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Abstract

A research excitation system was test flown at the

NASA Dryden Flight Research Facility on the two-seat
F-16XL aircraft. The excitation system is a wingtip-

mounted vane with a rotating slotted cylinder at the

trailing edge. As the cylinder rotates during flight,

the flow is alternately deflected upward and downward

through the slot, resulting in a periodic lift force at

twice the cylinder's rotational frequency. Flight test-

ing was conducted to determine the excitation system's
effectiveness in the subsonic, transonic, and supersonic

flight regimes. Primary research objectives were to de-
termine the system's ability to develop adequate force
levels to excite the aircraft's structure and to determine

the frequency range over which the system could excite

structural modes of the aircraft. In addition, studies
were conducted to determine optimal excitation pa-

rameters, such as sweep duration, sweep type, and en-

ergy levels. The results from the exciter were compared
with results from atmospheric turbulence excitation at

the same flight conditions. The comparison indicated
that the vane with a rotating slotted cylinder provides

superior results. The results from the forced excitation

were of higher quality and had less variation than the
results from atmospheric turbulence. The forced ex-

citation data also invariably yielded higher structural

damping values than those from the atmospheric tur-
bulence data.

Introduction

During flutter testing, it is important that sufficient
excitation is provided to the aircraft's structure. The

frequency and damping values of the aircraft's struc-
tural modes need to be accurately estimated to de-

termine adverse damping trends or levels that would
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indicate the onset of flutter. Sufficient in-flight excita-

tion provides high-quality data, which improves data

analysis accuracy and reduces the time required to ob-
tain results. Overall, this makes flutter testing safer

and more efficient.

At the NASA Dryden Flight Research Facility, flight

flutter testing has been performed on many research

aircraft using a variety of excitation systems. 1 Most

testing has used natural atmospheric turbulence. Nat-

ural atmospheric turbulence, however, is often difficult
to find and seldom excites all of the aircraft's structural
modes. 2 Control surface pulses, or stick raps, are also

frequently used with atmospheric turbulence. Stick

raps typically do not excite structural modes above

5 Hz. The dangers in not obtaining adequate excitation

using these methods were shown in Ref. 3. This ref-
erence describes an aircraft whose flight envelope was

cleared for flutter using natural atmospheric turbulence

and stick raps. The aircraft later fluttered within the

cleared flight envelope when it encountered severe tur-
bulence that provided higher levels of excitation than

were obtained during the flutter test.

Other means of excitation include sinusoidal control

surface excitation, oscillating aerodynamic vanes, ro-

tary inertia exciters, and pyrotechnic bonkers. While
each means of excitation has been successfully used

for flight flutter testing, each also has some disadvan-

tage that prevents it from being used consistently on

a variety of aircraft. In sinusoidal control surface ex-
citation, the control surfaces are programmed to os-

cillate through a predetermined frequency range) The

frequency range, however, is limited by the actuator
frequency response, and implementing this method re-

quires modifications to the control system software,

which can be very costly and time consuming.

Oscillating aerodynamic vanes tend to be very ef-
fective. The vane is mounted externally at a specific

location on an aircraft and oscillated in pitch at the de-

sired frequency. Because of the large loads on the vane,

however, this system requires a relatively large amount



ofpowerandmustberunfromtheaircraft'shydraulic
system,resulting in costly and time-consuming instal-

lation procedures. 4

A rotary inertia exciter consists of a rotating unbal-

anced weight attached to a shaft. As the unbalanced

weight rotates, a sinusoidally varying force is applied
to the surface to which it is attached. _ Because the ac-

celeration depends on the rotational frequency and the

force produced is proportional to the moving mass and
its acceleration, at high frequencies the force level of

the excitation is high. This also works as a disadvan-

tage, however, since at low frequencies the force level
is low; it may be difficult at the low frequencies to

produce enough force to sufficiently excite the aircraft.

One way to overcome this would be to add mass to
the exciter, which would increase the amount of force
on the surface. Unfortunately, adding mass would also

increase the weight of the exciter, and a risk is taken

in that additional weight might affect the vibrational

characteristics of the aircraft.

Pyrotechnic bonkers are small, single-shot, solid

propellant rockets with burn times of about 18 to
26 msec and maximum thrust levels ranging from 400

to 4000 lb. 8 The bonkers are attached to the aircraft

at various points; upon ignition they impart a short-

duration impulse to the aircraft structure, exciting a
number of aircraft structural modes. This method's

disadvantages include questionable reliability under ar-
duous environmental conditions such as extreme cold

and vibration, the difficulty of synchronizing several

distributed percussions at different points on the struc-
ture to excite the different modes of interest, and the
fact that the number of impulses per flight is limited.

The disadvantages of current flutter excitation meth-
ods demonstrate a need to develop a low-cost, effec-

tive in-flight structural excitation system. A unique

excitation system that addresses these needs was de-

signed and built by Dynamic Engineering, Incorpo-

rated (DEI) of Hampton, Virginia. This system was

flight-tested at NASA Dryden on the two-seat F-16XL

aircraft to determine the exciter's effectiveness as a
structural excitation system. The concept incorporates

a wingtip-mounted vane with a rotating slotted cylin-
der behind the trailing edge. This system is intended

to be a lightweight, self-contained exciter that could be
installed on a variety of aircraft with minimal interface

with the aircraft's systems, v

This paper presents the flight test results on the ex-

citer system. Primary research objectives for the test

flights were to determine the system's ability to de-
velop adequate force levels to excite the aircraft's struc-
ture and to determine the frequency range over which

the system could excite structural modes on the air-
craft. In addition, studies were conducted to determine

optimal excitation parameters, such as sweep duration,

sweep type, and energy levels.

Aircraft Description

The exciter was tested on an F-16XL aircraft

(Fig. 1). This aircraft is powered by a General Elec-
tric Fl10-GE-129 engine (General Electric, Inc., Lynn,

Massachusetts) and has a highly swept wing. The in-

board region of the leading edge has 70° of sweep and

the outboard wing leading edge has 50 ° of sweep. The

aircraft is capable of speeds exceeding Mach 2.

The aircraft was instrumented with nine accelerom-

eters located on the wingtips, in the aileron actua-

tor housing, in the fuselage, and on the vertical tail

(Fig. 2). The exciter vane was located on the F-16XL's

left wingtip.

A conventional flutter clearance was conducted on

the airplane at the time it was built, s The current

tests served only to evaluate the new exciter system.

Exciter System Description

The excitation system hardware consists of three

main components: a cockpit control panel, an elec-

tronics box, and a fixed-vane exciter (Fig. 3). System

installation required mounting the control box in the

cockpit, mounting the electronics box in the instrumen-

tation bay, and routing electrical wire through the lead-

ing edge flap to the fixed-vane exciter at the wingtip.
Eighty workhours were required to install this system

on the left wing of the F-16XL.

The cockpit control panel, which is mounted in the

aft cockpit of the aircraft, controls the excitation sys-

tem. The system incorporates several operating modes:
constant frequency, linear or logarithmic sine sweeps,

sweep frequency range and duration, a quick-stop fea-
ture for free-decay response measurements, and high-

or low-force amplitude options. The exciter system is

capable of excitation frequencies up to 50 Hz, and the

force level is measured by a bending moment strain-

gauge bridge mounted near the root of the exciter vane.
The electronics box is a self-contained package that

contains the closed-loop motion controller card and

other signal conditioning.

The fixed-vane exciter consists of a diamond-shaped,

symmetric airfoil section and a rotating slotted cylinder

at the trailing edge (Figs. 4 and 5). The vane was
attached to the left wingtip of the F-16XL using an

adapter plate designed to slide into the missile launcher
rail. The vane has a span of 1.0 ft with a total area

of 0.85 ft2. The weight of the vane is 10 lb. A ground
vibration test showed that the vane's weight did not

change any of the modal characteristics of the F-16XL.



Thetwoslotscut in thecylindergenerateperiodic
lifting forcesthat excitetheaircraft.Asthecylinder
rotatesduringflight,the flowis alternatelydeflected
upwardanddownwardthroughtheslots,resultingin
a periodiclift forceat twicethecylinder'srotational
frequency.Figure6illustratesthis. PointA showsthe
zeroforceposition,pointB is themaximumpositive
forceposition,pointCiszeroforceagain,andpointD
isthemaximumnegativeforceposition.Notethatthe
cylinderhasonlyrotated180° for one full sinusoidal
forcing period. The amplitude of the excitation force

depends upon the dynamic pressure and the amount of

the slot opening.

The amount of slot opening is controlled by the direc-
tion of rotation of the slotted cylinder. Reversing the

rotational direction of the cylinder drive motor causes

half of the spanwise slot opening to be blocked by an

inner cylinder in the inboard slot. Closing the inboard
slot attenuates the excitation force by half in flight. In

addition, a plug was added to the outboard slot by the
manufacturer after wind-tunnel tests indicated that the

vane may produce more force than is desirable at high

dynamic pressures. This plug spans 25 percent of the
slot opening and reduces the amount of force that the

excitation system can provide. With this plug, when

the exciter is in the high-force mode, the slotted cylin-

der is 75 percent open (Fig. 7(a)). When the exciter is
in the low-force mode, the slotted cylinder is 25 percent

open (Fig. 7(5)).

The lift force produced by the vane-rotating cylinder

concept is analogous to that of an oscillating vane. The

rotating cylinder's main advantage is that it requires
only the relatively small amount of power needed to
overcome the aerodynamic and frictional forces oppos-

ing its rotation. Therefore, a low-wattage electric servo
motor is used to run the system. Requiring only 28 V,

the system can be readily integrated with an aircraft's

normal power supply.

The design condition for the vane is Mach 1.2 at

10,000 ft (1467 lb/ft 2 dynamic pressure) at an angle of
attack of 4 ° . The vane stalls at an angle of attack of

about 12° .

Test Procedures

Flight testing was conducted to determine the ex-

citation system's effectiveness in the subsonic, tran-
sonic, and supersonic flight regimes. The vane was

flight-tested at an altitude of 30,000 ft from a Mach
number range of 0.6 to 1.7. Frequency sweeps were

performed from 5 to 35 Hz. This frequency range
covers the primary modes of interest on the F-16XL,

which are shown in Table 1 (taken from Voracek,

David F., Ground Vibration and Flight Flutter Test
of the F-16XL Aircraft With a Modified Wing, NASA

TM-104264 to be published). Random atmospheric

data were also acquired at each test point to compare
with the forced excitation data. Table 2 gives a test

matrix of the points flown.

Linear sweeps were conducted for durations of 60,

30, 15, and 7 sec to assess the effect of test dura-
tion on modal excitation. Logarithmic sweeps were
conducted at 30 and 60 sec for comparison with lin-

ear sweeps of the same duration. Response data were

also acquired for continuous frequency dwells of 8 and

10.8 Hz. These frequencies correspond to the first sym-

metric wing bending and antisymmetric wing bending

modes, respectively.

The accelerometer response data and strain-gauge

load data were telemetered to a ground station for real-

time data collection and monitoring. The data were

displayed on strip charts and a four-channel frequency

spectrum analyzer. The accelerometer responses were
monitored during each frequency sweep and dwell to

observe structural response levels. The data were sam-

pled at a rate of 200 samples/sec. For analysis, power

spectral density plots were generated using a block size
of 2048, which gave a frequency resolution of approxi-

mately 0.1 Hz.

Results and Discussion

The flight test evaluation of the exciter showed that

it adequately excited most of the aircraft's structural
modes between 5 and 35 Hz. Figure 8 shows the power

spectral density plots from the left-wing accelerome-
ters for the Mach 0.9 at 30,000 ft flight condition with

a linear sweep. Responses from the forward and aft
accelerometers on the left wing indicate that, for all

flight conditions, all modes identified from ground vi-
bration test results were excited, with the exception

of the 12.5-Hz vertical fin mode and the 13.7-Hz sym-

metric launcher pitch mode (Table 1). The vertical
fin mode was not excited because the excitation en-

ergy was not transmitted to the vertical fin from the
wingtip for this airplane. The vane was placed on the

node line for the symmetric launcher pitch mode, so
this mode was not expected to be excited.

Exciter Sweep Compared With Random

Atmospheric Turbulence Excitation

At each stabilized test point, 60 sec of aircraft ran-

dom response data generated by natural atmospheric
turbulence excitation was collected before the exciter

sweep response data were collected. Frequency and

damping estimates were obtained at each flight condi-
tion for each type of excitation. The power spectral

density plots shown in Fig. 9 are a comparison of the

left-wing response caused by random atmospheric tur-
bulence and forced excitation from the exciter vane.
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At this flightcondition,Mach0.9at 30,000 ft, the pi-

lot reported encountering light to moderate turbulence.
From the atmospheric turbulence excitation only the

8 Hz mode is well excited. Natural atmospheric turbu-

lence did not excite any structural modes above 14 Hz.

All expected structural modes were excited by the ex-
citer vane. This data clearly indicate that the exci-

tation provided by the exciter vane was superior to

natural atmospheric turbulence.

The most critical flutter frequencies for this airplane

configuration are predicted to be in the range of 20 to
30 Hz. It is especially important that such modes be

excited during flight flutter testing to ensure detection,
subcritically, of impending aeroelastic instabilities. In

this example, the exciter vane provided excitation at

these frequencies while atmospheric turbulence did not.

For every flight condition, the forced excitation data

yielded higher structural damping values than those
from the atmospheric turbulence data. Figure 10 shows

a graph of the structural damping values for the sym-
metric and antisymmetric wing bending modes. The

structural damping estimates for the forced excitation
data are often as much as twice the value of the data

for the atmospheric turbulence. Figure 9 also reflects

this phenomena. The width of the peaks, which is pro-

portional to structural damping, is clearly smaller for
the atmospheric turbulence data than for the forced
excitation data. This is attributed to the fact that

the amplitudes for the modes excited by atmospheric
turbulence have a very low signal-to-noise ratio. The

modes are not well excited and are contaminated by

noise; therefore, the damping levels are difficult to cal-

culate accurately.

Static Forces

The exciter vane was mounted at 0 ° with respect

to the launcher rail. When it was installed, no at-

tempt was made to determine a mounting angle that
would minimize static loads at the planned flight con-

ditions. Figure 11 shows the static loads generated at
each Mach number. At Mach 0.8, the aircraft was at an

angle of attack of 6.5 °, and the vane generated 160 lb of
upward force. The magnitude of the static loads de-
creased until the aircraft reached Mach 1.7, with an

aircraft angle of attack of 2 °, when 30 lb of downward
force was measured. The local angle of attack of the

exciter vane was not measured.

Dynamic Forces

The dynamic forces generated by the exciter vane at
each Mach number are shown in Figure 12. The forces

shown are given in pounds, peak to peak, and are all for

the high force setting (cylinder slot 75 percent open).

Overall, the average dynamic force increased with

increasing Mach number, which was expected because

dynamic pressure was also increasing. The dynamic
forces ranged from about 50 lb at Mach 0.8 to almost

90 lb at Mach 1.7 (all at 30,000-ft altitude). These
loads were less than expected. For the design condition

of Mach 1.2 at 10,000 ft (1467 lb/ft_), DEI wind-tunnel

and flight test data estimated 409 lb peak to peak for

an exciter configuration with no plug in the slotted

cylinder. 9 The flight condition of Mach 1.7, 30,000 ft

(1271 lb/ft _) was therefore expected to be close to that.
The difference may be due in part to the addition of

the plug, which cut the slot opening by 25 percent, and
due to local flow conditions at the launcher rail of the

F-16XL, which may have decreased the exciter_s effec-
tiveness. While less than predicted, the dynamic force

levels were more than sufficient to excite the aircraft's

structural modes of interest.

Force Roll-Off

The dynamic forces generated at Mach 0.9 and 1.1

are shown in Fig. 13 as a function of frequency. This

figure shows that the exciter vane generated adequate
force across the entire frequency range of interest (5 to

35 Hz). The force is not flat across the frequency band-
width, however. The dynamic force peaks at two fre-

quencies that correspond to antisymmetric structural
modes. The increase in force at these frequencies is

most likely caused by an inertial reaction of the exciter
as these structural modes are excited. An increase in

amplitude is also seen at the sweep cut-off frequency at
35 Hz. This is a result of the excitation frequency ap-

proaching the exciter vane first bending mode, which
is at 43 Hz.

Logarithmic and Linear Sweeps Compared

Figure 14 shows a comparison of the 60-sec logarith-
mic and linear sweeps at several Mach numbers for a

frequency sweep of 5 to 35 Hz. At Mach 0.9, the loga-
rithmic and linear sweeps are nearly identical. As Mach

number increased, however, the logarithmic sweep did
not excite the control surface modes, from 20 to 30 Hz,

as well as the linear sweep. This trend was even more

pronounced for the 30-sec sweeps. Overall, the linear
sweep was more consistent in exciting the structural

modes over the range of Mach numbers tested.

Linear Sweep Durations

To determine the effect of different sweep durations,

linear sweeps from 5 to 35 Hz were performed for 60,

30, 15, and 7 sec. Figure 15 shows a comparison
of the different sweep durations at Mach 0.8. The

30- and 60-sec sweeps are nearly identical. As the

sweep duration decreased, however, less excitation en-

ergy is transmitted to the structure, and at the 7-sec

sweep, some modes are not excited. Overall, the 30-



and60-seesweepsproduceaboutthesamelevelofre-
sponse,regardlessof Machnumber,andtheselevels
wereconsideredadequate.

High- and Low-ForceLevels

Figure16showsa comparisonofthehigh-andlow-
forcelevelsforthevaneat Mach0.9at 30,000ft. Both
forcelevelsweresufficientto excitethemodesofinter-
est;however,thehigh-forcelevelprovidedconsiderably
moreenergy.Aslightfrequencyshift,asmuchas3per-
centforsomefrequencies,in thedatacomparisoncan
beseeninFig.16.Astheforcewasincreased,thefre-
quencyofthemodesdecreased.Thistrendisaresult
ofstructuralnonlinearitiesandiscommonlymeasured
duringgroundvibrationtests.1°
ttarmonic Excitation

The exciter producedharmonicswhich excited
modeshigherthanthe primarysweepfrequency.An
exampleof theharmonicexcitationisseenin Fig.17,
whichshowsan8.0-Hzfrequencydwellandthe har-
monicsproducedbythevaneat Machnumbersof 0.8,
0.9,and1.05.Theharmonicsappearto havethehigh-
estamplitudein thetransonicMachnumberrange.

Anotherexampleoftheharmonicexcitationisseen
in Fig. 8, in whicha modeat 43Hz wasobserved.
The43-Hzmodeis the exciter'sfirst vanebending
mode,measuredfromagroundvibrationtestdoneon
thevane,andit wasexcitedwhilethesweeppassed
through21.5Hz. Thiseffectcanbeseenmoreclearly
in Fig.18.Here,theexciterhassweptthrougha fre-
quencyrangeof5to 15Hz,andthedataindicatethat
themodesin the 15-to 30-Hzfrequencyrangehave
alsobeenexcited.Thiseffectmaynotbedesirable,as
in thecaseof excitingthevane'sfirstbendingmode,
or if asinglefrequencydwellisrequired.
Excitation Energy Distribution

Duringtheevaluationflights,thevaneassemblywas
mountedontheleftwingtipoftheaircraft.Accelerom-
etersweremountedbothontheleft andrightwingtips.
Theresponsefromtheseaccelerometerswasusedto
measurethe energytransferredfromtheleft wingto
therightwingduringexciteroperation.

Figure19comparesthepowerspectraldensityofthe
left-wingresponsewith that of theright wing. The
symmetricandantisymmetricwingbendingmodes(8
and10.8Hz)wereexcitedwellonbothwingtips;how-
ever,the13.2-Hzlauncherpitchmodewasnotexcited
on the right wing. Theexciter,aswellasthe aft
accelerometer,wasplacednearthenodelinefor this
mode.Therewassufficientenergyto excitethismode
ontheleftsideoftheairplane,whichisseenin theleft-
wingforwardaccelerometerresponse.Therewasinsuf-
ficientenergy,however,toexcitethismodeontheright

sideof theairplane.In addition,thehigherfrequency
controlsurfacemodeswerenot excitedaswellonthe
right wingwhen_comparedto the left wing. Overall,
themodesabove20Hzwerenotexcitedwellontheside
oppositetheexciter.Thisdeficiencycouldbeovercome
by addinganexciterto therightwing-tip.

Conclusions

A vane and rotating slotted cylinder excitation sys-

tem was flight-tested to investigate the exciter's effec-
tiveness in the subsonic and transonic flight regimes.

The objectives for the flight tests, to determine the

system's ability to develop adequate force levels to ex-
cite the aircraft's structure and to determine the fre-

quency range over which the system could excite struc-
tural modes on the aircraft, were met. In addition,

studies were conducted to determine optimal excitation

parameters, such as sweep duration, type, and energy
levels.

The structural response data quality obtained with

the exciter was superior to that obtained with random

atmospheric turbulence. The vane and rotating cylin-

der assembly excited all expected modes of the aircraft

in a frequency bandwidth of 5 to 35 Hz, while the atmo-

spheric turbulence only excited the wing's first bending

mode. By using atmospheric turbulence excitation, a
critical flutter mode may not be excited during flutter

testing. A structural excitation system that adequately
excites all modes of interest is required to verify the ab-

sence of flutter within an airplane flight envelope.

In general, the best results were obtained with 30-

and 60-see linear frequency sweeps. Shorter duration

sweeps and logarithmic sweeps did not always suffi-

ciently excite the structural modes above 20 Hz.

The vane and rotating cylinder system produced har-
monics that excited modes above the primary sweep

frequency and outside of the selected excitation fre-
quency bandwidth. This had an undesirable effect in
that the exciter first vane bending mode at 43 Hz was
excited. The excitation of this mode could lead to high

dynamic loads on the exciter vane.

Because the exciter system was mounted on the left

wingtip of the aircraft, the energy distribution to the

right side of the aircraft was evaluated. The symmet-

ric and antisymmetric wing bending modes were ex-
cited well on both wingtips; however the launcher pitch

mode was not excited on the right wing. In addition,
modes above 20 Hz were not excited well on the side

opposite the exciter. This deficiency could be overcome

by adding an exciter to the right wing-tip.

Overall, the relatively simple installation require-

ments, precise excitation control, low-power require-

ments, and effectiveness over a large frequency range



areall aspectsthatqualifythevaneandrotatingcylin-

der concept as a viable solution for safer, more effective

flutter testing.
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Table1. StructuralmodesfortheF-16XLasmeasuredfromagroundvibrationtest.

Modeidentification Frequency,Hz
Symmetric modes

First wing bending 7.98

Symmetric launcher rail pitch 13.70
Control surface mode 21.74

Control surface mode 26.42

Antisymmetric modes

Antisymmetric wing bending 10.79

Vertical fin bending 12.48

Antisymmetric launcher rail pitch 13.24
Control surface mode 20.40

Control surface mode 22.19

Control surface mode 27.05

Control surface mode 28.78

Table 2. Exciter system test matrix at an altitude of 30,000 ft.

Mach 60 sec

: Logarithmic

Linear sweeps, sweeps,
5-35 Hz 5-35 Hz

30sec 15sec 7sec 60sec 30 see

0.6 L L L L H H

Continuous

dwells

8 Hz 10.8 Hz

H H

0.7 H H H H H H

O.8 H H H H H H

O.9 H,L H H H H H

1.05 H,L H,L L L L L

1.10 H,L L L L L L

1.20 H,L L L L L L
1.30 H - - H - -

1.50 H - - H - -

1.70 H - - H,L - -

H H

H H

H H
L L

L L

L L

L -- low-force setting (cylinder 25 percent open)

H -- high-force setting (cylinder 75 percent open)
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Fig. 1. F-16XL with vane and rotating slotted cylinder excitation system.

Left wlng aft

Exclter vane

Left wlng forward

Left aileron beam

Vertical tall

Fuselage vertical

Fuselage lateral

Right aileron

Right wing aft--,,

Fig. 2.

Rlght wlng forward

Accelerometer locations on the F-16XL aircraft.
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EC90--282--3

Fig" 3" The excitation system's three components: electronics box, vane and rotating cylinder assembly, and
cockpit control box.

A

Airflow

Fig. 4. Exciter vane and rotating slotted cylinder.
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Fig. 5. Planform and side views of exciter.
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Fig. 6. Periodic lift force generated by exciter.
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(a) High-force position.

EC90-282-3

i Fairing 920765

(b) Low-force position.
Fig. 7. The exciter vane with cylinders in different positions.
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(a) Forward accelerometer.

Fig. 8.
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(b) Aft accelerometer.

Left-wing accelerometer responses caused by linear exciter sweep, Mach 0.9 at 30,000 ft, high-force level.
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(a) Exciter sweep.

Fig. 9.
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(b) Random turbulence.

Comparison of excitation of the left-wing aft accelerometer at Mach 0.9 and 30,000 ft.
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(b) Antisymmetric.

Fig. 10. Structural damping values for wing bending modes.
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(a) Mach 0.9, 60-sec sweeps.
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(b) Mach 1.1, 60-sec sweeps.
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(c) Mach 0.9, 30-sec sweeps.
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(d) Mach 1.05, 30-sec sweeps.

Fig. 14. Comparison of linear and logarithmic sweeps at various Mach numbers.
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(a) Time history plots.

Linear sweep duration variations, Mach 0.8 at 30,000 ft, left-wing aft accelerometer, high-force mode.
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(b) Power spectraldensityplots.

Fig.15. Concluded.
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Fig. 16. Comparison of high- and low-force mode exciter sweeps, Mach 0.9 at 30,000 Pc,left-wing aft accelerometer.
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Right wing aft response showing exciter harmonics from an 8.0 Hz frequency dwell.
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