢P is the
spectrum of P , and ¢PQ is the cross spectrum between P and
Q . If P and Q are uncorrelated, ¢PQ = 0 , and thus

equation (11) yields the important cross-spectrum equation
H= ¥ (12)

which appears as a completely noise-free result.



Reference 1 gives some significant special solutions to
equation (1), as follows.

I:

DR =D

1Ry, = Doh(-t) (13)

where

o)

R, = f h(t)h(t + 1)dt (14)

- 00

Thus, the autocorrelation function of h 1s the response of the
system to a force input of h(-t) .

II:
= - 15)
Dly D2Q (15

where Qn is white noise. For this situation, it can be shown
that Ryn = R, ; thus, the correlation function of the response

to white noise is the sgame as the autocorrelation function of the
impulse function h .

III:

D.R.. = D,R (16)

1 Py 2

Thus, 1f the autocorrelation function of an input P 1is applied
to the system as an input force, the response is the cross-corre-
lation function between P and the response y due to P .

CLASSIFICATION OF THE SWEPT SINE FUNCTION

Forcing 1lnputs are achieved by several means, such as in-
ertial shakers or agerodynamic¢c vane exciters, explosive charges,
stick raps, and the natural turbulence of the atmosphere. Of all
these means, vane exciters or shakers are most commonly used. For
the forcing function, the swept sine wave has become a popular
choice, mainly because 1t covers a sizable frequency band in a
short period of time and because the spectral content of this
function resembles white noise. The rate of sweep and total
duration are prime variables; with some tests the sweep rate is
fast, in others the rate is quite slow. For discussion and
testing purposes, it appears desirable to make a classification of
the duration of sweep. The rate of change of frequency depends of
course on the frequency range covered and the duration required to
make the sweep. For the testing of most aircraft systems, however,

4



it appears that classification can be based mainly on duration
alone. The following classification is suggested:

1) Fast sweep - one made with a duration of about 5 to 10
seconds

2) Moderate sweep - duration of around 1 minute
3) Slow sweep - duration of around 5 minutes

Each of these sweeps has certain advantages and certain de-
ficiencies, depending on the application. The slow sweep is the
best for minimizing noise, but the drawback is long testing and
record analysis times. In many instances, though, test conditions
dictate the use of fast sweeps.

DAMPING AND FREQUENCY EVALUATION FOR THE IDEAL CARSE

Figure 1 indicates three basic ways for evaluating the
damping and frequency of a mode. It is assumed that a test has
been made, such as through application of a swept sine wave
forcing function, and that the response has been analyzed to ob-

tain H (equation (9)), which yields B and A , C° = |H|?

=4° + B2, and h (equation (6)). The situation depicted by this

figure is ideal; that i1s, there is no noise present in the input
and only a single mode is involved. The top sketch depicts the
transfer loci or admittance plot involving A and B . The
resonant frequency fo is identified at the point where there is
the greatest rate of change of arc length with respect to a change

in the frequency. The damping ratio B__ is given by the

Ber
equation shown. In the second scheme involving C2 = A2 + B2
plotted against f , the modal frequency is identified by the
location of the peak, the damping by the width at 1/2 power. In
the third scheme, involving damped unforced motion after some
excitation, frequency is identified by the periocd T , damping by
the log decrement equation.

Note, the offhand appearance of a peak (second sketch of
figure 1) may at first cause a misinterpretation of damping. In
figure 2, for example, the peaks on the right visually seem to
indicate more damping than the peaks on the left; all peaks on the
same line have the same damping, however, as measured in terms of
percent of critical damping. Likewise, the three peaks on the
right of the middle sketch have the same damping, even though the

shortest peak seems to suggest a larger damping than the tallest
peak.



Other means for deducing frequency and damping invelve curve-
fitting procedures, such as fitting the experimentally derived
frequency response function H , or fitting the impulse response
function h , and then deducing the roots from the fitted curves.

When modes are close together, or when noise is present in
the input, the techniques of figure 1 break down. It is towards
handling the situation of the presence of a number of modes and
the contamination due to an unknown noise source that the re-
mainder of this report 1s devoted.

THE USE OF EXCITERS AND TRANSDUCERS IN COMBINATION

It is o0dd that little in general has been done in using
transducers in pairs as a way of helping to solve the closely
spaced mode situation, particularly in separating the symmetrical.
and antisymmetrical modes which have frequencies close together.
Figure 3 serves as a reminder of what practices should be
followed in general. With one shaker, say on the right, the use
of only the signal from point 1 makes 1t very difficult to dis-
tinguish the symmetric mode from the antisymmetric mode. The
addition of the signals from point 1 and point 2, however,
identifies the symmetric mode and virtually eliminates the anti-
symmetric mode. The subtraction of the signals, on the other
hand, identifies the antisymmetric mode to the exclusion of the
symmetric mode. This subtraction scheme also provides for good
rejection of symmetric excitation due to noise.

For two shakers, one on the left and one on the right, use of
yp or ¥, + Yo for in-phase excitation gives symmetric mode

isolation. If the two shakers are 180° out of phase, ¥y or
1 = Y5 gives good antisymmetric mode isolation. Again, in this

case, ‘yl - Y5 also gives good rejection of symmetric excitatilon
due to noise.

The use of two pick-ups in a different chordwise position,
such as at points 3 and 4, also should be considered as a way of
helping to isolate closely spaced modes; the idea here is that
excitation of different modes appears in a different relative
sense according to the closeness to the nodal lines.

Figure 4 depicts results obtained for a three-mode system,
with two symmetric modes of 3 Hz and 10 Hz and one antisymmetric
mode of 9.8 Hz; thus, the antisymmetric mode had a frequency only
2 percent different from one of the symmetric modes. With one
shaker, a swept sine wave excitation, and only one pick-up, the
deduced results for A , B , C2 , Bvs A, and h , indicate that
only two modes are present, one around 3 Hz and one around 10 Hz.



Figure 5 applies to one-shaker excitation of the same system, but
the signals from a right and a left transducer are subtracted.
The marked change in the results is a clear indication that two
modes are present near 10 Hz. For figure 6, the situation is the
same as for figure 5, except that a strong symmetric excitation
due to noise is also present. The results, in spite of the noise,
gives a tip-off that there are two closely spaced modes around

10 Hz. Thus, with one shaker operation, the technique of adding:
the signals from two opposite transducers and of subtracting the
signals and comparing the deduced results appears as a good way
to establish whether two modes with frequencies close together -
one symmetric, one antisymmetric - are present. Two shakers,
first used symmetrically then antisymmetrically, provide an even
better way to isolate symmetric and antisymmetric modes.

INITIAL SEQUENCE OF DATA ANALYSIS

Some of the first data analysis checks that should be made
are often overlooked in a testing sequence. A review of certailn
initial steps that should be performed is thus considered worth-
while.

It is assumed that tests are being made with a swept sine
force input. The first analysis that should be made i1s to make
an attempt to identify modal frequencies roughly, to classify the
modes as to whether they are symmetrical or antisymmetrical, and
to see if the apparent modes can be identified with ground vi-
bration modes. Suggested first steps are as follows:

1) Combine signals as indicated in the previous section.

2) Scan the combined time history signals and look for
"bursts" in the response; the object here is to obtain
a rough 1dea of the modal frequencies and to establish
whether the mode is symmetric or antisymmetric and
whether primarily bending or torsion.

3) From the signals, establish raw H wvalues (equation (9))
and in turn h values (equation (6)). Clear h ,
according to the cleared h procedure discussed sub-
sequently, transform back to first improved H , and form

¢® = ]HI2 = 42 + B? . Examine the C° function to ob-
tain a second check on the modal frequencies (verify
those established by scanning the time history signals,
pick up others that may have been missed) and to obtain
a first estimation of modal damping where possible.

L) TFrom the appearance of the 02 functions, an assessment
of the noise problem can be made, and a judgment can be



rendered as to what type procedures should be used
subsequently to minimize the noise problem.

Essentially, the idea behind these steps is to do something
quite simple at first so as to obtain a quick insight as to what
the frequencies might be and to obtain a quick appraisal of fthe
severity and nature of the noise problem.

TECHNIQUES FOR MINIMIZING OR

ELIMINATING INPUT NOISE EFFECTS

Use of Both Input and Output Information

3ix schemes for coping with the problem of having noise in
the input are presented in brief fashion in this section. (See
reference 1 for more detail.) It is assumed that one or more
shakers are used to drive the system, such as by a swept sine
wave, and that an unknown excitation noise force, such as due to
buffeting or atmospheric turbulence, 1s also present.

Clearing h .- Figure 7 is typical of the results that are
obtained for H and h , by means of equations (9) and (6),
when a large input noise 1s present along with the swept sine wave
excitation. One way to eliminate much of the noise contamination
is simply to clear or erase the results for h beyond a point
where useful information no longer seems to appear, such as
point a in figure 7, and then to transform this truncated h
back to H (eq. (5)). Example results are given in figure 8.
The remarkable improvement that is obtained for the A and B
values by doing this simple expedient 1s seen.

Weighting h .- Another technigque is shown in figure 9. Here
the raw h 1s weighted by an exponential function; the weighted
result is then transformed back to give refined A and B values.
This technique, as with figure 8, reduces noise effects greatly.
With this weighting technique, a correction to the deduced values
of damping must be made to correct for the apparent damping that
is added by the weighting function used.

Use of cross correlation between input and output.-
Figure 10(a) applies to the raw results as obtained by use of
eqguation (9). By contrast, the results shown in figure 10(b) were
obtained by use of equation (12), which involves the cross
spectrum between the measured output and the known shaker force
input. This cross-correlation technique is seen to give a marked
improvement in the deduced A and B values. In general, the
longer the record, the better is the noise minimization by this
technique.

8



Peak shifting.- Figure 11 is used to describe the peak
shifting technique for eliminating noise effects. The top sketch
depicts the swept sine wave input force, the bottom sketch the
noise-contaminated response. First, select a peak such as a
Then select peak b and shift the entire record so as to make
peak b fall on peak a . Next, take peak c¢ and shift the
record to make peak ¢ fall on a . Do this for a number of
peaks in succession, and then add all the results to form a
composite input force designated by

PT = 2 Pn

The output response is handled in the same way, but using the same
shifts as used for the input; the composite response is designated

as
::zyn

Now deduce H from P; and y; , using equation (9). The

concept in this technique is that a single short record may be
used and that the shifting and adding coperations cause the
meaningful or intelligent part of the record to be enhanced,
amplified, or reinforced, while the noise level remains the same
(or the signal-to-noise ratio increases). Figure 12 gives re-
sults obtained in a particular case where only 19 shifts were
made. In the main frequency range of interest, arocund 10 Hz, it
is: seen that practically noise=free results are obtained. A
feature of the peak shifting scheme is that it is possible to
concentrate on various frequency ranges even with the use of a
single record. For example, in figure 11, two "bursts" in the
output response are noted, suggesting two frequencies of possible
concern. To concentrate on the lower frequency; .peaks in the
vicinity of peak a are shifted to fall at peak a ; to concen-
trate on the higher frequency,. peaks in the v101n1ty of peak p
are shlfted.

Ensemble averaging.- In ensemble averaging, the c¢oncept is to
deduce, by repeat runs, a number of raw estimates for the function
h , and then to add all the raw functions together. The idea is
that this averaging-type operation will "average ocut" noise
effects and leave only the meaningful signal. Example results,
involving an ensemble average of 20 raw functions, are shown in
figure 13. It is seen that virtually noise~free results are ob-
tained. This is one of the best schemes for eliminating noise,
but the main drawback is that it requires making a number of
repeat runs.

Sweep over limited frequency band.- Figure 14 is given as a
help to describe a limited sweep approach. Suppose that test
sweeps are made to cover the range of 3 Hz to 25 Hz in 10 seconds,
and consider that the analysis of the results indicate some.modal




information in the range of 10 Hz but that the results are too
noisy to be interpreted with confidence. A good way to improve
the situation is to sweep over only the frequency range of con-
cern, say, in this case, from 8 Hz to 12 Hz in the 10 seconds

of sweep time. Generally, a vast improvement in the deduced re-
sults will be noted. The disadvantage, of course, is the problem
of resetting the sweep range and of having to make another run.

Use of Output Information Only

There are at least two ways to derive system response
characteristics by consideration of the output response alone.
The procedures apply in general whether the response is due to a
forced swept excitation with an unknown noise input or whether
the response 1s due to noise excitation alone.

One procedure involves the establishment of the auto-
correlation function R of the output response. Each side or

half of this symmetric Tunetion has characteristics of the h
function. The Fourier transform of Ry is the spectrum ¢ of

the response. Examination of this spectrum gives an indication
of the frequency and damping of the system modes. Ensemble
averaging of the R functions is found to be a powerful way to

minimize noise by this approach, reference 1. Other ways to use
the Ry function and minimize noise will be indicated in the sub-

sequent section.

A second procedure for deriving system response character-
istics using response information alone is the formation of the
"randomdec" signature. The essentials of one type of construction
for this approach are shown in figure 15. It can be reasoned that
the sum of all the individual signals should form a pure signal
which resembles or has characteristics of the h function.
Damping and frequency follow from the resulting summed signal. A
main difficulty of the approach is that the summation must often
involve hundreds of functions before converged values of the sum
are achieved. Another difficulty is in identifying closely
spaced modes.

SUCCESSIVE CORRELATIONS OF CORRELATION RESULTS -

A PROMISING SOLUTION TO THE NOISE PROBLEM

Under a contract effort for AFFTC/AFSC, Edwards AFB, the
author has developed additional techniques for treating the
noise problem ~ techniques which appear remarkable and in a way
unbelievable. This section summarizes some of the results

10



obtained. The procedures involved are quite versatile and repre-
sent subsequent manipulations for improving the quality of the re-
sults that are obtained by most all the procedures described
earlier in this report. Two figures are presented first as a way
to describe the procedures involved. In figure 16, the top

sketch refers to autocorrelation of the raw h function (see

eq. (14)) that has been deduced by any of the procedures discussed
previously, or it refers to the autocorrelation R_ , obtained by

considering only the response (due to noise alone, due to a swept
sine wave alone, or due to these forcing functions acting in
combination). Note, the raw h should always be cleared as dis-
cussed in connection with figures 7 and 8. Likewise, if the
autocorrelation function is used, the "noisy" tails (the tail
portions on either side which appear to be due to noise only)
should be erased. Then the following steps are performed:

1) Make R; one-sided; call it ry

2) Form R2 , the autocorrelation of ry

3) * Form ¢2 , the Fourier transform of R2 ; look at this

function for improvement (reduction in noise content)
and for mode identification

4) Go back to R2

5) Make R, one-sided; call it r,
6) Repeat these steps as often as necessary until the
spectrum ¢n appears without distortion due to noise,

In the application of these steps, the following will occur:

1) The modes which show up with low power will first
disappear (means for recovering these modes will be
discussed subsequently).

2) The mode with the next lowest power (actually a combi-
nation of power and damping) will then disappear, and
so on, until finally only one mode remains,

3) With each iteration, the results become more and more
noise-~free.

) Sometimes, depending on modal power and damping and on
mode closeness, noise-free results will occur with
perhaps two or three modes still remaining.

5) The reading of the frequency and damping of these re-
maining modes, by the second scheme of figure 1, will be

11



an accurate indication of the frequency and damping of
these modes.

Figure 17 illustrates a companion type manipulation. 1In
this case, the correlation functions are kept in their two—51ded
form; thus, a correlation function of a correlation function is
found, in succession. In this case, the following should be
cbserved.

1) The modes with the lowest power lose more and more power
with each iteration and finally disappear.

2) The peaks become more and more spiked; damping is lost,
but frequency is more and more sharply pinpointed.

Although the theory is not given here, it should be noted
that the consequences of the two types of manipulation described
can be explained on a theoretical basis.,

Means for recovering any lost mode are as follows.. Go back
to the original spectrum type function ¢1 . In figure 16,

peak a would probably have remained to the end. But, suppose
it was desired to identify the mode inicated by b~ more pre-
cisely. In this case, simply erase the ¢l function above fre-

quency w, and below wq (in this case, erasing above Wo is

all that is required); application of the steps described earlier
will then bring out mode b 1in a pure form.

Figure 18 shows results as obtalned by the one-sided proce-
dure, using h as established from a raw or contaminated H .
The experiment involved use of an analog simuldtion of a system;
excitation was by means of a linear swept sine wave, and an un-
known random noise. In part (a), we see frequencies around 3 Hz
and 10 Hz, but the precise location and damping cannot be es-
tablished. In part (b), which represents the first iteration,
mode 1 has Jjust about disappeared, and the rest of the function
is much more noise-free. By 5 iterations, mode 2 has become very
pure; damping and frequency are nearly precisely the values set

in the analog set up (in this case, fo = 10 Hz , %—— = 0.05).
‘ ‘ er

Figure 19 gives results using the response only, and its
autocorrelation, for the same run of figure 18. The raw spectrum
indicates the two modes in the vicinity of 3 Hz and 10 Hz. By
three iterations, the 10 Hz mode 1s identified purely.

In figure 20, end results are shown for convergence to the
mode near 3 Hz. In this case, strain response rather than
acceleration response was used, and convergence went automatically
to the lowest mode (no spectrum erasing had to be performed).

12



Note, displacement or strain emphasizes the lower modes, while

acceleration response, due to the w welighting, emphasizes the
higher modes.

Figure 21 serves to show the remarkable power of the proce-~
dure to regenerate correct frequency and damping information
when severe truncations in the frequency plane are made.

Figure 21(a) is the original spectrum of h obtained for a one-
mode system and without noise in the input. The shaded areas were
then erased; after several iterations, starting with this trun-
cated spectrum, the spectrum as indicated by figure 21(b) was
found. Frequency and damping of the mode is still intact. The
experiment was repeated, truncating figure 21(a) to the severe
form shown by figure 21(c); here truncation is within the half-
power limits. After several iterations, the results shown in
figure 21(d) were obtained. Damping and frequency are still the
same as the original, even though the only information used was
that given by figure 21(c).

Figure 22 shows results that were obtained with a systenm

having frequencies of 9 and 10 Hz, both with B - 0.05 .

Ber
Figure 22(a) represents the raw or contaminated spectrum of h .
After several iterations by the one-~sided approach, the result
shown in figure 22(b) was obtained; the frequency and damping are
in excellent agreement with the model values. Figure 22(c) repre-
sents the spectrum as obtained by considering the response only.
Figure 22(d) is the result obtained by the one-sided approach
after information beyond f, wvwas erased; this erasing was done to
bring out the lower mode. The damping and freguency indicated by
figure 22(d) for this mode is in good agreement with the correct
values, even though the information contained in peak 1 was all
that was used. Figure 22(e) is the result obtained by applying
the two-sided approach to the Ry function; the tendency to form

sharp spikes is shown by this sketch.

Figure 23 applies to a system having modes fairly close
together as follows:

Mode f,Hz B/B

cr
1 8 0.05
2 9 0.05
3 10 0.02

Figure 23(a) is the raw spectrum of h . If no erasing is made,

application of the sequence of steps would result in the 10 Hz
mode coming out in pure form. Clearing beyond fa yielded the

result shown by figure 23(b) by the one-sided approach; clearing

13



before fa and beyond fb

figure 23(c). Damping and frequencies for both modes are very
good. Thus, both lower modes were extracted, in spite of the
closeness of another mode having a much lower value of damping.

yielded the result shown by

SYSTEM PARAMETER IDENTIFICATION -

POSSIBILITIES OF A NEW APPROACH

A number of different schemes have been studied as means for
obtaining a more detailed identification of system parameters.
These schemes generally fall under three categories:

1) Curve fitting of the frequency response function

2) Fitting of time plane information, such as the h
function

3) Difference-equation approaches in which the coefficients

of a difference-equation model are evaluated, from which
system roots may In fturn be extracted

Collocation procedures are sometimes used for the curve-fitting
operations but, more generally, the approaches are based on the
use of least-squares concepts. Some of the system identification
approaches are reviewed and developed in reference 1 and the
references contained therein. Thus, they will not be discussed
further herein. Instead, the notions of a possible new approach
will be outlined.

A commonly used concept in subecritical flutter testing of an
aircraft is to make a plot of damping g versus V , figure 24,
The basic idea is to establish the trend of the damping curves and
to extrapolate forward to estimate the flight speed at which the
damping vanishes (or reduces to some stipulated lower level).

This procedure is reasonably satisfactory for a mild approach to
the critical flutter speed, curve a, but 1s quite treacherous
when an explosive flutter situation is encountered, curve b, for
in this situation the damping can deteriorate very quickly with
only a small increase in speed. A way to obviate this problem 1s
sought. Reference 1 suggests one possible procedures The idea
is to derive the coefficients of the assumed governing differ-
ential equation model and to watch how these coefficients vary
with air speed. Figure 25, taken from reference 1, depicts re-
sults for the situation of a mild approach to flutter. The
nature of the extrapolation is known by analytical considerations;
for example, the coefficients a3 5 8y , 2y, and a, are known

to vary in a quadratic manner. Extrapolation to higher speeds
seems straightforward. With the extrapolated coefficilents, system
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roots for higher speeds may be evaluated, from which an estimate
of the critical flutter speed may be made. Figure 26 shows the
behavior of the coefficients for a system which has explosive
flutter characteristics. In figure 25 the variation of the coef-
ficients appears gradual, while in figure 26 two of the coef-

ficients, specifically a5 and a3 , are changing gquite markedly

with V . This rapid, but not abrupt, change in the coefficients
with speed appears as a tip-off that the situation may be of the
explosive flutter variety.

We now combine the thoughts associated with figures 25 and 26
with the procedures discussed in the previous section. Suppose that
the procedures outlined in the previous section stand the test of
more extensive study and that the procedures indeed are reliable
in establishing the frequencies and damping of the various modes
of the system under study. With the frequencies and damping
established, the governing differential equation can then be
formed. As an example, consider that three modes are identified;
roots may then be written as

Py = <§i * i)“l
Py = (gl"i)wl
Py = (;& * i>“2
by = (gg B i)wz
Py = <'§j + 1)ug
P3 = ('f‘i - 1)oy
where g, = Q(SEE)H . From these roots, the governing differ-

ential equation follows as
(p = P) = PP - p) (P =Dy)(0 - p3)(p - p3) =0
Expansion of this equation yields the characteristic equation

15



6 5 4 3 2 =
p + aSp + aup + a3p + a2p + alp + ao = 0

which in turn defines the coefficilents a, of the governing

differential equation. In accordance with figures 25 and 26, we
watch how these coefficients vary with air speed. ’

We note that curve fitting in the frequency plane or time
plane, or any other evaluation of coefficients through use of
least-squares procedures, is precluded in this suggested approach.
The success depends simply on the reliable estimation of the mode
frequency and damping values.

CONCLUDING REMARKS

Which one of the procedures outlined herein for minimizing
noise effects is the best? No specific cheice can really be made.
A systematic study is needed to try each procedure in a number of
different applications and circumstances. The choice of which is
best will undoubtedly depend on the situation encountered. Never-
theless, some comment about certain features or drawbacks of the
procedures can be made.

The procedure of clearing the impulse response function h
(rectangular truncation) should always be used, no matter how h
has been derived. The exponential weighting of the raw h 1is not
suggested in general, since the cleared h process serves just
about as well. The use of the cross-spectrum approach is consid-
ered one of the best but generally 1s more applicable for the
longer sweep times. The peak shifting technique is very attractive
but of course requires the intermediate step of shiffing and sum-
ming the record portions. Ensemble averaging is perhaps the best
but is probably precluded 1n most instances because of the neces-
sity for making a number of repeat runs. Randomdec is not advo-
cated unless a swept sine wave forming function is used (with a
noise input alone, too many terms are required in the summation
in general). Where response information only is available, the
autocorrelation approach (or equivalently, the spectrum of the
response) should, of course, be used. In this approach, care
should be taken to erase the "noisy" tails of the correlation
function, as mentioned in the body of the report. Also, in this
approach it is likely that fairly long record lengths are avail-
able; this works to the favor of the approach because, on the
whole, the longer the record the better the results (as in the
general rule for most all approaches).

As a general comment, while there 1s a science to the pro-
cedures for minimizing the noise problem, there is also an art in
their applications. Depending on the circumstances and the type

16



of analysis equipment available, little "tricks" can be inserted
at appropriate places to gain an improvement in the end results.
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Figure T7.- Frequency response and h functions obtained by
single swept sine run with noise in input.
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Figure 20.- Pure results for the low-frequency mode
obtained by successive correlations of the one-
sided correlation function.
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CURVE FITTING OF AEROELASTIC TRANSIENT
RESPONSE DATA WITH EXPONENTIAL FUNCTIONS

Robert M. Bennett and Robert N. Desmarais

NASA Langley Research Center

SUMMARY

The problem of extracting frequency, damping, amplitude, and phase infor-
mation from unforced transient response data is considered. These quantities
are obtained from the parameters determined by fitting the digitized time-
history data in a least-~squares sense with complex exponential functions. The
highlights of the method are described and the results of several test cases
are presented. The effects of noise are considered both by using analytical
examples with random noise and by estimating the standard deviation of the
parameters from maximum-likelihood theory.

INTRODUCTION

One of the fundamental tasks in flutter testing is the determination of the
frequency and damping of aeroelastic modes. Transient response or free decay
records are often used for extracting this information and may be generated
directly by a method such as the resonant dwell and cut (e.g., see vref. 1), or
indirectly through the use of autocorrelation or randomdec types of data-
reduction techniques (refs. 2 and 3). Graphical or manual techniques have often
been used to determine frequency and damping, but, with the widespread use of
automated data-reduction procedures, numerical curve-fitting techniques of com-
plex exponential functions or damped sine waves are frequently used. There may
be strong interactions between the curve-fitting method and the data-collection
process, especially in the areas of record length requirements and specifica-
tions of noise level and distortion. Several procedures are currently available
for the curve-fitting process (refs. 4 to 6). The purpose of this paper is to
describe a method that takes a somewhat different approach from the previous
works. The emphasis here is on developing a nearly real-time digital technique
that is not only .computationally fast but is also stable in the presence of
real-world noise or contamination effects. A simple direct search technique
for obtaining a least-squares fit using exponential functions has been developed
and is presented. The application to several test cases is presented and dis-
cussed. Some effects of measurement noise are evaluated by comparing test-case
results for different signal-to-noise ratios, and by developing estimates of the
standard deviations of the parameters from maximum-likelihood theory (ref. 7,
e.g.).

It should be kept in mind that although in a practical engineering sense
the use of exponential functions for the analysis of data may be satisfactory,
the aeroelastic equations are not strictly constant-coefficient ordinary
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differential equations (ref. 8) and may involve other functions. Furthermore,

the extrapolation of damping measured at subcritical conditions to flutter may

also have shortcomings. For example, a case presented in reference 9 indicated
a slope and curvature away from a flutter crossing in a plot of damping against
velocity, even up to within 2 percent of the flutter speed.

SYMBOLS
aO coefficient in curve fit, the offset or static value (eq. (1))
a, coefficient of kth cosine term in curve fit (eq. (1))
bk coefficient of kth sine term in curve fit (eq. (1))
E mean—-squared error (eq. (2))
i expected value (eq. (3))
f frequency, Hz
fi ith data point of digitized time history
i data point index, 1 to N
i parameter index
K number of modes in curve fit
k modal index, 1 to K
N number of data points in digitized time history
Rl output error covariance matrix
S parameter sensitivity matrix
t time, seconds
v velocity
Vf flutter velocity
Y curve~-fitting expression (eq. (1))
C fraction of critical damping
n damping coefficient (eq. (1))
) frequency, rad/sec
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ANALYSIS

Least~Squares Fitting Procedure

Given a free decay record containing the response of one or more vibration
modes in the form of a digitized time history, the problem is to determine the
modal damping, frequency, amplitude, and phase of each mode. A least-squares
curve fit is made with complex exponential functions (or damped sine waves) in
the form

K -nkt
Y(t) = aO + kzl e (ak cos wkt + bk sin mkt) 1)

by minimizing the squared-error difference between the output fit Y(t{) and
the input time history £f;. The error is given by

N

E = izl [¥(e,) - fi]2 (2)

Inspection of equation (1) shows that if nj, and wy are preassigned, it
is possible to compute agy, ag, and by by solving a linear least-squares prob-
lem. The nonlinear parameters 0, and wyp must be determined by some type of
search algorithm., Although this is a standard nonlinear, unconstrained optimi-
zation problem for which several methods are available for trial, for simplicity
a direct search technique is used to search the coordinate space (Ng,wy) until
the values that minimize equation (2) are obtained. At each step, values for
Nk and Wk are determined, the small linear system solved, and the error
recomputed.

The technique has been programed for the Xerox Sigma 5 digital computer.
In the program, the coordinate stepping process proceeds as follows:

(1) A starting set of coordinates np,wy (k =1, . . ., K) and a starting
step size are furnished to the program.

(2) The error E is computed at (nk,wk) and at 4K additional points
obtained by adding and subtracting the step size to or from each value of ny
and wp. If the central error E 1is less than any of the 4K peripheral
values of E, the step size is reduced by 75 percent, and the calculations are
repeated.

(3) Otherwise, the point that gave the lowest value of E 1is taken to be
the new central point, and the step size is increased by 10 percent.

(4) The procedure is terminated when either the step size has been reduced

below a preassigned threshold or a preassigned number of steps have been
executed.
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The method requires starting values for ny and wg. For a single mode the
starters can be arbitrary. However, for the multiple-mode case, the computer
time can be significantly reduced by choosing good starters. The following
procedure has been found to be a reasonable way of getting starters for
multiple-mode cases:

(a) Generate a one-mode solution using arbitrary starters.

(b) Compute the difference between the one-mode solution and the input
data, that is, the output error. Then generate a one-mode fit to the error.

(c) Use the ni and wy values from steps (a) and (b) as the starters
for the two-mode solution.

(d)‘ For higher modes, steps (b) and (c) are repeated using the difference
between the current multiple-mode solution and the original data to estimate
the next higher mode,

Although this procedure is cumbersome, it appears to be stable and, at
least for the single-mode case, surprisingly fast. It would also be very help-
ful to set the method up on an interactive basis similar to the technique
described in reference 10.

One of the schemes in the literature is referred to as Prony's method
(ref. 4). It computes Nk and wp by solving a 2K-order polynomial equation
whose coefficients are determined from a least-squares process. The solution
for the coefficients ag, ay, and by 1is then determined by a linear least-
squares procedure, as is done here. Since this method is elegant and computa-
tionally efficient, it was examined during the present study. However, it has
been the authors' experience that although Prony's method works well for perfect
data, it is so sensitive to real-world noise that it is essentially useless even
for generating starters for the search algorithm.

Uncertainty Levels of Estimated Parameters

The standard deviations of the estimated parameters, or uncertainty levels,
can be determined from maximum—~likelihood theory (ref. 7, e.g.). This type of
estimate has provided some useful results in the field of stability and control
(e.g., ref. 11). Assuming only measurement noise that is Gaussian and white,
the expected variance of the parameter vector is

N -1
g1 437 = ) sT(ti)R11 S(ti)] (3)
i=1

where S is the parameter sensitivity matrix, Ry dis the output error covari-
ance matrix, here a constant, and T denotes matrix transpose. The parameter
vector p is made up of ags ays by» N, and w,, and the sensitivity matrix
aY(ti)
is given by Sj(ti) = —ng——. These elements of the sensitivity matrix can be
3
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calculated by directly differentiating equation (1), and the variance is a
normal output parameter. Thus, for a single channel of data, as considered
here, these parameter uncertainty levels can be readily calculated after the
curve-fitting process is completed.

RESULTS AND DISCUSSION

The curve-fitting method has been applied to three sets of data as test
cases. The first case is a calculated damped sine wave with noise added with a
random~number generator. The true answer is thus known. The second case is
wind—-tunnel data from the dynamic calibration of an aircraft gust vane. The
third case is a set of data consisting of the subcritical randomdec signatures
of the response to input noise of a two-dimensional flutter model that was
implemented on an analog computer.

Analytical Test Case

The calculated data for the analytical test case with no added noise are
shown in figure 1(a) and are compared with the fitted curve, which is exact in
this case. For this case, the analytical input function was a single mode with
offset and is given by

Y(t) = 1 - e_St cos 30t

The curve fits for various levels of random noise are shown in figures 1(b)
to 1(d). The noise level is defined as the rms level of the Gaussian noise and
is given as the fraction of the maximum amplitude of the mode that is 1. The
results of the curve fit are summarized in figure 2. Only modest degradation
of the results is shown for reasonable values of noise level of up to 0.10 or
0.20. Also shown, as brackets on the points, are the standard deviations of
the parameters, or uncertainty levels, calculated from equation (3) using the
results output from the curve~fit procedure. In this case the exact modal
parameters are known and it is possible to calculate a predicted uncertainty
level from the exact parameters by assuming that the output error covariance is
the value for the noise only. These predicted levels are shown as dashed lines.
Both results give a good indication of the actual scatter, and thus the confi-
dence level, with noise level. It might be noted that the effect of noise is
larger on the coefficients aj and by than on the damping, frequency, or
offset. Thus, one must be more cautious in using the magnitude and phase
information from such procedures.

These results amply demonstrate that the algorithm works well in the pres-
ence of random measurement noise. It has been the authors' experience, however,
that a test case of this type does not indicate that a method will be satisfac-
tory in practice. The noise here is random with zero mean, whereas in the real
world, the effects of frequency drift, meandering means, and harmonic distortion
are more severe,
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Gust Vane Data

The two cases considered are from a wind-tunnel dynamic calibration of a
light balsa vane used to sense atmospheric turbulence on an aircraft. The vane
was mechanically displaced and released repetitively. Since the response to
tunnel turbulence was a sizable fraction of the total response and the release
conditions somewhat i1l defined, the transients were ensemble averaged. The
background noise was thus diminished, but a pure step response was not obtained.
The two cases considered are called the low-damping case and the high~damping
case (although the low-damping case is relatively highly damped by structural
standards). The data for the low-damping case and the one-mode fit are shown
in figure 3(a). The fit is reasonable, but there is some systematic deviation,
particularly near the rightmost portion of the data. A two-mode fit was com-
puted and, as shown in figure 3(b), gives a significantly improved result. The
results of the one- and two-mode fits are summarized as follows:

One-mode fit

Y(t) = 0.0444

—e'39'9t(0.239 cos 140t - 0.452 sin 140t)

Two—mode fit

Y(t) = 0.0450
—e‘35'1t(o.137 cos 133t - 0.372 sin 133t)

—e"34'6t(o.086 cos 190t - 0.026 sin 190t)

As compared with the one-mode results, the two-mode data indicate that the off-
set is nearly the same, the frequency of the first mode is reduced by about

5 percent, and the damping is reduced by about 10 percent, along with sizable
changes in the coefficients of the first mode. The physical significance of the
second mode is not clear in this case; it may be low-frequency noise that has
not completely averaged out in the ensembling process. However, it is thought
that the results for the first or principal mode obtained in the two-mode fit
are more representative of the system response.

The results for the highly damped case are presented in figures 4(a) and
4(b). The results and trends are similar to those of the low-damping case.
This case is a particularly difficult one to analyze, as it has high damping, a
large offset, and a low-frequency distortion. The algorithm of this paper
appears to give a reasonable result for this case.

Randomdec-Analog Flutter Data
Some subcritical randomdec signatures of the response of a two-dimensional,
two—degree-of-freedom flutter model to input noise on an analog computer are

also treated. The mathematical model and test setup were the same as those of
the investigation of reference 9. The signatures and a one-mode curve fit are

48



shown in figures 5(a) to 5(d) as the velocity approaches flutter. As flutter

is approached the signatures show little scatter or distortion, in contrast to
the lower velocities. The signatures contain two modes, but the lower frequency
mode is apparently unconverged in the randomdec procedure and could not be ade-
quately resolved by the curve-fit procedure. The results for the flutter mode
are compared with the exact solution in figure 6. The agreement is quite good
in both frequency and damping, with the flutter speed underpredicted by less
than 1 percent, which is within the expected accuracy of the analog setup.

Thus, the curve~fit procedure appears to be a practical means of analyzing
randomdec signatures.

CONCLUDING REMARKS

A least-squares curve-fitting procedure to extract frequency, damping,
amplitude, and phase information from free decay records has been presented.
The method appears to be stable and to give reasonable results in the presence
of noise. Some of the effects of noise on the parameter estimates can be
assessed by calculating the uncertainty levels from maximum—-likelihood theory.
The method is relatively fast for a one-mode fit, generally requiring 5 to
15 seconds on a Xerox Sigma 5 computer (which would be about 1 second on a
CDC 6600 computer) and thus is a candidate for a real-time method. The two-
mode solution, however, requires 2 to 5 minutes, and a three-mode solution is
very long to calculate. Further work is needed to accelerate the multiple-mode
calculations. It would also be very helpful to set the method up on an inter—
active basis. Currently, the only multiple-channel capability is to fit each
channel of data separately, determine a weighted mean for frequency and damping,
and then recalculate the coefficients for each channel. This procedure may be
satisfactory for engineering purposes, but the development to a true multiple-
channel method may be desirable.
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DETERMINATION OF SUBCRITICAIL DAMPING BY
MOVING-BLOCK/RANDOMDEC APPLICATIONS
Charles E. Hammond
Langley Directorate, U.S. Army Air Mobility R&D Laboratory
Robert V. Doggett, Jr.

NASA Langley Research Center

SUMMARY

Two techniques are described which allow the determination of subcritical
dampings and frequencies during aeroelastic testing of flight vehicles. The
two techniques are the moving-block technique and the randomdec technique. The
moving-block technique is shown to have the advantage of being able to provide
damping and frequency information for each mode which might be present in a
signal trace, but it has the disadvantage of requiring that the structure be
excited transiently. The randomdec technique requires only random turbulence
for excitation, but the randomdec signature is difficult to analyze when more
than one mode is present. It is shown that by using the moving-block technique
to analyze the randomdec signatures the best features of both methods are gained.
Examples are presented illustrating the direct application of the moving-block
method to model helicopter rotor testing and application of the combined moving-
block/randomdec method to flutter studies of two fixed-wing models.

INTRODUCTION

Determination of subcritical damping during flutter tests both in wind
tunnels and in flight is a subject which is currently receiving widespread
attention. Since flutter is a potentially dangerous aercelastic instability
which can lead to catastrophic structural failure, it is desirable to obtain
the flutter boundary without actually experiencing flutter.  Traditiomally,
wind-tunnel flutter model test procedures have been to treat flutter as an
event that either occurs or does not occur. The models are actually taken to
the flutter condition, and by varying tunnel parameters (Mach number and
dynamic pressure), sufficient flutter points are obtained to define the flutter
boundary. This practice has in the past led to the total destruction of some
very expensive models. Although the need for subcritical damping data has long
been recognized, obtaining these data is not an easy task, and subcritical
damping techniques have not been routinely used in the past. A large part of
the difficulty has been associated with the inability to reduce, analyze, and
display model damping data in near real time so that the damping can be continu-
ously monitored during approach to the flutter boundary. The installation of
the computer controlled data acquisition system has now made it practical to
apply subcritical damping methods to flutter tests in the Langley transonic
dynamics tunnel.
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This paper describes two techniques which are currently being used in
wind-tunnel aeroelastic model tests of both helicopter rotors and fixed wings.
The two techniques to bedescribed are the so-~called moving-block technique and
the randomdec technique. Although neither of the techniques is new, it is felt
that the combined application of the two analyses is unique, particularly with
respect to fixed-wing flutter testing.

SYMBOLS
A amplitude of transient response
F(w) Fourier transform at frequency w
i imaginary number, Q:i
k an integer in equation (14)
N an integer in equation (10); total number of data samples in
equation (13)
N number of data samples in block used for frequency optimization
T period of boxcar function
t time
At time between discrete data samples
u(t) boxcar function, equation (2)
y(t) transient response of single-degree-of-freedom system, equation (1)
z damping ratio
T start time of boxcar function
¢ phase angle
W damped natural frequency
W undamped natural frequency

MOVING-BLOCK TECHNIQUE

The moving-block technique was originally developed by the Lockheed-
California Company, and its use in rotary wing aeroelastic stability testing
has been reported in references 1 and 2. A formulation of this technique has
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been developed at the Langley Research Center, and it has been implemented on
the recently installed data acquisition system for the Langley transonic
dynamics tunnel.

The moving-~block technique is a method which allows the determination of-
modal dampings and frequencies from a response signal of a structure which has
been excited transiently. The transient excitation may consist of a sinusoidal
input which has been abruptly terminated or it may be an impulsive excitation.
In any event, if the damping and frequency of a particular mode are desired, it
is necessary that this mode be excited by the type of excitation chosen. This
requirement that the structure be excited and then be allowed to decay freely
is one of the disadvantages of the method, but for many applications it is not
an overly burdensome requirement. This is particularly true in helicopter
applications where the existing control system can be used to supply the
necessary excitation of the rotor system.

In order to illustrate how the moving-block technique works, consider the
transient response of a single~degree-of-freedom system which may be written as

—Cw t
y(t) = Ae sin(wt + ¢) (L)

where

2 _ 2. 2
W -—wn(l z7)

Now compute the finite Fourier transform of this response at the damped fre-
quency  from time T to time T + T. This is the same as multiplying the
response by the boxcar function

0 for t<

u(t) =<1 for 1< t<T+T/ (2)

O for t>1+ 7T
as shown in figure 1 and computing the infinite transform. The significance of
the starting time T 1is discussed subsequently. The finite transform is given

by

-tw_t

Flw) = }'?T Ae T sin(ut + ¢) e WF

dt (3

This integration may be performed in closed form and the result is

F(w) =

A —(iw+gmn)T ' .
cw (cw  + 12) (e [ + gw ) sinT + ¢) +w cos(WT + ¢)]

- (iwtgw_) (T+T)
- a n {(iw + gwn) sinfw(t + T) + ¢] + w cosw(t + T) + ¢]g
(4)
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After a considerable amount of algebraic manipulation the amplitude of this
transform may be written as

§

[F(w)| =

Ae-ng

{1 - 267097 4 72897 (1 = 7%y p gin 20wt + )

- e—CwT(l - e—EMT)g sin 2[w(T + T) + ¢]}l/2 (5)

In obtaining this expression, it has been assumed that 7 << 1 and thus
Wp » w. Also, terms involving CZ have been deleted as being small compared
to unity. It is convenient to write this expression in the form

_ 1/2
[F@] = 5 & [1————’“ f;:@] (6)
z
where
f(x) = - 26 CWT 4 e—zch + (1 - e_;wT)c sin 2(wt + ¢)
— T - Ty gin 2[w(T + T) + ] %

Taking the natural logarithm of equation (6) yields

tn|F)| = - ot + %o (%-) + 1 9n [%;t_ﬁiéé] (8)
0 2 CZ
The last term in equation (8) méy be expanded in a Maclaurin series to yield
n|F(w)| = - cwt + &n (é—>
2w
+ % Ln (kwT)z + (wT) {sin 2wt + ¢) - sin 2[w(Tt + T) + ¢]})
_ g T 20T + sin 2(wt + ¢) = 3 sin 2[w(T + T) + ¢] 9)
5 Y WT + sin 2(0T + ¢) = sin 2[w(T + T) + O]

From this expression it can be seen that if a plot of 2n|F(m)] versus T
is made, the resulting curve will be the superposition of a straight line with
slope ~zZw and an oscillatory component which oscillates about the straight
line with a frequency of 2w. This fact can be more easily seen if it is
assumed that T is-an integral multiple of the basic period of oscillation.
That is,

T = — N=1, 2, 3, . . .) (10)
With this assumption, equation (9) becomes
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n|F(w)| = - zwtr + % g sin 2(wt + ¢) + C (11)
where € 1s a constant given by
- A ~ GuI
C = fn (m) + inr) - & (12)

Thus if the boxcar shown in figure 1 is started at T = 0 and successive
discrete transforms at frequency  are performed for increasing values of T,
a plot can be made from which the damping can be determined. It is precisely
this process which is used in the moving-block analysis.

This analytical background has, for simplicity, dealt with the response of
a single-degree~of-freedom system. The basic strong point of the moving-block
method is, however, its ability to provide frequency and damping information
for each of the modes in a multimode response signal. If a multimode response
is thought of in terms of a Fourier series representation, then the response is
simply a summation of several single-degree-of-freedom responses, and the
Fourier transform effectively provides the means for isolating the various
components of the response.

IMPLEMENTATION OF MOVING-BLOCK TECHNIQUE

The moving—-block technique described previously has been implemented on
the data acquisition system of the Langley transonic dynamics tunnel. The data
system consists of a Xerox Sigma 5 digital computer coupled with a 60~channel
analog front end. The system is equipped with a graphics display unit which
allows data reduction to be accomplished with as much interaction by the engi-
neer as desired. A more detailed description of the data system is presented
in reference 3. '

The moving-block technique is set up as a completely interactive program.
The sequence of events which are incorporated in the analysis is depicted in
figure 2. The first step in the process is to obtain the signal to be analyzed.
This signal may be digitized directly from the data stream coming from the model
which has been transiently excited, or the signal may be a randomdec signature
which is passed from the randomdec analysis to be described subsequently in this
paper.

Once the signal to be analyzed is obtained, a fast Fourier transform (FFT)
of the signal is computed. This transform is solely for the purpose of provid-
ing the analyst with information relative to the frequency content of the sig-
nal. The transform also allows the analyst to determine whether or not the
mode of interest has been excited. From the FFT results the analyst selects
the frequency for the mode to be analyzed. The peak in the FFT results may not
correspond to the actual frequency in the signal because of the fact that the
frequency resolution available from the FFT is dependent upon both digital
sampling rate and number of points in the sample as given by
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Af = = (13)

Thus a scheme to optimize the selected frequency has been included in the
analysis. In accomplishing this optimization a segment, or block, of the input
transient response signal is first selected. Generally, the block length is
chosen to be one-half the total number of points in the data sample. Let the
number of samples in the block be denoted by N. The algorithm used by FFT
analyses for determining the frequencies at which the transform is computed is

Iw

(k=0,1, 2, . . .) (14)

=21

t

By using the frequency selected from the original FFT results, the sampling
rate,_and N, a value for k can be calculated. Then, if k is held constant
and N is changed by one data point, a small change in the computed frequency
occurs. The optimization then proceeds as follows. Compute the discrete trans
form at the following three frequencies:

~
fﬁ'_l = ...___._.k__._._.._..
(N - 1) At
fr o= K y s
N At
£ = —:——E;————
N+1 (N + 1) At

J

Note that the block size is different for each computation. By observing the
amplitude of the transform from these three calculations, one can determine how
to continue changing the block size to cause the magnitude of the transform to
reach a peak. When this peak is reached, the frequency corresponding to that
peak is the optimized frequency at which the damping calculations are made.

The damping calculation is made by using the optimized frequency and the
block size which resulted in this frequency and by computing -successive discrete
Fourier transforms as the block is moved down the data record. The block is
first positioned at the beginning of the record, the transform is computed, and
the logarithm of the transform amplitude is plotted. The block is then moved
down the data record one data sample and this process repeated. When the block
reaches the end of the data record a plot equivalent to a plot of equation (9)
has been made. The damping in the mode being analyzed is obtained from the
slope of a linear least-squares fit to this curve.
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HELICOPTER TRANSIENT RESPONSE APPLICATION

-

The moving-block technique was originally implemented at Langley to facili-
tate subcritical aeroelastic testing of model helicopter rotors in the Langley
transonic dynamics tunnel. An in-house model, termed the generalized rotor
aeroelastic model (GRAM), is used to test rotors up to 3.4 m (11 ft) in diam-
eter. The model is shown in the left part of figure 3 with the Bell Helicopter
Company flex-hinge rotor installed. The right part of figure 3 shows the
hydraulic control system of the model which is used both for quasi-static con-
trol of the rotor and for transient excitation of the rotor for subcritical
damping measurements.

In conducting the rotor tests, the rotor is first trimmed to the desired
operating condition, and then the excitation is started either manually or
under computer control. The type of excitation, amplitude, frequency, and
number of cycles of excitation are options which are manually selectable by the
engineer. The computer is programed to begin digitizing data from the channel
of interest two or three cycles before the termination of the excitation. The
digitized data are then plotted on the graphics display unit (GDU) so that the
analyst may select the point on the signal trace where he would like to start.
the damping analysis. It has been found desirable to have the analyst select
the starting point rather than have the computer determine when the excitation
terminates and then begin digitizing data because of certain time lags inherent
in the system. The analyst also generally feels more confident about the data
if he can see some of the forced response in the trace just prior to termination
of the excitation.

The Bell Helicopter Company flex-hinge rotor was recently tested on the
GRAM. One of the objectives of this test was to examine the amount of in-plane
damping available in the rotor system. Figure 4 is a typical GDU display from
this particular test. The data trace in the lower left . quadrant of this figure
was taken from one of the blade chordwise bending gages. Note that this plot
begins at the starting point previously selected by the analyst. The plot in
the upper left quadrant of the figure is the FFT amplitude plotted out to the
Nyquist frequency. Since the frequency of interest may be obscured on this plot,
the analyst is provided the capability of interactively changing the frequency
range over which the FFT amplitude is plotted. The plot in the lower right
quadrant of figure 4 is an expanded scale version of the plot in the upper left
quadrant. The frequency of interest is selected by the analyst from either of
the FFT plots by use of a light gun. This selected frequency is optimized
automatically, and the damping plot is displayed in the upper right quadrant.
After the analyst selects the start and stop times for the least-squares fit,
the least-squares calculations are made, and the computed frequency and damping
are displayed at the bottom of the GDU screen. Options are provided for chang-
ing the block size and repeating the analysis at the same frequency and for
selecting a new frequency for which the modal damping is desired.

A word of explanation is in order concerning the damping plot in the upper

right quadrant of figure 4. The plot is seen to have a portion which approxi-
mates a straight line and a later portion which deviates considerably from the
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straight line. This deviation from the straight line occurs when the mode
being analyzed damps out rapidly. Once the mode of interest damps out, the
calculations are influenced by other modes in the signal as well as by noise.
This behavior of the damping plot illustrates the desirability of an interactive
formulation of this technique.

RANDOMDEC TECHNIQUE

Since a detailed description of the randomdec method is presented in
reference 4, only the highlights of the method are described. Simply stated,
the randomdec technique provides a means for obtaining damping and frequency
information by performing an ensemble average of segments of a random time
history of the structural response. The underlying assumption in the method is
that the structural response is the linear superposition of the responses to a
step force (initial displacement), an impulsive force (initial velocity), and a
random force. 1If the segments used in the ensemble average are chosen so that
the initial displacement is the same for all segments and the initial veloci-
ties of alternmating segments have opposite signs, then the resulting ensemble
average, called the randomdec signature, represents the response to a step
force, since the averages of the impulse force and random force components
approach zero as the number of segments used in the ensemble average increases.

For a single-degree-of~freedom system the damping and frequency can be
determined directly from the randomdec signature. The dampings and frequencies
of the individual modes of a multi-degree~of-freedom system can be determined
either by bandpass filtering the response signal before determining the random=-
dec signature so that only one mode is present or by further processing of the
signature to separate it into its individual frequency components. For example,
in the latter case a curve fitting procedure has been presented in reference 5
for determining the individual frequency components of a randomdec signature
that contains the responses of several modes.

The randomdec method is very attractive for use in flutter investigations,
since no discrete forced excitation is required. The almost always present
wind-tunnel turbulence in the case of model tests and atmospheric turbulence in
the case of flight tests are sufficient to provide the needed random excitation.
Some results from wind-tunnel model studies are presented in reference 6, and
some results from a flight flutter clearance study are presented in reference 7.

One of the disadvantages of the randomdec method to date has been the
difficulty in determining the damping when more than one mode is present in the
randomdec signature. The great advantage of the moving-block technique is, on
the other hand, the ability to analyze signals which may have several modes
present and to allow the analyst to determine the damping present in each of
the modes. It seemed only natural, then, to use the moving-block technique to
analyze randomdec signatures. That is, the randomdec signature is used as the
transient response input to the moving-block analysis, Some results of appli-
cations of the combined moving-block/randomdec method are discussed in the
subsequent section.
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MOV ING-BLOCK/RANDOMDEC FLUTTER APPLICATIONS

The combined moving-block/randomdec method has been used during several
wind-tunnel model studies in the Langley transonic dynamics tunnel. Some
results from two of these applications are described in the following
discussion.

The first application to be described was in the testing of a high—aspect-
ratio subsonic-~transport wing model. A photograph of this cantilever-mounted
model is shown in figure 5. The flutter boundary for this model was determined
during testing and also is shown in figure 5. Some subcritical damping data
were obtained as the flutter boundary was approached along the path indicated
by the dashed line in the figure. The conditions at which damping and frequency
were evaluated are indicated by the circle symbols on the figure. At these six
conditions the wind-~tunnel conditions were held constant, and a randomdec sig-
nature was determined and then processed through the moving-block analysis to
determine the damping and frequency. One of the randomdec signatures from this
test and the results of applying the moving~block analysis to this signature
are shown in figure 6. The resulting subcritical damping results are presented
in figure 7 in the form of the wvariation of damping in the critical flutter
mode with Mach number and dynamic pressure. It was necessary to plot the damp-
ing versus both of these parameters since both were being varied as the flutter
boundary was approached. The actual flutter point is indicated by the square
symbols on the figure. Note that the flutter point predicted by extrapolating
the subcritical damping results is very close to the actual flutter condition.

The second application described was to a low-aspect-ratio arrow-wing
model. A photograph of this model is presented in figure 8. Some subcritical
damping and frequency data were obtained for this model by using the moving-
block/randomdec method as the flutter boundary was approached in a manner simi-
lar to that described for the transport-type wing model. Subcritical damping
data for the arrow-wing model are presented in figure 9 ‘in the form of the
variations of damping ratio with dynamic pressure and Mach number. The meas-
ured flutter condition is indicated by the square symbols on the figure. Here
again an extrapolation of the subcritical damping results predicts a flutter
condition that is very close to that determined experimentally.

As the results presented show, the flutter conditions for both the
subsonic~transport wing and arrow-wing models were predicted with sufficient
accuracy by extrapolating moving-block/randomdec subcritical damping data.
However, it should be pointed out that the method is still in a developmental
stage and has not yet replaced the traditional method of actually determining
flutter points in defining the flutter boundary during model tests in the
Langley transonic dynamics tunnel.
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CONCLUDING REMARKS

Two techniques have been discussed for determining damping and frequency
information during subcritical aeroelastic testing of fixed-wing aircraft and
helicopters. The moving-block technique has the advantage of being able to
determine the damping and frequency for each of the modes which might be present
in a response signal, but it has the disadvantage of requiring that the struc-
ture be excited transiently. This disadvantage has not presented any particular
difficulties in the helicopter rotor tests conducted to date, however, since the
helicopter control system may be used to provide the necessary excitation. In
a fixed-wing test the requirement for transient excitation could be rather
troublesome. The randomdec technique has the distinct advantage of providing
frequency and damping information with random turbulence being the only excita-
tion required. The disadvantage of the randomdec method is that frequency and
damping data for a particular mode are difficult to obtain if the randomdec
signature is made up of more than one mode. In order to capitalize on the
strong points of .each of these powerful methods, the two techniques have been
used in series. That is, the moving-block technique has been used to analyze
the randomdec signatures. The two examples presented to illustrate the appli-
cation of this combined procedure indicate that the procedure can, in fact, be
used for subcritical flutter testing. The method is, however, still in a
developmental stage and it has not yet replaced the traditional method of
actually determining flutter points in defining the flutter boundary during
model tests in the Langley transonic dynamics tunnel.
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Figure 8.~ Photograph of arrow-wing model mounted in wind tunnel.
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TRANSIENT EXCITATION AND DATA PROCESSING
TECHNIQUES EMPLOYING THE FAST FOURIER

TRANSFORM FOR AEROELASTIC TESTING

W. P. Jennings, N.‘ L. Olsen, and M. J. Walter

Boeing Commercial Airplane Company
SUMMARY

This paper presents the development of testing techniques useful in airplane ground
resonance testing, wind tunnel aeroelastic model testing, and airplane flight flutter testing.
Included is the consideration of impulsive excitation, steady-state sinusoidal excitation, and
random and pseudorandom excitation. Reasons for the selection of fast sine sweeps for
transient excitation are given.

The use of the Fast Fourier Transform Dynamic Analyzer (HP-5451B) is presented,
together with a curve fitting data process in the Laplace domain to experimentally evaluate
values of generalized mass, modal frequencies, dampings, and mode shapes. The effects of
poor signal-to-noise ratios due to turbulence creating data variance are discussed. Data manip-
ulation techniques used to overcome variance problems are also included.

The experience is described that was gained by using these techniques since the early
stages of the SST program. Data measured during 747 flight flutter tests, and SST, YC-14,
and 727 empennage flutter model tests are included.

INTRODUCTION

In choosing a test method to approach an airplane flight flutter test, the implied
ground rules, composed of flight safety, historical constraints, available equipment, test costs,
test time, original or derivative model, etc., usually have a large impact on the procedures
ultimately used. Until recently, flight flutter tests at Boeing used two forms of excitation;
impulsive and slow swept sine wave (steady-state response).

Transient testing techniques have been employed from the earliest times in the form of impul-
sive testing such as control surface kicks to excite aircraft during flutter tests. Modal frequency and
damping have generally been determined by evaluating the logarithmic decrement of a decaying
response signal. Hand analyses in the time domain of control surface kick responses are limited to
those modes which fall within the bandpass of the control surface;i.e., as long as the assumption that
the forcing function was effectively a unit impulse or delta function over the frequency range of
interest, a transfer function can be inferred by analyzing the response. The log decrement manual
analysis of the response time history can yield excellent results if there is a single mode of interest
and the frequency-damping product of that mode is small relative to that of the other modes. Also,
the eigenvector for that mode at the spacial point of measurement must be of the same relative scale
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as adjacent modes. If there are several modes with roughly equal vectors having similar frequency-
damping products, it becomes extremely difficult, if not impossible, to obtain meaningful damping
information. The differences in the frequencies of the two modes can be obtained from the beat
frequency, but the damping of either mode is difficult to evaluate using the log decrement method.
These anomalies in the past generated the requirements to obtain swept frequency (steady-state
response) measurements.

These steady-state techniques, coupled with the use of Kennedy-Pancu’s vector plot method
(ref. 1), provided a means of identifying and tracking the frequencies and dampings of vibration
modes during flutter test programs. As usual, this increased the understanding of the dynamics of the
system but required a considerable increase in flight test time over that previously used for control
surface kicks.

In 1969, a small improvement in swept sine test times was achieved through the use of
pseudosteady-state methods and a vector-plotting analysis system (refs. 2 and 3). This system pro-
duced results with the structure reaching approximately 90% of steady-state response and was based
on the principle that the damping in a system is directly proportional to the number of cycles of
oscillation for a given vector phase swing when sweeping through a resonance ‘using a sweep rate @ =
Rw* (refs. 3 and 4). This method gave reasonable insight into the damping of the modes and approx-
imate modal frequencies; however, the test time required was still too long for the method to be used
more than sparingly.

In late 1969, transform methods using the Fast Fourier Transform began to appear practical on
digital machines. Experiments into their use were initiated (ref. 5), reevaluating all forms of
excitation.

TRANSFORM METHODS

Impulse Excitations

Initial experiments were based upon impulsive excitations;i.e., band-limited delta functions
obtained from exponential decaying time domain forcing functions. The initial choice of this func-
tion was based upon the idea that if the forcing function could be assumed to be a delta function
(over the frequency range of interest), then only the response would have to be transformed, thus,
saving on-line computational time. Using this forcing function to excite a multiple degree-of-freedom
system presents some problems. As the bandwidth of the pulse increases, the time duration has to
decrease; if the peak force remains the same, the total energy has to decrease. Signal-to-noise ratios
soon become the most significant consideration. Increasing the peak force to gain some energy soon
results in concern because nonlinearities result from local structural deformations. Using a peak force
level that avoids questions of nonlinearities with sufficient bandwidth to excite the principal modes
will usually result in the response signal being significantly influenced by background noise from
acoustical, mechanical, and electrical sources. In the case of flight flutter tests, the atmospheric tur-
bulence can impart more energy than the controlled excitation source.

Considering other waveforms, such as rectangular, trapezoidal, or sin (X)/X time histories, results
in small gains in available energy over their effective bandwidths if the comparison is performed with
equal peak force and equivalent bandwidth. These small gains are of little significance when orders of
magnitude are needed to overcome signal-to-noise ratio problems. The sensitivity to noise using trans-
form methods is the penalty paid for obtaining considerably less time domain data.
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Nonimpulse Excitations

Forcing functions that can be employed to overcome signal-to-noise ratio problems are random,
pseudorandom, and fast sine sweeps. Random excitation can be considered from two points of view.
Since atmospheric turbulence exists, it may be taken advantage of, and the resulting response signal
can be processed. To do so requires assumptions to be made about the spectrum of the atmospheric
turbulence forcing function. Since this forcing function is a global source of energy to the airplane in
flight, it does not lend itself to measurement or analysis, so the assumption must be made that the
amplitude spectrum has to be flat or at least well behaved in that it contains no zeros in the
frequency band of interest. If airplane response measurements are made during the time a wave front
(such as a step function) is being penetrated by the vehicle, then another problem exists due to the
time delays as the wave front imparts energy to the airplane. These time delays can cause the energy
stored in the vehicle to be reinforced or cancelled as the input energy propagates along the airplane.
To approach the problem by recording many independent time histories to enable performing power
spectral densities with large degrees of freedom brings back the disadvantages of steady-state sine
wave techniques—too much measurement time is consumed making the analysis. If power spectral
density (PSD) analysis is performed, then no assumption need be made as to the phase spectrum of
the excitation. The disadvantage is that no phase information is contained in the resultant PSD. This
makes the problem of system identification more difficult when several modes are overlapping. The
Hilbert transform can be used to obtain phase information from the PSD. However, the assumption
of minimum phase must be made. Minimum phase indicates no zeros in the right hand Laplace (s)
domain.

Assumptions leave targets for stones to be thrown at, independent of whether the assumptions
are correct. Therefore, the best approach might be the use of analysis techniques employing mini-
mum assumptions.

The approach of actually measuring the causal relationship between some known input (force)
and an output (acceleration) would seem the optimum. In this method, the coherence function is
also available as a measure of the causal relationship between input and output. An alternate
approach is to use random excitation, hopefully uncorrelated with the turbulence source, to excite
the airplane. One problem with the random excitation approach is that if both the random forcing
function along with some response signal is measured so that the transfer function can be calculated,
the problem of leakage in the frequency domain has to be dealt with. Prior to Fourier transforming
the data, some window function (such as Hanning) has to be applied to the time domain data to
minimize leakage. The window can effectively reduce the leakage problem; however, the transfer
function needs to be corrected for the effects of the particular window used. This is not a straight
forward correction, since the window affects both the apparent frequency and the damping, and it is
frequency dependent.

If the forcing function is chosen to be a periodic time domain signal, then windowing and the
associated problems are eliminated. Both pseudorandom and the fast sine can fall in this category. Of
these two forcing functions, the sine sweep has provided better results when systems that exhibit
nonlinearities such as a stiffening spring are encounted. This form of excitation has assisted in the
understanding of such nonlinear effects. Some insight might come from a look at the amplitude
probability distributions of these functions. Another factor favoring the fast sine sweep is that the
signal-to-noise ratios of the response signal are improved. Using the fast sine sweep, a given mode will
reach a higher percentage of its steady-state response compared with random excitation, especially
when systems are lightly damped.

In some systems, limits are imposed on the peak force that can be used. More energy can be
imparted to the specimen using the fast sine sweep in these systems. If the 30 peaks of the random
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signal are kept at the same peak value of the fast sine sweep, more energy is available from the fast
sine sweep to improve signal-to-noise ratio of the response. Figure 1 portrays this comparison.

Fast Sine Sweeps

Several points need to be made if the discussion is limited at this time to fast sine sweeps. On
first thought, a linear sweep rate might seem an obvious candidate for use in testing, since its ampli-
tude spectrum is flat. With a flat spectrum, it seems reasonable to just measure the response and use
Fourier transform techniques to obtain an estimate of the transfer function. This, of course, is invalid
since the phase spectrum of the force has been ignored. In the case of the swept sine, the phase spec-
trum is a very rapidly rotating vector. When the transfer function calculation is made by either the
response transform divided by the force transform or the cross-power spectrum divided by the auto-
spectrum of the force, the effect of this rapidly rotating phase vector is accounted for. Of the three
fundamentally different sweep rates, linear, log, and exponential, the log seems to represent the best
compromise for a lightly damped multiple degree-of-freedom mechanical system with roughly the
same damping in each mode. The exponential sweep would impart equal energy into each mode
(approximately), but the dynamic range requirements of the analog-to-digital converter to measure
the forcing function would be severe when attempting to cover a large swept bandwidth. Likewise, a
linear sweep rate would require a large dynamic range to measure the response, since the high fre-
quency modes would reach a much larger percentage of steady-state response.

Better experimental results have been obtained using the periodic log swept sine-forcing func-
tion by actually making the function a true transient signal. Since timing is critical in making a truly
periodic forcing function in the Fourier analyzer’s sample time (T), a transient signal that allows time
for the response to die out before the time sample T has been taken is sometimes used. This is
accomplished by stopping the sweep typically at 85% of the total time sample taken. The modal
damping values of the system under test will dictate this value. Lightly damped systems may require
stopping the sweep at 70%. In any event, the sweep is stopped, allowing enough time for the system
to decay out to roughly 10% or less of its peak response. To soften startup and shutdown transients,
the amplitudes of the sweep time history are also linearly ramped using a 5% ramp time at the
beginning and end of the sweep.

Relative to the time domain measurements, the swept sine has an appealing nature over random
in that as each resonance is traversed, the response blossoms, giving a quick intuitive feel as to signal-
to-noise ratios and system dampings. Data dropouts and other anomalies are much easier to recognize
using sine versus random.

Variance Reduction

For measurements made in very noisy environments such as wind tunnel subcritical response
tests, the transfer function is composed of a series of swept sine tests (ensembled) averaged together.
The coherence function has been used to obtain a measure of the quantity of ensemble averages that
should be taken. Wind tunnel testing is considered the worst case for the method, since the ratio of
energy input via the sine sweep to the energy input from turbulence is not very high, typically only
2to 1. To keep the test times under control, usually not more than ten ensembles are used. The
resulting transfer functions contain considerable noise or variance on the measurement. This variance
problem has now been significantly reduced by the application of an exponential window applied to
the raw, measured, system impulse response. The transfer function is obtained and inverse trans-
formed to obtain the system impulse response. Conceptually, this windowing process arises from the
characteristics of a systems impulse response, in that it approaches zero with increased time. Because
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of the effects of turbulence, the measured impulse response contains extraneous information out
beyond the point where, for all practical purposes, the energy within the system has decayed out.
These extraneous data produce the major component of the variance observed in the raw transfer
function measurement. The multiplication of the raw impulse response by an exponential window
suppresses this extraneous information, significantly reducing the variance in the transfer function
when the windowed impulse response is inverse transformed. The choice of an exponential window
arises from the ease of calculating the correction factor to back out the effects of the window.

Window Correction Derivation

As a starting point, consider a single degree-of-freedom system mapped in the s-plane:

The differential equation of this system is:
MX + DX + KX = F(t)
Using Laplace transform representation with all initial conditions equal to zero:
(MsZ + Ds + K) X(s) = F(s)

The transfer function is:

H(s) = X6) = L - _ 1M
FGs) Ms2+Ds+K 24D K
M M

For convenience, let:
A=1/M,B=D/M, C=K/M
then:

A

) = S Ber e
s“+Bs+C
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The roots of this system for the under damped case are:

s=- ]%i iy/c _134.2.
let:
then:
Negative Positive
pole A pole
HO = 53073 57 a8
where:
j =  the imaginary operator
a = acomplex constant (residue)
* = denotes conjugate

Evaluating the constant a:

then, in partial fraction form:

iy LA
28 428

H(S)=s+a+j5 stoa-jB

This system then gives a conjugate pair of poles.

The system parameters are then completely described by three constants; «, 8, and the residue
(complex constant in the numerator). The natural frequency of the system is:

¥%.
WN = (oc2 + 62) : rad/sec
The damped natural frequency is:

de = B rad/sec
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The damping factor or ratio is:

The eigenvector is associated with the residue.

Repeating the Laplace domain description of a single degree-of-freedom system in partial fraction

form:
i% i35
HO) = srav5 " sTa-i8

where:

A = 1/M

B = DM

cC = KM

a = B/2

B = B

M = Mass

D = Damping

K = Stiffness

Taking the inverse Laplace transform of the above equation results in the éystems impulse
response, f(ti):

f(t;) = et [—A- sin Bt] t>0
B
Multiplying the impulse response by the exponential window results in the following:
= e [ i

The only effect the window has on the single degree of freedom is that of increasing the
apparent system damping.
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In a typical application of this window using the Fourier analyzer:

At=T/N
where:
At = time between samples in the analog-to-digital sampling, sec
T = total length of time samples, sec
N = total number of samples (channels)

e-a't is made equal to 0.1 at channel 1000 (1000 times At); therefore:

on €%t = n[0.1]
o't = 2.30258
, _2.30258
a -

t1000

where t1000 = 1000 times At.

The damping ratio of the system without the window is:

cleg = 'w—a&-

The apparent damping ratio of the system with the window is:

v oot
c'fep = —
WN
since:
o
clcg = Q—J*I-\-I
o = (c/co) wN
and:
. .71
c'leg = [(C/CO) wy o ]5-1\—1
cfeg = c'/co—(%-ﬁ—

.y (2.30258)
c/eg = <'leo - xE{T000) (N
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If the window is applied n times;i.e., the impulse response of the system is multiplied by the
window n times,

then:

n (2.30258)
/0= <10 ~ 1500 (AD) aoyy

In the practical application of this windowing technique to reduce the effect of variance due to
turbulence, some undesirable effects arise. In a multiple degree-of-freedom system with closely
spaced modes (i.e., a pair of roots nearly identical), the application of this window tends to smear the
modes together, so that their individual identity tends to merge into what appears to be only one
mode. A second practical problem arises because of the truncation of the measured transfer function.
In a typical measurement, the transfer function is defined from zero frequency to an upper fre-
quency of interest. When the higher frequency cutoff point coincides with a system antiresonance,
no significant problem develops if this antiresonant point has a small magnitude relative to the mid-
band magnitude value. If the upper frequency point coincides with a resonance point, a problem
arises due to the truncation of the transfer function. The effect of this fruncation is a convolution of
the impulse response with a sync function (sin (X)/X). A physical interpretation of this transfer func-
tion truncation would be a system impulse response that begins responding before it is excited. This
unrealizable impulse response is what would analytically be requ1red to produce the unrealizable
truncated transfer function.

In a case where the truncation of the transfer function would produce such an effect, the appli-
cation of the exponential window would eliminate the tail or convolution product so that when the
inverse transform was taken (on the windowed impulse response), the discontinuity in the original
transfer function (truncation) would not be reproduced. A modified window is used in such cases to
overcome the dominate effects of this problem and allow the tail to be unmodified by the window.

Figure 2 presents a typical transfer function as measured in the wind tunnel on a flutter model.
The variance problem makes the measurement a questionable value. This particular measured transfer
function also has a truncation problem, since the magnitude is not near zero at the highest frequency
in the analysis.

Figure 3 is the calculated impulse response from the raw transfer function measurement of
figure 2. The tail at the end is the result of the truncation of the transfer function. Figure 4 presents
the exponential window used. The modified window used is dependent upon an observation of the
raw impulse response tail. The number of channels (time samples) at which the modified window is
at a constant value of unity is arrived at by engineering judgment after observing the raw impulse
response. It has been found that there is considerable leeway without any noticeable change in the
final windowed transfer function. Figure 5 presents the final transfer function after windowing using
the modified window. By whatever method is used to obtain the system frequencies and apparent
dampings, the corrected damping could be obtained by using the procedures of this report.

System Identification

With respect to the problem of obtaining a measurement of the complex structural transfer
function either in a laboratory environment or a wind tunnel or flight environment, the Fourier
analyzer has demonstrated its speed and dynamic range superiority over sine steady-state test
methods. The remaining problem, common to both test methods, is that of interpretation of the
measured results. Generally, this remaining problem is the methodology used to decompose the
measured complex plane transfer function H(jw) to separate the total vector response into a set of

85



linear independent single degree-of-freedom systems so that, when all the individual single degree of
freedoms are added together frequency by frequency, the result matches the original measured com-
plex plane measurement. In the past, the methods of Kennedy-Pancu have been used in an attempt to
reduce the complex plane plots into a set of modal frequencies and dampings. This method has been
reasonably successful when the modes are not too closely spaced. Modes that have become highly
damped cannot be tracked by this method either.

The determination of mode shapes from these complex plane plots also becomes invalid for
systems having complex eigenvectors. Complex eigenvectors (nonorthogonal vectors) arise when the
system damping matrix is not proportional to the stiffness and/or mass matrix. The Laplace trans-
form offers a convenient method whereby both real and complex systems can be analyzed, and it
offers a procedure whereby the transfer function measurements can be reduced to modal coordinates
of frequency, mode shape, and modal mass, stiffness, and damping.

An airplane in flight exhibits complex modal response due to the aerodynamic forcing terms.
Better system identification can thus be realized if the normal assumption of orthogonality is
removed.

Laplace Transform

The Fourier transform is basically a two-dimensional representation or picture of a three-
dimensional Laplace transform. Consequently, when a transfer function H(jw) is obtained and it is
desired to identify the system’s natural frequencies, dampings, etc., the missing third dimension has
to be inferred. The Kennedy-Pancu technique inferrs the third dimension (indirectly), based upon
some rather severe assumptions. In many cases, these assumptions are violated, making the technique
of limited value. The problem of transfer function interpretation would disappear if a three-
dimensional measurement was made. This three-dimensional representation appears via the Laplace
transform (fig. 6). The Fourier transform is the plane through 0= 0 on the jw axis of the three-
dimensional Laplace (s) domain. If a Laplace transform representation was obtainable from measured
data, a complete linear description of the dynamics of the system could be obtained.

A program exists on the Hewlett Packard 5451B Fourier Analyzer (HP) entitled ‘“Modal
Analysis System” (refs. 6, 7, 8, and 9), which takes the measured transfer functions (Fourier descrip-
tions) and obtains a Laplace description via a least squares fit. The use of this program has shown
encouraging results. For systems which are not too highly damped and for which reasonable measure-
ments of the transfer function have been made, results have been excellent.

Figure 7 contains results of using the modal analysis system on transfer functions measured in
flight. The fit was initially performed on the windowed transfer function (fig. 7a) to obtain a better
feel as to the quality of the fit (fig. 7b). The results of the fit from the windowed data were used as
starting values.for the fit on the raw transfer function (fig. 7¢). The fit of the raw data is shown in
figure 7d. Table 1 presents the comparison of system identification using Kennedy-Pancu’s methods
on the windowed data, the HP modal analysis on the windowed data, and the HP modal analysis on
the raw data. This particular data set was obtained using only one sweep ensemble. The results com-
pare favorably.

An intriguing aspect of obtaining a Laplace description of an airplane transfer function in flight

is that, if it were possible, this result coupled with the measured zero airspeed Laplace description
could result in a measured Laplace description for the aerodynamic forcing function.
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The Laplace approach is still left with some assumptions;i.e., we still can only handle linear
systems, and the system under test cannot as yet have multiple roots—more than one mode with the
same frequency and damping. The modal analysis system has handled systems with identical damped
natural frequencies (same value for jw), if the damping values are considerably different.

EXPERIMENTAL STUDIES

Early Tests

In the first applications of the Fast Fourier Transform (FFT) techniques, existing off-line data
processing with existing computing facilities was employed. In these early trials, existing or modified
computer programs were used to compare the analytically and experimentally determined transfer
functions of simple analogue systems. This work was then expanded to use available dynamic models
where the practical problems of nonlinear structural effects and uncorrelated forcing functions
(atmospheric turbulence) could be studied.

The first application of the FFT techniques on a Boeing aircraft came in a ride improvement
program for the 747 (ref. 10). The objective of this testing was to develop an active control system to
improve the ride qualities of the aircraft by suppressing the response of the aircraft’s flexible modes
of vibration. To aid in this work, the FFT techniques were used to derive the transfer functions
between the motions of various locations in the aircraft and forcing functions applied through the
aircraft’s yaw damper servo units. Both pseudorandom and sinusoidal fast sweep excitation signals
were initially employed in this testing; but, because of the greater energy input from the sinusoidal
sweep excitation, this form of excitation rapidly became the only one used in later tests.

A typical plot generated from the testing is shown in figure 8. Despite testing in turbulent air
and the lack of experience in variance reduction techniques, the tests generated sufficient data to
enable the definition of the required transfer functions and the successful development of an active
control system.

The results of this testing were also sufficiently encouraging for the technique to be used as a
primary analysis system in the AWACS Brassboard ground vibration test where, by a microwave link
to a remote computer, data reduction was achieved in a near real-time manner by personnel at the
test site. However, since at this time the analysis systems were only capable of generating transfer
function plots, considerable manual data reduction was necessary to generate modal frequencies,
damping, and mode shapes of the structure from such plots.

Following this work and as a part of the SST Follow-On program conducted by The Boeing
Company, a low-speed flutter model was used to demonstrate transient testing techniques that might
be developed for wind tunnel and flight flutter testing of future aircraft. This work (ref. 11) con-
sidered the use of both fast sinusoidal sweep and pseudorandom noise excitation in comparison with
steady-state excitation.

As previously discussed, the fast sinusoidal sweep excitation enables more energy to be input to
a system within the same maximum excitation level. The results of this testing demonstrated in a
practical manner the superiority of the fast sinusoidal form of excitation and also marked the first
use of Hewlett Packard’s Fourier analyzer for on-line data reduction.

More recently a series of data recorded during testing as the tunnel airspeed was increased
toward the flutter speed has been reanalyzed using the current system capabilities of windowing the
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data (fig. 9). A comparison of these results with those presented in reference 11 allows more modes
to be identified from the data, providing a greater understanding of the system.

YC-14 Low-Speed Flutter Model

Vibration testing of a low-speed flutter model, both in still air and during wind tunnel testing
using the current system capabilities, has been conducted as part of a test program to verify _
analytical flutter predictions for the aircraft. The use of the system during still air testing enabled a
rapid identification of the natural frequencies and damping of the vibration modes, while mode
shapes were generated from measurement of the responses at a large number of points across the
model. A comparison of the test and analysis frequencies is given in table 2.

In the wind tunnel testing of a cantilevered empennage model (fig. 10), a floor-mounted electro-
dynamic exciter was used to provide the necessary excitation force, while accelerometers within the
model recorded the model’s response. On-line production of the model’s transfer functions were then
generated as test speeds were increased up to the flutter speed. Figure 11 shows the progressive
change in such a set of transfer functions as the tunnel speed was increased. From these transfer func-
tions, modal frequencies and damping were manually reduced, and their variations with airspeed were
obtained (fig. 12). The use of this approach enabled a large amount of data to be gathered within a
realistic time period for a large number of model configurations. One configuration involving a free
mass balanced elevator was tested to high speeds before subcritical testing was conducted at low tun-
nel speeds to reduce some data scatter. The excitation system here provided the energy to initiate
flutter, since tunnel turbulence was very small at these speeds. Figure 13 shows the results for this
configuration.

727 Transonic Empennage Flutter Model

The fast sine sweep excitation and FFT data analysis techniques have recently been employed in
ground vibration and wind tunnel testing of a 727 transonic flutter model. This test program was
conducted to experimentally determine the complete dynamic characteristics of this model for use in
theoretical flutter calculations.

During ground vibration testing of the model, the modal frequencies, damping, and mode shapes
were reduced on-line using the full capabilities of a Hewlett Packard Dynamic Analyzer (HP-5451B).
This system employed the previously discussed Laplace mathematical model fitted to the experi-
mental transfer functions to enable a system’s dynamic properties to be extracted.

Mode shapes of all model modes below 75 Hz were determined by making a series of measure-
ments over the model and allowing the analyzer to reduce and plot the natural model modes
(fig. 14).

To determine the generalized masses of these modes, the technique of using added incremental
masses to the model and observing the change in modal frequency and mode shape was used. This
technique is summarized in appendix A. The technique assumes that the model’s modes are not com-
plex;i.e., monophase.

Accurate evaluation of modal generalized masses is dependent on accurate determination of the
mode shapes. Triaxial mode shapes were carefully measured at the incremental mass location and at a
reference location on the model for each mode. Total vector mode shapes were evaluated from the
triaxial measurements and were used in the generalized mass evaluation.
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The incremental masses were varied in magnitude and location to allow two or three separate
determinations of generalized mass for each mode. A comparison of resulting values of generalized
mass for individual modes showed an average variation in experimental results of 5%. Table 3 pre-
sents the measured modal frequencies and generalized masses.

The experimental values of generalized mass and modal frequencies were used in conjunction
with calculated oscillatory aerodynamic coefficients to complete a flutter analysis to predict model
behavior. The oscillatory coefficients were calculated using the measured modal displacements as
input to Doublet-Lattice Oscillatory Aerodynamics theory.

During wind tunnel testing of the model (fig. 15), sine sweep excitation from 2.5 to 50 Hz of
the model was accomplished using an electrohydraulic-actuated aerodynamic vane located at the fin
tip leading edge. Model response was monitored and recorded for 12 separate accelerometers located
on the model structure.

Each sinusoidal sweep from 2.5 to 50 Hz required approximately 20 sec, and an ensemble of 10
sweeps was completed at each wind tunnel Mach number and pressure condition. The resulting input-
to-output response transfer functions were ensemble averaged and windowed to reduce variance in
data due to model response from sources other than the sinusoidal aerodynamic vane force. Table 4
compares data reduced by using both the Kennedy-Pancu and the modal data analysis techniques.

Complex vector amplitude plots (fig. 16) were produced in a near-to-real time manner and were
evaluated using the methods of Kennedy-Pancu (ref. 1) to provide model response frequency and
damping. This data reduction was readily accomplished between wind tunnel conditions and plots of
damping; frequency versus wind tunnel dynamic pressure were recorded. The damping magnitude
and trends as displayed by continuous (between tunnel condition) plotting were reviewed prior to
changing wind tunnel conditions.

Figure 17 presents the damping and frequency trends measured during the 727-300 T-tail flutter
model test. The last recorded entry was at 34.5 kPa (720 lb/ftz) dynamic pressure. While on condition
and recording data at 38.3 kPa (800 1b/ft2) dynamic pressure, a fatigue failure in the fin root structure
occurred, and the empennage was separated from the model.

Posttest analyses of the data recorded at this final test condition of 38.3 kPa (800 1b/ ft2) have
been conducted using the data analysis system with individual sweep records. Figure 18 shows the
variation in the T-tail mode frequency experienced as the fatigue failure progressed. During this time,
the transient excitation analysis techniques proved invaluable. A complete understanding of the events
resulting in the model destruction would not have been realized if the transient excitation and data
processing technique had not beem employed.

747 Derivative Tests

Recently, several derivatives of the Boeing 747 aircraft have been tested using current transient
testing techniques. These techniques were used to gather data during the ground vibration tests on
the 747SP aircraft, where the closely spaced modes of the aircraft were separated by posttest
analysis. Posttest data analysis minimized the impact on the manufacturing production flow of the
aircraft.

Flight flutter testing of 747 derivative aircraft has also been conducted using the yaw damper

servo on the rudder actuator as a means of excitation at low frequencies. Once again, good results
have been obtained in an on-line data reduction mode of operation (fig. 19).
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CONCLUSION

The steady development of transient testing techniques employing fast sinusoidal sweep excita-
tion forces in conjunction with Fourier and Laplace transform techniques has generated a powerful
test capability for use in the many forms of system identification of which flight flutter testing is a
small part.

The experience gained with these techniques has shown them capable of providing a wealth of
data to the dynamics engineer. These techniques have also increased the safety of flight testing while
also enabling test times to be reduced.

While the analysis system meets present requirements, development continues to increase its

capabilities in the bulk of data that can be processed and also in determining the generalized air
forces that act on an aircraft in flight.
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APPENDIX A

EXPERIMENTAL EVALUATION OF GENERALIZED MASS
USING THE INCREMENTAL MASS MEASUREMENT TECHNIQUE

Reference: AGARD, Part IV, section 8.1, pp 24 through 27.

$ = Iw?
where:
S = generalized modal sfiffness
1 =  generalized modal mass
w =

modal frequency
With the addition of a small incremental mass (§m) to the structure at a point p:

S =(I+ ADw, 2

where:
Al =  generalized modal mass increment
wy =  modal frequency with incremental mass added

Since the structural stiffness is unaffected by the addition of an incremental mass:

Iw? = (1+ Al 2

or
Lo 031 {9} w2 =[Lot) {8} +0,%6m]w;
where:
{¢} = modal displacement matrix
bp = modal .displacement vectors at point p
[J] =  mass matrix

Rearranging the above equation gives:

2 2
0} Bmwl
Lo 1[J1 =[=P2r

showing that the generalized modal mass (I) is a function of the incremental mass (6m); the modal
displacement (@,,) at the location &m is attached; and the modal frequencies are evaluated with and
without §m in prl)ace (“"1 and w).
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Table 1.— Comparison of system parameters derived from figure 7.

KENNEDY-PANCU?

MODE FREQUENCY, DAMPING

MODAL ON WINDOWED DATA?

MODE FREQUENCY, DAMPING,

Hz c/co Hz c/co
1 1.76 0.048 1 1.772 0.0427
2 2.27 0.030 2 2.224 0.0386
3 2.44 0.049 3 2.432 0.0544

MODAL ON RAW DATA

MODE FREQUENCY, DAMPING,

Hz c/co
1 1.768 0.0420
2 2.217 0.0342
3 2.44 0.0528

3CORRECTED FOR THE WINDOW.

~
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Table 3.— 727 T-tail model ground vibration test.

MODE FREQUENCY, GENERALIZED MASS.
Hz kg cm? (LB-IN-SEC2)

1 3.68 388.66 (4.13)

2 8.79 7.067 (0.0751)

3 16.57 1.120 (0.0119)

4 25.40 0.285 (0.00303)

5 34.28 1.223 (0.0130)

6 40.13 5.092 (0.0541)

7 53.21 0.863 (0.00917)

8 65.21 0.882 (0.00937)

Table 4.— Comparison of modal parameters for
727-300 empennage model data (fig. 16).

KENNEDY-PANCU?

MODE FREQUENCY, DAMPING,
Hz c/cq
_1_-— 3.8 0.0162
2 9.3 0.0397
3 16.7 0.0335

MODAL ON RAW DATA

MODE FREQUENCY, DAMPING,
Hz c/cO
1 3.77 0.016
2 0.22 0.0371
3 16.765 0.0312

4CORRECTED FOR THE WINDOW.
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Figure 2.— Raw transfer function from a wind tunnel test.
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Figure 3.— Impulse response of figure 2.

97



1.0 -

O T T T ¥ £ ¥ L] T

+7/2
-7/2

Figure 4.— Typical window function.

+1

T 1 +R

Figure 5.— Windowed transfer function.
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Figure 6.— The imaginary part of the transfer function of a
simple resonator with poles at s = -0.1 +j0.5.
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Figure 8.— 747 flight test—Lateral fuselage response to lower
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Figure 10.— YC-14 low-speed empennage flutter model.
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Figure 14.— Still air antisymmetric mode shapes of 727-300 transonic empennage model.
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TURBULENCE EXCITED FREQUENCY DOMAIN DAMPING
MEASUREMENT AND TRUNCATION EFFECTS
Jaak Soovere

Lockheed~California Company

SUMMARY

Existing frequency domain modal freguency and dampilng analysis methods
are discussed. The effects of truncation in the Laplace and Fourler trans-
form data analysis methods are described in detail. Methods for eliminating
truncation errors from measured damping are presented. Implications of
truncation effects in fast Fourier transform analysis are discussed. Limited
comparison with test data is presented.

INTRODUCTION

Flight flutter testing 1s generally a time~consuming procedure. It
involves the installation of complex excitation generators such as vanes,
inertia exciters, or impulsive devices (ref, 1) as well as the response
transducers and the associated electronic equipment. During flight testing,
many flights are required to fully explore the aircraft critical flight spec-
trum, producing a large amount of test dats which must be” subsequently analyzed.

Considerable simplification in eguipment installation may be obtained if
turbulence excitation can be used instead of mechanical excitation. In any
event, atmospheric turbulence and buffet degrade the response data from all
types of mechanical excitation, except for random excitation, where it would
most probably help more than hinder (ref. 2). Thus, the availability of
suitable random response analysis methods, in addition to the existing har-
monic analysis methods, would be a great advantage. The random analysis
methods, like the current harmonic analysis methods, place the burden of data
reduction on the computer, which, when used in the interactive mode with the
test engineer, can provide a basis for real-time flutter testing.

The exciter installation and data acquisition and analysis problems are
further compounded in space shuttle type vehicles, where weight is of para~
mount importance and the cost of exploring the entire critical flight spectrum
with many flights prohibitive. The nonstationary nature of the flight envi~
ronment and the relatively short duration of each flight within the atmosphere
place a premium on the need for transmitting as much response data as possible,
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and as quickly as possible, to the ground station. An increase either in the

rate of sampling of the transducers, or in the number of transducers, is pos-

sible, if the data sample length can be reduced without a loss in the acecuracy
of the analysis.

A reduction in the sample length of the random response data is accom—
panied by a reduction in the statistical accuracy of the frequency domain
modal response spectra. The statistical accuracy can be restored at the
expense of resolution through a corresponding increase in the effective anal~
ysis bandwidth. This increase in analysis bandwidth produces a truncation
effect in the response spectra. The truncation effect can occur in the fre-
quency domain modal analysis derived from the Fourier transform of not only
the impulse response time history but also the cross-— and auto~correlation
functions of response due to random and impulse~type excitations.

The effect of truncation is studied by using a single-degree~of-freedonm
system. Existing frequency domain harmonic analysis methods are briefly
discussed as an introduction to the truncation effect and to illustrate the
format of the data presentation.

HARMONIC ANALYSIS

The simplest method for obtaining alrcraft modal frequency and damping
data is through stick pulse generated free decay data (figs. 1 and 2). How-
ever, narrow band filtering is required both to isolate each mode in turn and
to minimize noise due to the presence of turbulence. Computerized least
squares fit methods such as the Moving Block Analysis (ref. 3) can be used
to obtain damping data from the log decrement of the decay once the resonant
frequencies have been identified by spectral analysis.

Stick pulses, in general, may not excite all the modes of interest and
may produce an unconservative estimate of the damping. For close resonances,
narrow band filtering may not isclate each mode, resulting in a beating decay
response (fig. 1). Under such circumstances, it is possible to extract
meaningful data only if the modal damping and amplitudes are comparable in
each of the modes. It is, however, possible, through the Fourier transform,
to transform the decay data into the frequency domain (figs. 3 and L) and
thereby resolve the modes.

This Fourier transform process can be illustrated mathematically by

considering the relationship between the response y(t) of a linear system and
a general force x(t), given by

y(t) =f h(t) x (t=-7) dr (1)

0

116



where h(T) is the impulse response function of the system at time T. For a
single-degree-of-freedom system, the impulse response function is given by

6w T
hir) = Sinw [1-86
T

(2)

where:

is the generalized mass,

W, is the angular resonant frequency, and

o] is the viscous damping coefficient.
If the force is of sufficiently short duration that it can be considered

to be an impulse I6(t), where 6(t) is the delta function, then the response
time history reduces to

y(t) = hn(t) I (3)

The response spectrum y(iw), obtained from Fourier transform of the
time history (eq. (1)), is related to the force spectrum x(iw) by

y(iw) = H(iw) x(iw) (W)

where H(iw) is the frequency response function of the system. For a single-
degree~of-freedom system,

H(iw) = = (5)

2 2 .
m - +
(wr w 216wrw).

The Fourier transforms of the response y(t) and the force x(t) are
defined by :

yliw) = % _ooy(t) e 1% (6)
and w
x(iw) = %—w (o) e (1)
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respectively. Again, if x(t) can be considered an impulse I&(t), then the
force spectrum reduces to 4

w) = L
x(iw) = 55 (8)
and the response gpectrum to
. _ Hiw) I
y(lw) - “——27'r_ (9)

which is simply the system frequency response function multiplied by a
constant.

Two formats can be used in the presentation of the frequency domain
response data. In the response modulus vs frequency presentation (fig. 3),
the resonant frequency is located approximately at the peak response, and the
viscous damping coefficient, which is twice the structure damping, is obtained
by dividing the half power point bandwidth by twice the resonant frequency.

It is accurate for well-separated modes. For close modes, as the modulus
represents the total response vector from the origin and not necessarily the
modal vector, errors in the measured modal frequency and the viscous damping
coefficient may result. The extraction of modal damping may even be prevented
by the failure to resolve the half power points (fig. 3).

To overcome these limitations, both amplitude and phase are retained and
presented in a format of a Nyquist plot (fig. L4) in which the real part of
the response is in phase and the imaginary part is out of phase relative to
the excitation. This method of modal analysis was first suggested by Kennedy
and Pancu (ref. 4). The resonant frequency is located at the point on the
curve where the rate of change in arc length with frequency is at a maximum.
The viscous damping coefficient is obtained from the half power points as
previously described or by first measuring the angle ¢ subtended at the modal
origin, by the arc between any frequency point f and the resonant frequency
point fr, and then using the relationship

fr - f
6 = —'}—“——" COt(¢) (lO)
r

A strong feature of the Nyquist plot response data representation is
that mode shapes can be identified by means of the modal response vector.

The more common method of generating the response Nyquist plots is by
means of a slow sine sweep using mechanical in-flight excitation, such as
inertia exciters, in which the force output is used as reference. This method
has been computerized for multimodal analysis (ref. 5), employing a least
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squares curve fit technique to minimize the effect of extraneous noise and
used in a computer/test engineer interactive mode for flutter testing.

In transforming the free decay data as previously discussed, no trunca-
tion effects were observed due to the relatively high modal damping and the
need for including one beat as a minimum in the decay sample. In the second
example of a stick pulse excited decay (fig. 2), the decay was prematurely
truncated after one and five seconds to 1llustrate the effect on the frequency
domain response (fig. 5). The Nyquist plots of the response become more oval
in appearance as the decay sample duration is progressively reduced. If the
Nyquist plots are analyzed by the conventional method described above, uncon-
servative estimates of the damping are obtained., (See table 1.) In order
to obtain useful damping data from these Nyquist plots, a method eliminating
the effect of truncation from the damping must first be developed.

TRUNCATION THEORY

Due to the similarity between the cross~correlation and the impulse~
response functions with the auto~correlation function Ryy (7) of a single-~
degree-of-freedom system excited by a constant spectrum force, Sp (ref. 2)
and defined by

-6w.. T
TS e T -
Ryy(’r) - p Cos w 1—627' + g Sin w l~627' (ll)
2m2 35 r / 2 v
@r 1-6

it is only necessary to describe the equations for any one of the above
functions, The impulse-response function and the cross-correlation function
of a single~degree-of-freedom system, when excited by constant spectrum force,
exist only for positive time.

If the Laplace transform or the single-sided Fourier transform of the
autocorrelation function of the response Ryy (T) is used, with limits of inte-
gration from zero to infinity, instead of the full Fourier transform, phase
information is retained in the response spectrum (ref. 2). The resulting
response spectrum S(iw) is given by

S .
i . .

s(iw) = —2— (2 H(iw) + 26 H(iw) (12)

2 w

bmw “6 r

T
s . 8(iw) . -
The characteristic response function 3 has properties similar to the
P

frequency response function H(iw). This method provides a powerful tool in
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modal response analysis of random as well as impulse response data in the
frequency domain. The previocusly described methods for extracting the modal

damping and frequency can be employed as long as no truncation effect is
present.

If we let y(t) represent any of the above time functions, with the
understanding that they exist only for positive time, the complex response
spectrum y(iw) is obtained from Fourier transform of y(t).

o0
v(iw) = % y(t) e @Pat (13)

- 00

where y(t) = 0 for t<0

In reality, the response time history is truncated at some finite
time Tp. The resulting estimated response spectrum ?(iwl) (ref. 6) is
given by the relationship

Tm ~iw t
Yaw) = =) y®) e Tas
VAL 27 Jg y
(1)
® -iwt
- 1 1
= 5 _doD(t) y(t) e dt

where D(t) is the weighting or the truncation function.

Three weighting functions (ref. T) are considered in this paper. They
are the "do-nothing" or the boxcar weighting, generally defined by

D(t) = 1  for - Tp<t<Tp
(15)
= 0 elsewhere
the Hanning weighting function defined by
D(t) = % (1 + Cos gi) for - T, <t <7,
" (16)
= 0 elsewhere
and the Bartlett weighting function defined by
- [t]
D(t) = (l-—Tm) for - T, <t< Ty
(17)
= 0 elsewhere
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The reverse Fourier transform for the respohse is given by

y(t) =/ y(iw) e ay (18)

- 00

On substituting for y(t) in equation (14) and rearranging the order of the
integration, the estimate of the spectrum becomes

i —i(w. ~Wt
A, 1 1 .
v(iw) = 5= D(t) e dt y(iw)dw
2 o’ O
(19)
[~}
= / Q (wl—-w) y(iw) dw
- 00
where T
n -i{w. -wt
1 1 (20)
- = — : dat
Q(w1 w) ) D(t) e
Qw.~w) is referred to as the spectral window. The weighting functions

defined %y equations (16) to (18) and the corresponding spectral windows are
illustrated in figure 6. In the application discussed in this paper, the
spectral windows are complex (ref. 6 and 8) since the weighting functions are
one sided and exist only in positive time from zero to T,

TRUNCATED DATA REDUCTION

For a linear system excited by random force (or impulse) of constant
spectral density, the response spectrum y(iw) is proportional to the frequency
response function of the system. Equation (19), with y(iw) replaced by the
frequency response function of a single-degree-of-freedom system and a
constant force spectrum, has been integrated by using contour integration
for the "do-nothing" and the Bartlett weighting in references 6 and 8, respec-
tively. It has recently been solved by the author for the Hanning weighting.
A typical effect of the truncation due to the Hanning weighting is illustrated
in figure 7. The single-degree-~of-freedom response plots have been normalized
relative to the untruncated plot. The other two weighting functions differ
only in the degree of truncation effect. The "do~nothing" weighting function,
while exhibiting the smallest truncation effect, suffers from the undesirable
side lobes (fig. 5) which may be mistaken for modes or may interfere with
other nearby modes. The Bartlett weighting function suffers a greater resolu-
tion loss, as can be seen by comparing figure 8 with figure 5.

The resonant frequency is still identified by the peak rate of change of

arc length with frequency, but the procedure for estimating the damping from
the truncated curves is different from the methods previously described. At
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first (ref. 6 and 8), the damping coefficient was extracted with the assist-
ance of a nondimensional parameter defined by the peak rate of change of arc
length with frequency, divided by the radius of curvature at the resonant
frequency, from theoretically predicted curves. In these curves, the above
parameter is plectted as a function of the resonant frequency multiplied by
the true damping coefficient. These curves were originally developed for
use in high frequency structural response studies and consequently are
unsuitable for flutter data analysis due to the relatively low aircraft
response frequencies.

A more useful graphical format, which provides direct damping readout,
is presented in this paper and illustrated in figure 9 for the Hamning trun-
cation. The measured damping coefficient 6% is plotted against the true
damping coefficient § as a function of the ratio of the effective data
analysis bandwidth Af divided by the resonant frequency. The effective
analysis bandwidth Af is related to the maximum truncation time Th by

AT = — (21)

%
The measured damping coefficient & is defined by

o -2 (%) (22)

where p is the radius of curvature at rescnance, and

ds is the arc length at resonancé contained within
the frequency interval of 4rf

It can be observed that as the maximum truncation time becomes large,
the measured viscous damping coefficient approaches the true value.

This method of obtaining the damping from the truncation-affected single~
degree~of~-freedom system Nyquist plots has been computerized for potential
use in real-time analysis. The number of iterations required to converge to
the correct damping from the estimated damping is illustrated in figure 10.
The convergence is carried out in two or three sequences and is very rapid.
The number of steps in the initial sequence is selected to speed up the
iteration, especially in cases of severe truncation.

The damping of the free decay record (fig. 2) as obtained by the comput-
erized method for the "do-nothing", Hanning, and Bartlett truncations, a
least squares fit to the free decay, and the restored Nyquist plot method
(fig. 11) are summarized in table 2. The method of restoring the Nyquist
(ref. 9) plot involves the weighting of the decay with a known exponential
weighting to meet the required 55 dB dynamic range criteria {ref, 10) for
the decay. Analysis is thereafter carried out conventionally and the damping
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corresponding to the exponential weighting is subtracted from the measured
damping to arrive at the true modal damping. It is more common to apply the
exponential weighting function to the correlation function. This method has
been used in flight flutter testing in BEangland (ref. 11). The results from
the analysis of the one~second decay record indicate the existence of a
lower bound on the accuracy for the above frequency domain analysis methods.

TRUNCATION IN POWER SPECTRAL DENSITY

A method based on the cross-spectral analysis previously discussed was
developed to predict the truncation effect in power spectral density (PSD)
analysis. The effect of the truncation on the normalized PSD is illustrated
in figure 12 for the Hanning weighting. A computer program was developed to
obtain the damping from the 3 dB points by using the quadratic curve fit.

A graphical method for obtaining the true damping coefficient & from the
A

measured damping coefficient 6 for various ratios of effective analysis
bandwidth to resonant frequency is illustrated in figure 13.

A Hanning smoothed power spectral density plot of a typical alrcraft
response to high-speed buffet is illustrated in figure 1L4. Due to the very
high speed, no reliable flutter test data are available for comparison. The
analysis bandwidth of 0.5 Hz produces a truncation error in the two predom-
inant modes at 10.2 Hz and 14.6 Hz. On allowing for the truncation effect,
the viscous damping coefficients from the measured 3 dB point values of 0.11
and 0.04h are reduced to 0.068 and 0.02 for the two frequencies, respectively.
This method suffers from the same inaccuracies as the modulus method pre-
viously discussed. It does, however, provide an indication of the damping
where none previously existed. .

FAST FOURIER TRANSFORM AND TRUNCATION

The above methods have been basically developed for the Blackman and
Tuckey type of analysis (ref. 7). Truncation effects occur also in the fast
Fourier transform (FFT) method of analysis. An indication as to the type of
truncation present in FFT analysis of cross spectra is obtained from refer-
ence 12. The expected cross—spectral estimate E [Sxy(f,T,k)] is given by

]

T
E [Sxy(f,T,k)] —2-17?./‘ (1 - —‘—:—’-) Rxy (1) e Tar (23)
-T

m

As the cross—correlation function of a single-degree-of-freedom system
excited by white noise is one sided, as previously discussed, it is concluded
that the estimated cross spectrum obtained from FFT analysis is subject to
Bartlett truncation errors.
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The effect of truncation on the normalized PSD and cross spectral peak
response 1s illustrated in figure 15 as a function of the resconant frequency
multiplied by the maximum time delay and the viscous damping coefficient,
fy Tp 6. It is observed that for the "do-nothing" truncation, the curve
reaches unity near f,.Tp 6= 1. This corresponds not only to the damping
criteria for cross-spectral anslysis established in reference 9, but also to
the rule of thumb for PSD resolution for the analysis bandwidth to be one~
fourth of the 3 dB point response bandwidth.

Attention is drawn to the fact that the Bartlett truncation curve con-
verges to unity very slowly. Thus the use of cross~correlation functions
obtained from the indirect method of first computing the spectra using the
FFT and then transforming to time domain, will not only have the Bartlett
truncation error but also an additional truncation error in transforming
from the frequency domain to the time domain. These truncation errors in
correlation functions are discussed in references 13, 1k and 15. Thus a very
large number of transformation points must be used in determining the correla-
tion function through the indirect method,

CONCLUSION

Methods for eliminating truncation errors from modal frequency and
damping data have been presented for the cross~ and power-spectral analysis.
These methods have the potential for use in a computer/test engineer inter-
active mode, for random and impulsive-type response data analysis. Future
work will include an evaluation of the methods against simulated and real
flutter test data with buffet and turbulence excitation and the study of
truncation effects in FFT-type analysis involving multiple Fourier transform
operations.
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TABLE 1.

VISCOUS DAMPING COEFFICIENT OF TRUNCATED
PLOTS DETERMINED BY USING EQUATION (10).

Decay
Time, "Do-Nothing" Hanning Bartlett
Seconds Truncation Truncation Truncation
1 0.186 0.336 0.248
5 0.048 0.073 0.068
TABLE 2., COMPARISON OF VISCOUS DAMPING
COEFFICIENT BY VARIOUS METHODS.
Decay Least Restored TRUNCATION THEORY
Time, Square Nyquist
Seconds Decay Plot "Do-Nothing" Hanning Bartlett
1 0.0L45 0.092 0.037 ~ 0.035-
0.059
5 0.038 0.040 0.030 0.037 0.0kLk
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Figure 3. Modulus of the Fourier Transform
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Figure 6. Spectral Windows and Weighting Functions.
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Figure 7., The Effect of Truncation on the Normalized Cross

Spectrum of a Single-Degree~of-Freedom System Excited
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Figure 15. Effect of Truncation on the Peak PSD and Cross Spectral
Response Resolution of a Single-Degree-of-Freedom System
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SPECIFICATION OF INPUTS AND INSTRUMENTATION
FOR FLUTTER TESTING OF MULTIVARIABLE SYSTEMS

Narendra K. Gupta and W. Earl Hall, Jr.
Systems Control, Inc.

SUMMARY

This paper deals with the application of system identification methods
in flutter testing of aeroelastic structures, The accuracy with which flutter
parameters are estimated depends upon the test plan and on the algorithms used
to reduce the data. The techniques for selecting the kinds and optimal posi-
tions of inputs and instrumentation, under typical test constraints, are pre-
sented. Identification results for both the input/output transfer function
and the values of physical parameters are presented. Numerical results on the
optimal input spectrum and the accelerometer location for estimating flutter
parameters of a two dimensional wing are obtained using these algorithms.
Current work on applying system identification methods to high order three
dimensional aeroelastic structures is discussed.

INTRODUCTION

The objective of flutter analysis is to quantify the critical points or
boundaries of flutter and the stability margins associated with subcritical
responses. While it is true that analytical predictive techniques have become
increasingly useful to this objective, actual testing and data analysis is
always required for verification of these analyses, or to provide results
where analytical assumptions are suspect. Thus, flutter test analysis tech-
niques are being developed which use experimental data (usually noisy) to
provide accurate estimates of both subcritical stability margins as well as
aid extrapolation to the critical points (refs. 1 and 2). To be most useful,
these techniques should provide real time (or near real time) estimates to keep
test times at a minimum.

Further requirements on these test analysis techniques are emerging due
to new aircraft concepts. WNew structural concepts, such as light weight com-
posites technology, and control concepts, such as the active control of maneu-
ver loads and flutter margins, will require multivariable testing analysis
methods. These multivariable analysis techniques are necessary to define the
modal frequencies and damping of many interactive structural components in
complex aerodynamic regimes.

To meet the challenging requirements of estimating accurate subcritical
flutter test parameters and to use these results to effectively predict flutter
boundaries for multivariable systems, a systematic approach must be adopted.
This approach should integrate the specification of test instrumentation and
inputs with multiinput/multioutput data analysis procedures.
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The key elements of such an aeroelastic integrated testing analysis of
a model or of a prototype vehicle are shown in figure 1. First, the test
objective must be quantified. Historically, this test objective has progressed
from finding the flutter boundary to more current determination of the fre-
quency and damping of the subcritical stability margin. The need to be able to
better use subcritical data to predict the boundary requires determination of
the parameters of a flutter model which may contain two or more states of the
system. Of course, accuracy specifications for these various levels must be
set. Second, the operating points (of a wind tunnel or flight regime) must be
set to provide the basis for meeting the objectives within test safety con-
straints.

To implement the test objectives at the required points, an extensive
analysis of test inputs and instrumentation will minimize the probability of
ineffective results due to the improper excitation of critical modes and low
signal/noise ratios. With the test configuration specified, the data are
collected and analyzed using either a spectral analysis technique (e.g., fast
Fourier transform (FFT, ref. 3) or Randomdec (ref. 4)) or an advanced parameter
identification algorithm.

This paper focuses on the specification of test inputs and instrumentation.
Specifically, the three major elements of the test configuration are:

(a) Choice and location of instruments (e.g., accelerometers, strain
gages, gyros).

(b) Choice of inputs with respect to type (e.g., sinusoidal, swept sines,
random), and location of inputs and frequencies, and energy of
inputs. '

(c) “Required capability of test analysis procedures.

Analytical methods for input design and instrument selection to obtain the most
accurate estimates of parameters in models describing the flutter behavior of
aerodynamic structures are developed. The methods, based on system identifica-
tion technology, minimize the expected covariance of errors in estimates of
unknown parameters. The locations of the instruments and the inputs (if vari-
able) may also be optimally selected.

This paper describes d simple model of an aeroelastic wing. The dynamics
of the wing can be formulated as a state variable model. The analytical formu-
lation of the input design problem for state variable models with unknown para-
meters is given, along with a description of the methods used for selecting
the kind, accuracy, and locations of instruments. Some results on the selec—
tions of instruments and inputs to accurately identify the flutter character-
istics of a two dimensional wing are described. Finally, the techniques are
applied to large aerodynamic structures and the conclusions drawn from this
work are discussed.
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STATE SPACE EQUATIONS FOR A TWO DIMENSIONAL WING IN FLUTTER

Flutter is an interaction between nonsteady aerodynamic forces and elastic
forces in a structural component. To study the experimental design techniques
for flutter testing, a reference model for the flutter of a two dimensional
wing is given based on the work of Houbolt (ref. 5). The symbols used follow
those of reference 5.

An oscillating two dimensional airfoil in an incompressible flow .can be
modeled as shown in figure 2. Various forces acting on the airfoil are:
(a) 1ift Ll at quarter chord and lift L, at three-quarter chord, (b) restoring

force and moment through the elastic axis located at (a), (c) force and moment
associated with the inertia of the substance constituting the medium (these
will be neglected), and (d) external forces and/or moments, used to excite

flutter or inadvertently transmitted through the structure. The lifts L1 and

L, are modeled with appropriate delays. Houbolt (ref. 5) shows that the aero-

elastic equations for the wing can be written in terms of nondimensional vari-
ables as follows (see also fig. 2):

2 —2 2 1
Us + uwy -urs~ - 5 8 -1 V' 1
2 ki 2 1 ki —2 =
~urs M — S + 5 T,8 + u-—E w¢ -ry ¢ = re F (1)
c c
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equation (1) becomes
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where I is an identity matrix. This is the state space representation of an
aeroelastic wing and can be written compactly as

&

x = Fx + Gu (4)

where x is the state vector, u is. the input vector, and F and G are transition

matrices which contain unknown parameters. An accelerometer placed at e will
o "
measure

eo.-
y=w+t-—9¢

., (5)
=Wt %

The quantities wl and ¢l can be expressed in terms of x using equation (3).
Then

y = Hx + Du (6)

The transfer function between y and u is

(s) _ -l
u(s) H(sI-F) "G+ D
b s4 + b s3 + b s2 + b.s + b
_ 4 3 2 1 .
ST 5, . b 3 2 +D, s = Ju (7
S a4s + aBS + azs + als + aO

This transfer function can be written again into a state space form, often
referred to as a canonical form.

OPTIMAL SELECTION AND LOCATION OF INPUTS AND INSTRUMENTS

As shown above, the flutter equations of a wing can be written in either
the state variable form or the transfer function form. The multivariable state
equations and measurement equations are equations (4) and (6). In practice,
the measurements, y, are corrupted by additive noise, v, so that

y = Hx + Du + v (8)
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where v is assumed to be a white noise source with power spectral density
matrix R. The unknown parameters and some control parameters (locations of
inputs and instruments) are imbedded in the matrices F, G, and H. The unknown
parameters, whose estimated we are interested in, will be dencted by 0.

The accuracy of the parameter estimate O is expressed in terms of the bias
and covariance properties of the estimate. It is assumed that an unbiased and
efficient estimation procedure is used so that the input design and instrument
selection can be carried out independently of the estimation procedure. This
makes it possible to compute errors in the parameter estimates based on the
Cramer-Rao lower bound. This bound is computed around an a priori value 60

for the parameters ©. The information matrix M is related to the error in
estimated by the following relation

cov(B - é) B_Mfl 1))

where 6 is the estimate of 8.

The information matrix depends upon the input energy distribution and its
location and instrument accuracies and their locations. The design procedures
presented here will work with the properties of the information matrix. For
physical reasons, a quadratic constraint is placed on the inputs and the state
variables

T T T
Lim = (x'Ax + u'u) dt < E (10)

where A is a symmetric positive semidefinite matrix. An equation for the infor-
mation matrix, under the constraint of equatiom (10), in the frequency domain
is now obtained.

Information Matrix in the Frequency Domain

The relation between y and u in frequency domain is

y(w) = {HGwI - H7le + D} uw)

>

T(w,0) ulw) (11)
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where T(w,8) is the transfer function from the input, u{w), to the measurement
y(w) .

Equation (10) is written in the frequency domain as

o0

j( {u(w) u*W) + Tr(Ax(w) % (w))} dw < E (12)

o

where Tr is the trace operator and '*' denotes conjugate transpose. If S{(w,0)
is the transfer function between X and u, equation (12) may be written as

f {1 + Tr(A S,8) S*(w,9))} ulw) u*(w) dvw < E
o]

or ©

./-k(w,e) u(w) u*(w) dw = E (13)

o

The inequality sign can be removed for linear systems because increasing the
input amplitude will increase the accuracy of all parameters. The information

matrix for parameters O from measurements y, per unit time, is as follows (see
refs. 6 and 7 for details):

%
M = Re[ %g— R“:L g—g u(w) u*(w) dw (14)
o
Defining
— i
u(w) A XY*(w,0) uw) (15)
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Equations (13) and (14) become
{ee]

uw) v*(w) dw = E

*
ot 19T 1 = =
56 R 98 w0 v uFw) dw (16)

The information matrix, M, serves as the basic quantity upon which the
input and instrumentation requirements are to be determined. Maximizing M by
appropriate input and instrumentation design parameters leads to output data
which have a high information content on the system parameters. That is, the
sensitivity of the outputs to parameters, for example, is maximized by exciting
the modes which are most affected by the parameters. Basing the design on M,
though mathematically simpler, has some disadvantages in practice. If the
trace of M (e.g., the sum of diagonal elements) is maximized, an almost singu-
lar information matrix may result. The inverse of M is the lower bound on the
parameter covariance matrix. If M is nearly singular, its inverse may contain
large diagonal elements, leading to large errors in the estimates.

For this reason, it is more desirable to work directly with the inverse

of the information matrix, M_l. This matrix can be viewed as the ellipsoid
of uncertainty of the parameters. Though mathematically more difficult to
minimize, this matrix gives useful results since we are minimizing the para-
meter covariances directly. Two types of methods can be used to minimize

M_l. These are based on the following functions of M_l:

s e -1 . . . e .
(1) Minimize Det (M 7): This method will minimize the volume of the
uncertainty ellipsoid. This also minimizes maximum error in the
estimate of the transfer function.

(2) Minimize Tr (WMfl): This method minimizes a weighted sum of the
parameter estimate covariances (W is the weighting matrix which
penalizes certain estimate errors more heavily than others). The
weighting matrix serves two purposes. Since the covariances of
different parameters have different units, the weighting matrix con-
verts each term in the sum to the same units. Secondly, the weight-
ing matrix offers tremendous flexibility because it is possible to
assign varying importance to parameters through weights on their
nondimensional covariance. This is considered to be one of the most
suitable performance criteria, since it works with parameter estimate
covariances directly.
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Choice and Location of Optimal Input

The optimal input possesses certain properties which are quite important.
They are presented here without proof (ref. 6):

(1) The optimal input has a discrete spectrum (or point spectrum). The
number of frequencies with nonzero power does not exceed Eﬁ%ill

where m is the number of parameters.

(2) 1If the spectrum of u contains fewer than m/(2p) frequencies, the
information matrix is singular (i.e., all the parameters cannot be
identified).

(3) The optimal input which minimizes DetGﬂ_l) satisfies a minimum output
error criterion. In other words, this input gives the best estimate
of the transfer function.

(4) They satisfy two important theorems (see refs. 6 to 8), which convert
this complex nonlinear problem into a computation technique.

#

It has been demonstrated that the computation procedure summarized in %
appendix A can be applied to select the input spectrum which gives the desired
1

minimum of M ™.

Practical considerations in the computation of optimal ipput.- The algo-
rithm of appendix A will produce an optimal input design with a sufficient num-
ber of iterations. However, at each iteration, the procedure adds one point
to the spectrum of the input. For practical implementation, it is desirable
to have as few frequencies in the optimal input as possible. During the compu-
tation, a few steps can be taken to reduce the number of points in the spectrum.
Suppose the normalized input at any stage has k frequencies w, with power o,
(i=1,2,...,k). Then: 1 1

(a) Frequencies less than Aw apart can be lumped into one frequency.
*
Suppose q frequencies w, are within a band Aw wide. Then they can

be replaced by one frequency w* with power o* where

9
ok = 7 oci
i=1
and y
1 q % % an #
W =— ¥ o, w
a¥ i1
i=1
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(b) From this new input, all frequencies Wy with power less than a

threshold a” are dropped. The remaining frequencies do not satisfy
the constraint of equation (13), so the design is renormalized.

Steps (a) and (b) should be carried out to ensure that the design does
not become degenerate. This "practicalization” requires judgment of Aw and a.

Choice of location of input.— The transfer functions T(W,0) (the input-
to—output transfer function) and S(w,0) (the input-to-state transfer function)
are both linear functions of the control distribution matrix G. The location
of the input affects G in a linear fashion. Therefore, if B is an input loca-
tion parameter, the transfer functions T(w,0) and S(w,8) can be written as

T(Ww,0) = Tl(w,e) + BTZ(w,G)
(18)
S,0) = 5, (W,0) +BS,(w,0) , 0<B<1
Equations (13) and (14) can, therefore, be written as
/{l+ Tr(A(Sl(w,6)+BSZ(w,6)) (Sl(w,6)+882(w,9>)*)} u(w)u*(w)dw = E
o
i.e.,
2y _
vy@a + ClB + CZB ) =E : ‘(19)
and
2
M= Y[M11 + ZBMlz + B M22] (20)

PP
-

Y is a scalar which adjusts the energy in the input to satisfy the qﬁadratic
constraint on the input and the states. Equations (19) and (20) can be com-—
bined into one equation,

M = E
1+C16+C28

2
2 [Mll +28M, + BM,, ], 0 < B <1 (21)
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B can be selected to minimize ]M—1| or Tr(WM—l). In fact, an algorithm similar
to that of appendix A for input frequency and power selection can be developed.

In a more general case, when there is more than one input and each input
may be placed over any point in two or more dimensions, the number of para-
meters B which must be selected optimally is more than one. The optimization
becomes somewhat more difficult, but the basic approach remains the same.

Choice and Location of the Instruments

In addition to selecting the location and type of the excitation signal,
there are two other design considerations in planning a flutter test. These
are the determination of the kind of instruments which must be used to record
flutter response and the choice of instrument location (if there is a choice).
Though the problem of instrument selection and location can be treated simul-
taneously, for sake of simplicity we treat them separately.

Selection of instruments.- The selection of instruments is a tradeoff
between dynamic range, accuracy, and cost. The dynamic loads are often
limited by structural constraints, and it will be assumed that the instruments
cover this range. The accuracy with which the parameters may be estimated is
then determined by the accuracy of the instruments. It is clear from equation
(14) that the information matrix has an inverse relationship with the measure-~
ment noise covariances.

3T* -1 3T
M= Re 55 R 35 uw) u*(w) dw (22)

For the purpose of instrument selection in general, the measurement noise
covariance matrix is diagonal, i.e.,

-1,
R~ = dlag[rll, Tops enes rpp] (23)

where l/rl1 is the covariance of random noise in the ith instrument. The total

cost of the p instruments is a sum of the cost of individual instruments

) (24)

The total cost of the instrument package is assumed to be fixed. Either of the
criteria of equation (17) may be minimized under the cost constraint and
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rii-z 0 i=1,2,.005P- (25)
The Lagrange multiplier approach may be used for optimization. For example,

: ; . . e i . -1 :cs .
if the criterion requires the minimization of {M ], the modified cost function
is

p
= _ |l
J= | + 151 gy - MC, (r, 1)) + 1C (26)

where Ai’ i=1,2,...,p, and U are Lagrange multipliers. The following optimiza-

tion equations result:

r,, =0 . or A, =20
11 1
aC
® 2 -1 oM i .
; [M]“ Tr (M 5e ~ JFA Mg =0 , i=1,2,...,p. @27
11 11

Equations (24) and (27) are 2p+l equations in 2p+l unknowns Ai’ g and 1.
Note that if any LI is zero, the corresponding instrument has infinite error;

in other words, this instrument should not be used.

The optimal value of rog would act as a guideline in selecting the instru-
ment. Often, it is not possible to obtain an instrument with mean square error

1
of —— exactly and cost C.(r..).
r.. itidi
ii
® Location of instruments.- The transfer function T(W,0) is a linear func-
tion of the measurement distribution matrix H, and, therefore, the position of
the instrument. For this reason, optimal choice of instrument location can
be determined in the same was as the optimal positioning of inputs.

RESULTS

To demonstrate the application of the methods described above to multi-
variable flutter problems, a two dimensional wing is considered. The values

of the parameters are as follows: . = 10, (ki/cz) =0 = 0.1, a/ec = 0.35,

= 0.1, r, = 0.4, a, = 0.6, and b2 = 0.3. The velocity is taken as 15.25c

r
1
‘meters/sec (50c ft/sec) and the natural frequencies of the rotational and ver-
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tical motions are 10 hertz and 2 hertz, respectively. This gives the system
matrices for the nondimensional state equations as

0.05 0.1  -0.01579 0
0 -0.2 0.1 0 ~0.3948
F=|-0.6 0.68 -0.372 0.01895  0.1105 27)
1 0 0 0 0
0 1 0 0 o
and
e e
¢ =10.1, ==, -0.12 -0.48 %, 0, 0] (28)

The measurement distribution matrices are

e e e
H=1[0, 0.5—-0.2-:? » 0.1+0.1 7?—, -0.01579 , —0.3948—é1] (29)
e e
_ £, o
D = (0.1 + o p )
c
e e

where':r and :? are parameters which define the locations of the input actuator

and the accelerometer. The noise in the accelerometer is assumed to be white,
with a standard deviation of 0.02 in dimensionless units (this corresponds to
about 0.61 meters/sec/sec (2 ft/sec/sec)) and a sampling interval of 4 milli-

seconds. It is assumed that we are interested in estimating the parameters
-2 2

wy, w¢, Tos a2, bz, Ol
The poles and zeros of the transfer function between the measurement and
e e

the input Y and Tg-both equal to 0.1, are, in radians per second (the nondimen-

sional values are multiplied by 100)
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Poles -5.76 + 55.6j
-19.4 + 16.63

-6.83
(30)

Zeros -0.163 + 76.2]
-30.0
~5.68

Input Design

As mentioned before, the inputs are designed to maximize the identifiabil-
ity of flutter parameters from output. The test duration was selected as 2
seconds. This is a fairly short test, but in terms of the natural frequency of
the wing in flutter, it is long enough so that the steady state input design can
be applied. In the design procedure, the locations of the excitation and the
accelerometer are kept fixed, and the input frequency spectrum and power in each
frequency of the spectrum are selected.

To simplify the procedure, the parameters in the F, G, and H matrices are
identified directly (D does not contain any unknown parameter). The input is
designed to produce the most accurate estimates of the underlined parameters in
equations (27) and (28) in the sense of minimizing the determinant of the in-
verse of the information matrix. Starting from the topmost spectrum of figure
3 with available power distributed equally among five frequencies at 2, 4, 6, 8,
and 10 cycles per second, the iterative design procedure gives the results shown
in the figure. 1In every iteration, the design procedure adds a new frequency
or increases the power at a frequency already ineluded in the spectrum. This
leads to a large number of frequencies in the computed spectrum. As mentioned
above, this design can be simplified. When frequencies with relative power less
than 5 per cent or closer than 0.4 hertz are merged with the meighboring fre-
quencies, the resulting design is shown in figure 4. There are eight frequen-
cies in the optimal spectrum--three each clustered around the two oscillatory
modes and one each at a low and an intermediate frequency. Of the three fre-
quencies around the oscillatory modes, one is below, one is above, and one is
close to the natural frequency. This characteristic seems to be quite general
and substantiates Gerlach's intuitive choice of input frequencies for the iden-
tification of the short period parameters of an aircraft (ref. 9). A 2 second
time trace for this input spectrum with initial phases selected at random is
shown in figure 5.

Choice of Accelerometer Location
In the flutter analysis of a two dimensional wing, typically only one
accelerometer is used. It is generally desired that the best accelerometer

within the test budget be selected. There may be a possibility of using two
poorer quality accelerometers. This tradeoff was not studied.
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The location of this accelerometer is an important parameter. The follow-
ing performance index is considered:

m

where Oi (i=1,2,...,m) is the set of parameters of interest and Oai is the

standard deviation of estimation error in the ith parameter. Figure 6 shows
the values of the performance index for constant input rms value and constant
output rms value as a function of the accelerometer position. The minimum of
the curves gives the positions of the optimal location of the accelerometer
under the two constraints.

Simulation and Maximum Likelihood Identification

The flutter equations for the transition matrices of equations (27) to (29)
e e
are simulated with the input of figure 5. Both 7?—and-:§ are taken as 0.1, and

the accelerometer rms random error is 0.02 in the nondimensional units. The
transfer function between the input and the output is as follows:

4 3 2
~0.0155 (s’ + 0.36