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The sloshing effects of an internal fluid on the flutter envelope of an aeroelastic system have received little attention

in the open literature. This issue is nevertheless relevant for many aircraft, especially high-performance fighter jets

carrying stores. This paper addresses some aspects of this problem as well as related modeling and analysis issues.

These include the importance or insignificance of accounting for the hydroelastic effect when modeling an internal

fluid and its container as well as accounting for that container when modeling the aerodynamics of the overall

aeroelastic system. The paper also reports on the findings of four independent sets of flutter analyses performed for a

wing–store test configuration and various fuel fill levels in the subsonic, transonic, and early supersonic regimes. Two

of these sets of numerica l experiments relied on a computational-fluid-dynamics-based computational technology,

and two of them on the doublet-lattice method or a supersonic lifting-surface theory, where applicable. The geometry

of the chosen test configuration is that of the AGARD Wing 445.6 with a blunt-nosed store. The obtained

computational results show that, at least for the considered wing–store configuration, ignoring the aforementioned

hydroelastic effect tends to overestimate the added-mass effect and underestimate the critical pressure and flutter

speed. They also reveal that, whereas the aerodynamics of the store may be neglected in the subsonic regime, they

cannot be ignored in supersonic air streams. Finally, the performed computational study suggests that, in general, the

critical pressure and flutter speed decrease with an increasing fuel fill level.

Nomenclature

A = matrix of cell volumes of the fluid grid
b = body forces acting on the structure
bs = semichord of the wing at its root
C = Jacobian matrix of the numerical flux function with

respect to the fluid grid velocity
c = arc center
D = structural damping matrix
d = distance
det = determinant of a matrix
div = divergence operator
E = Young’s modulus
E = matrix resulting from the time derivative of the

product of the fluid cells volumes and the discrete
fluid state vector

~E = fictitious elasticity properties
F = external force field acting on the structure
F = numerical convective flux function vector

F = fluid convective flux
fae = vector of external aerodynamic forces acting on the

structure
fint = vector of internal forces acting on the structure
fm = generalized force vector
FSI = flutter speed index
G = Jacobian matrix of the numerical flux function with

respect to the fluid grid position
H = Jacobian matrix of the numerical flux function with

respect to the discrete fluid state vector
I = identity matrix
i = pure imaginary number
J = Jacobian of a frame transformation
K = structural stiffness matrix
K 0 = modified structural stiffness matrix
~K = pseudostiffness matrix
~Kc = matrix related to the pseudostiffness matrix
�Kc = matrix accounting for the effect of the structural

motion on the fluid grid at the fluid–structure
interface

~KF = transmission matrix between the structural dis-
placement vector and the fluid grid position vector

k = dimensionless reduced frequency
L = length
Lo = reference length
MA = added-mass matrix
MF = mass matrix of the internal fluid
MS = structural mass matrix
M∞ = freestream Mach number
mempty

store = mass of an empty store
mS = structural mass of the wing
nF = normal to the fluid–structure interface
nm = number of natural eigenmodes
nS = normal to the surface of the structure
P = Jacobian matrix of the vector of external

aerodynamic forces with respect to the discrete
fluid state vector
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Pm = generalized Jacobianmatrix of the vector of external
aerodynamic forces with respect to the discrete fluid
state vector

p = pressure fluctuation of the internal fluid
Qm = generalized aerodynamic force matrix
R = radius
r = radius
s = arc
T = transmission conditions matrix
t = time
twall = store wall thickness
u = structural displacement vector
uF = displacement field of the internal fluid
um = generalized modal displacement vector
uS = structural displacement field
V = matrix of structural eigenmodes
V̂ = volume of a conical frustrum
V∞ = freestream velocity
vF = velocity field of the internal fluid
w = fluid state vector
w = discrete fluid state vector
x = position vector field
x = fluid grid position vector
xF = displacement field of a fluid grid point
Γ = fluid free surface
δ� � = pertubation of a quantity
∂ΩS = surface of the structure
~ϵ = fictitious strain tensor
ϵS = strain tensor
λ = square of the circular frequency
�μ = ratio of the structuralmass of the empty store and the

product of the freestream density and the frustum
volume

ν = Poisson’s ratio
ξ = reference position of a fluid grid point
π = pressure constant
~ρ = fictitious density
ρaluminium = aluminium density
ρF = density of the internal fluid
ρS = structural density
ρ∞ = freestream density
Σ = fluid–structure interface boundary
σS = structural stress tensor
τ = dimensionless time
Φ = vector of fluid potential degrees of freedom
ϕ = potential function for the internal fluid
ψ = angle
ω = (circular) frequency
Ω = diagonal matrix containing the circular frequencies

of the structure
ΩF = internal fluid domain
ΩS = structural domain
ωα = first dry torsional mode frequency of the structure
∇ = gradient operator
Δ = Laplace operator
� = dimensionless quantity
_ = dimensionless time derivative

Subscripts

a = amplitude
cyl = store cylinder quantity
LE = store leading-edge quantity
o = equilibrium configuration
t = time derivative
� = quantity satisfying the free surface Dirichlet

boundary conditions

Superscripts

cr = critical value

I = imaginary part
R = real part

I. Introduction

T HE numerous effects of an internal fluid on the overall behavior
of an aircraft or spacecraft have long been recognized by the

aircraft design community [1,2]. In particular, criteria for designing
launch vehicles to accomodate the sloshing effect of an internal
propellant [3] have been documented. Unfortunately, whether
derived from experimental or computational data [3,4], these criteria
did not in general incorporate the flexibility effect of the fluid
container. For this reason, these criteria do not address the flutter
issue, which is often finally resolved by a flutter flight test.
The cost of a flutter flight test campaign increases rapidly with the

number of configurations requiring certification [5,6]. In the presence
of stores containing an internal fluid, the fill level becomes an
additional configuration parameter. Perhaps because of the already
large number of other parameters to consider and the already
substantial cost associated with flight testing, it seems that there is
very little, if any, focus on the effects of the interaction between an
internal fluid and its containing structure during flutter flight tests.
There have been, however, some experimental attempts to

investigate the effects of an internal fluid on flutter. In particular, it
was observed in [7] that the dynamic response of a coupled fluid–tank
system can exhibit modal resonances that are not predicted by any
uncoupled analysis. It was also reported in [8] that the presence of
fuel between wing panels can alter their flutter characteristics. Little
computational research has been performed, however, for predicting
the effects of the presence of an internal fluid on flutter [9,10].
Therefore, the main objective of the work reported here is to

numerically predict the effects on flutter of the interaction between an
internal fluid and its containing flexible structure. To this effect, two
different representations of the internal fluid are considered. The first
one aims at capturing accurately the hydroelastic vibrations of such a
fluid and its store. The second one aims instead at reducing model
preparation time and leads to considering other assumptions such as,
for example, ignoring the aerodynamics of the store. In all cases,
different computational technologies are considered for representing
the external fluid. These are the versatile linearized computational
fluid dynamics (CFD) approach, and the doublet-latticemethod and a
lifting-surface theory, which remain popular for compressible
subsonic flows and supersonic ones, respectively, particularly in the
design environment. Consequently, a secondary objective of this
work is to report on the impact of these modeling issues on the
prediction of the sloshing effects on flutter.
To this effect, the remainder of this paper is organized as follows.
In Sec. II, two different computational models are described

for representing an internal fluid. In Sec. III, a higher-fidelity
computational framework for aeroelasticity based on linearized CFD
and lower-fidelity alternatives based on the linear aerodynamic
theory are overviewed. In Sec. IV, the results of the flutter analysis of
a wing–store geometry based on the AGARD Wing 445.6 and the
various modeling approaches outlined previously are reported and
discussed for various fuel fill levels. Finally, Sec. V concludes
this paper.
Remark: In general, slosh refers to the movement of an internal

fluid with a free surface in the presence of gravity [11]. However,
such a slosh occurs at frequencies that are too low to be of concern to
flutter. Therefore, in this work, the effect of gravity on the movement
of the internal fluid is ignored, but for the sake of simplicity, the
movement of that fluid is still referred to as slosh.

II. Mathematical Models for an Internal Fluid

Here, two approaches of different fidelity levels are considered for
accounting for the effects of an internal fluid in flutter prediction. The
first approach is based on the theory of hydroelastic vibrations of an
elastic structure containing an inviscid fluid. It results in an added-
mass model that captures the hydroelastic effect [11]. The second
approach accounts only for the mass and inertia of an internal fluid
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and leads to a trivial added-mass model [12]. It minimizes model
preparation time. It also leads to considering the possibility of
neglecting the aerodynamics of the container, which can be attractive
for parametric store-configuration studies. Both of these models
can, however, be easily integrated in existing aeroelastic flutter-
computation procedures.

A. Hydroelastic Vibrations Model

Here, the flexible store and the fluid it may contain are viewed as a
coupled hydroelastic system. The internal fluid occupying a domain
ΩF with a free surface Γ and a fluid–structure interface boundary Σ
(see Fig. 1) is assumed to be inviscid, incompressible, homogeneous,
weightless, andwithout surface tension. Hence, its dynamic behavior
is governed by the linearized Euler equations

∇p � −ρF
∂2uF
∂t2

(1)

wherep, ρF, anduF denote the Eulerian pressure fluctuation, density,
and displacement of the fluid, respectively, and t denotes time.
Furthermore, assuming that it is characterized by small displacement
amplitudes, the fluid motion can be assumed to be harmonic and is
therefore represented by

uF � uFa cos ωt (2a)

p � pa cos ωt (2b)

where the subscript a designates the amplitude, and ω denotes the
circular frequency. From Eqs. (1), (2a), and (2b), it follows that

p � ρFω
2ϕ� π (3)

where ϕ is the potential function satisfying ∇ϕ � uF, and π is an
arbitrary constant that is set here to π � 0. After somemanipulations,
the incompressibility condition ∇ · vF�x 0; t� � 0, where vF denotes
the fluid velocity and x 0 � x� uF�x; t�, leads to

Δϕ � 0 in ΩF (4)

The structural vibrations are also assumed to be harmonic with
small amplitudes. Hence, they are represented by the dynamic
equations of equilibrium

σSij;j �uS� � ρSω
2uSi � 0 in ΩS (5a)

σSij�uS�nSj � Fi on ∂ΩS \ Σ (5b)

where σSij denotes the stress tensor components (i � 1; 2; 3,
j � 1; 2; 3) of the structure ΩS; ρS and uS denote the density and
displacement of the structure, respectively; a comma denotes a partial
spatial derivative; the subscripts i and j designate the ith and jth
components of a quantity in three dimensions, respectively; nS
denotes the normal to the surface of the structure ∂ΩS; and F denotes
the prescribed external force field acting on the structure.
The transmission conditions coupling the fluid and structure

components of the hydroelastic system at the fluid–structure
interface Σ can be written as

σSij�uS�nSj � ρFω
2ϕnFi (6)

where nF denotes the normal to the fluid–structure interface Σ from
the fluid side, and

∂ϕ
∂nF
� uS · nF (7)

The first of the previous two equations expresses the conservation of
momentum at Σ; the second one is equivalent to a nonpenetration
condition at this interface.
Finally, on the free surface Γ of the fluid (see Fig. 1), pressure

invariance yields the following boundary condition:

p � ρFguF3
� 0 (8)

(as ρFg � 0 due to the weightless assumption) where the subscript 3
designates the coordinate in the vertical direction. This yields ϕ � 0
on the surface; see Eq. (3).
In summary, the boundary-value problem (BVP) governing the

vibrations of a system comprising a store and an internal fluid is given
by

Δϕ � 0 in ΩF
ϕ � 0 on Γ

∂ϕ
∂nF
� uS · nF on Σ

σSij�uS�nSj � ρFω
2ϕnFi on Σ

σSij;j �uS� � ρSω
2uSi � 0 in ΩS

σSij�uS�nSj � Fi on ∂ΩS \ Σ

and the pressure p of the internal fluid is obtained from Eq. (3). Note
that, with the choice π � 0, the previous BVP remains well-posed
[11] for ω � 0.
The finite-element discretization of the previous BVP leads to the

following system of matrix equations:

�
K − λMS −λT�

−TT� MF�

��
u
Φ�

�
� 0 (9)

where λ � ω2,K, andMS denote the standard structural stiffness and
mass matrices;MF is the standard internal fluid mass matrix;T is the
matrix arising from the finite-element discretization of the
transmission conditions [Eqs. (6) and (7)]; u and Φ� denote the
vectors of structural displacements and fluid potential degrees of
freedom, respectively; the� subscript specifies that the finite-element
space in which ϕ is approximated satisfies the Dirichlet boundary
condition ϕ � 0 on Γ; and the superscript T designates the transpose
operation. Because MF� is nonsingular, the second row of the
previous matrix equation gives

Φ� �M−1
F�T

T
�u (10)

which transforms the system of Eq. (9) into the following simpler
equation:

Fig. 1 Cut-away view of a typical store showing the definition of the
various domains and interfaces.
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Ku − λ�MS �MA�u � 0 (11)

where

MA � T�M
−1
F�
TT� (12)

is the “added-mass “ finite-element matrix. In the remainder of this
paper, Eq. (11) is referred to as the consistent or hydroelastic added-
mass model of the flutter problem in the presence of an internal fluid.

B. Frozen-Mass Model

A trivial approximation of the added-mass effect of an internal
fluid is obtained by lumping at one ormore points themass and inertia
of this fluid. Compared to the previous modeling approach, this
simpler one reduces model preparation time because it eliminates the
need to create a new mesh for the internal fluid for every fill level of
interest. It also leads to considering the possibility of neglecting
the aerodynamics of the store in the flutter analysis. The latter
assumption enables the application of popular supersonic lifting-
surface theories that nevertheless lack the capability of handling
slender bodies tomodeling the unsteady external aerodynamics of the
given aeroelastic system; for example, see Sec. III.B.2. More
importantly, this further assumption simplifies the flutter analysis
of parametric store configurations and therefore the modeling and
simulation of store clearance, and it significantly reduces the
associated model preparation time.
For convenience, the previous approach is implemented in this

work by treating the fluid as an almost-incompressible medium with
the same total mass and density (and hence volume) as the original
body of fluid. The shape and location of this medium are chosen to be
those assumed by the internal fluid when the store is completely
horizontal and at rest. The Poisson ratio of this medium is chosen to
be close enough to the incompressible limit of 0.5, while still
preventing finite-element locking during any phase of the numerical
analysis. Its elastic modulus is chosen to be significantly lower than
that of the containing structure.

III. Computational Frameworks for Flutter Analysis

Two well-proven computational frameworks of different level of
fidelity are also considered for analyzing the effect of fuel sloshing on
flutter. The first one is a higher-fidelity framework because it is based
on the Euler equations for modeling the external flow and the
linearized three-field arbitrary Lagrangian–Eulerian (ALE) [13–16]
formulation of fluid–structure interaction for modeling aeroelastic
effects. The second computational framework is a lower-fidelity but
more computationally economical one. In the subsonic domain, it is
based on the standard doublet-lattice method (DLM), which uses the
linearized aerodynamic potential theory [17,18] to predict the
aerodynamic loads on lifting surfaces and slender bodies. In the
supersonic regime, it is based on a similar linear theory [19] that is,
however, limited to planar lifting surfaces and therefore cannot handle
stores. This theory and associated software are most convenient for
studying here the effect of neglecting the aerodynamics of a store on an
overall flutter analysis. The higher-fidelity computational framework
is reviewed inmore detail than the lower-fidelity onebecause it is not as
popular yet.
In both computational frameworks, finite-element modal

reduction is used for representing a structure.

A. Linearized Computational-Fluid-Dynamics-Based Computational
Framework

This framework is considered here for four main reasons.
1) It is based on a perturbation theory, and flutter is essentially a

perturbation problem.
2)Unlike linearmethods, it incorporates the effects of shocks in the

transonic regime and is valid in all of the subsonic, transonic, and
supersonic regimes.
3) Unlike nonlinear methods, it is fast enough to appeal to

production environments.

4) It is compatible with the added-mass model of the internal fluid
presented in Sec. II.A because the hydroelastic model itself is also a
linearized model based on a perturbation theory [11].

1. Three-Field Formulation of Aeroelastic Problems

The three-field formulation of nonlinear computational aeroelas-
ticity introduced more than a decade ago [20] models a fluid–
structure interaction problem by three coupled partial differential
equations: one governing the fluid subsystem and written in an ALE
coordinate system to facilitate the treatment of moving boundary
surfaces, one governing the motion of the fluid mesh induced by the
motion of boundary surfaces, and one governing the dynamic
equilibrium of the structural subsystem driving the motion of these
boundary surfaces. In the case of inviscid flows, these three equations
can be written as

∂Jw
∂t

����
ξ

� J∇x ·
�
F�w� − ∂xF

∂t
w

�
� 0 (13a)

ρS
∂2uS
∂t2

− div�σS�ϵS�uS��� � b (13b)

~ρ
∂2xF
∂t2

− div� ~E∶ ~ϵ�xF�� � 0 (13c)

where ξ and xF�t� denote the reference position of a fluid grid point
and the time-dependent displacement of a fluid grid point,
respectively; J � det�dxF∕dξ� is the Jacobian of the frame
transformation ξ → xF; F denotes the convective flux associated
with the fluid state vector w; ϵS is the strain tensor of the structure; b
denotes the body forces acting on the structure; and ~ρ, ~E, and ~ϵ denote
the ficticious density, elasticity properties, and strain tensor of the
pseudostructural system adopted for modeling the moving fluid grid,
respectively. All other variables have the same meaning as before.
The finite volume (fluid) and finite-element (structure) semi-

discretizations of the previous equations lead to

�A�xF�w�;t � F�w;xF;xF;t� � 0 (14a)

MSu;tt � fint�u;u;t� − fae�u;w� � 0 (14b)

~KxF − ~Kcu � 0 (14c)

whereA denotes the diagonal matrix of cell volumes;w and x denote
the fluid state and fluid grid position semidiscrete vectors,
respectively; a subscript ; t designates a time derivative;F denotes the
vector of numerical convective flux functions; MS is the finite-
element mass matrix of the structure; u is the semidiscrete
displacement vector; fint and fae denote the vectors of internal and
external aerodynamic forces acting on the structure, respectively; ~K
and ~Kc are pseudostiffnessmatrices; and ~Kc accounts for the effect of
the structural motion on the fluid mesh at the interface between the
structure and the external fluid [21].

2. Linearization Around an Equilibrium Configuration

Consider an aeroelastic system in an equilibrium configuration
(wo,w;to � 0, xFo, xF;to � 0, uo, u;to � 0, u;tto � 0) designated by
the subscript o. To rapidly compute the response of this system to a
perturbation of the form (δw, δw;t, δxF, δxF;t, δu, δu;t, δu;tt), which
can be used to identify the aeroelastic parameters of this system and
determine its stability or flutter, the problem unknowns are expanded
as follows:

w�wo�δw; w;t� δw;t xF�xFo�δxF xF;t� δxF;t (15)

u � uo � δu u;t � δu;t u;tt � δu;tt (16)

and Eqs. (14a–14c) are linearized as follows.
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First, the fluid equations are linearized around the equilibrium
configuration and rewritten in dimensionless form following the
approach first described in [13,14]. This transforms Eq. (14a) into

�Aoδ _�w� �Hoδ �w� � �Eo � �Co�δ _�xF � �Goδ �xF � 0 (17)

where

�Ao � �A� �xFo� �Ho �
∂ �F
∂ �w
� �wo; �xFo� �Eo �

∂ �A
∂ �xF
� �xFo� �wo

�Co �
∂ �F
∂ _�xF
� �wo; �xFo� �Go �

∂ �F
∂ �x
� �wo; �xFo �

Here, and throughout the remainder of this section, the bar notation
indicates that a quantity is dimensionless, and a dot designates the
derivative with respect to the dimensionless time:

τ �
�
V∞

Lo

�
t (18)

where Lo denotes a reference length, and V∞ is the freestream
velocity.
The matrices �Ho, �Go, and �Co result from a first-order Taylor

expansion of the vector of numerical flux functions around the
equilibrium configuration ( �wo, �xFo ). Thematrix �Ho has, in general, a
rank equal to the number of fluid degrees of freedom (DOF). The
matrix �Eo results from a similar expansion of the time derivative of
the product of the cell volumes and the fluid state vector.
Next, the structural subsystem [Eq. (14b)] is linearized around the

equilibrium state (wo, xFo, uo) to obtain

MSδu;tt �Doδu;t �K 0δu � Poδ �w (19)

where

Ko �
∂fint

∂u
�uo� K 0 � Ko −

∂fae

∂u
�wo;uo�

Do �
∂fint

∂u;t
�uo� Po �

∂fae

∂ �w
�wo;uo�

To keep the notation as compact as possible, the subscript o and the
prefix δ are dropped in the remainder of this paper. Hence, the same
variables w, xF, and u are used next to denote the perturbations
around the chosen equilibrium configuration of the fluid state, fluid
mesh motion, and structural motion vectors, respectively.
Then, the dimensionless fluidmesh position and velocity variables

�x and _�x are eliminated from the coupled system of linearized
equations by introducing

~KF � ~K−1 ~Kc (20)

so that

�xF � ~KF �u _�xF � ~KF
_�u (21)

where

�u � u

Lo
(22)

and u is measured with respect to the equilibrium configuration. The
previous algebraic manipulations allow rewriting Eq. (17) as

�A _�w� �H �w�� �E� �C� ~KF
_�u� �G ~KF �u � 0 (23)

Next, neglecting the effects of ∂fae
∂u jo and Do, that is assuming that

K 0 ≈Ko and no structural damping, Eq. (19) is projected onto a
modal basis V of nm dry, natural, structural modes and therefore is
transformed into

Ium;tt �Ω2um � Pm �w (24)

Here, I denotes the identity matrix, Ω2 is a diagonal matrix
containing the squares of nm natural circular frequencies of the
structure, and the subscript m designates generalized modal
quantities, e.g., um denotes the generalized modal displacement
coordinates and Pmw the generalized aerodynamic forces satisfying

u � Lo �u � Vum Pm � VTP (25)

In summary, Eqs. (23) and (24) constitute the governing linearized
equations of motion of an aeroelastic system. They can be solved
either in the time or frequency domain to determine the flutter
characteristics of this system. Both computational approaches are
briefly reviewed next.

3. Flutter Analysis in the Time Domain

To perform the flutter analysis of a given aeroelastic system, a
pertinent initial perturbation can be defined, and a numerically stable
and provably second-order time-accurate staggered solution
procedure [22–24] can be applied to the time integration of the
coupled fluid [Eq. (23)] and structural [Eq. (24)] semidiscrete
equations of equilibrium. In this case, analyzing the predicted
response of the aeroelastic system by a modal identification
procedure, for example, an eigenrealization algorithm such as ERA
[25], determines the flutter characteristics of the aeroelastic system.

4. Flutter Analysis in the Frequency Domain

Equations (23) and (24) can be transformed into the frequency
domain and manipulated to define a generalized aerodynamic force
matrix. Then, the flutter analysis of the aeroelastic system of interest
can be performed in the frequency domain by substituting this matrix
into the frequency domain counterpart of Eq. (24) and applying the
p − k method [26,27] to the resulting dynamic equation as
described next.
Let

k �
�
Lo
V∞

�
ω (26)

denote the dimensionless reduced frequency. From this definition
and that of the dimensionless time [Eq. (18)], it follows that

ωt � kτ (27)

Let also

faem � Pm �w (28)

denote the generalized aerodynamic forces appearing in Eq. (24). In
the frequency domain, �w, um, and faem can be expressed as

�w � �waeikτ um � uame
ikτ faem � fae

a

m eikτ (29)

where i is the pure imaginary number satisfying i2 � −1; and �wa,uam,
and fae

a

m denote the amplitudes of �w, um, and faem , respectively.
Substituting the first two ofEq. (29) into Eq. (23) and using the first

of Eq. (25) leads to

�wa�k� � −
�
1

Lo

�
�ik �A� �H�−1�ik� �E� �C� � �G� ~KFVu

a
m (30)

From Eq. (28), the second of Eq. (25), the third of Eq. (29), and
Eq. (30), it follows that

fae
a

m �k� � VTP �wa�k� � −
�
1

Lo

�
VTP�ik �A� �H�−1

× �ik� �E� �C� � �G� ~KFVu
a
m � Qmu

a
m (31)

where
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Qm�k� � −
�
1

Lo

�
VT �P�ik �A� �H�−1�ik� �E� �C� � �G� ~KF�V (32)

is the generalized aerodynamic force complexmatrix of sizenm equal
to the dimension of the structural modal basis.
Now, from definition (18), the second of Eq. (29), the definition of

the reduced frequency [Eq. (26)], and Eq. (27), it follows that

um;t � iωum (33)

Next, decomposing Qm into its real part QR
m and imaginary part QI

m

and using the previous identity leads to

Pm �w � faem � Qmum � QR
mum � iQI

mum � QR
mum �

1

ω
QI
mum;t

(34)

which transforms Eq. (24) into

Ium;tt −
1

ω
QI
mum;t � �Ω2 −QR

m�um � 0 (35)

In summary, starting from Eqs. (23) and (24), which are based on the
linearized CFD technology outlined in Sec. III.A.2, Eq. (35) is
derived. Then, the flutter analysis of a given aeroelastic system can be
performed in the frequency domain simply by applying the p − k
method [26,27] to this equation.

5. Incorporation of the Internal Fluid Models

Equation (23) governs the external flow and therefore is valid
independently from the presence or absence of an internal fluid in the
structure. However, if the structure contains an internal fluid, Eq. (24)
can be modified as follows. First, the added-mass matrix MA

[Eq. (12)] or its counterpart obtained with mass and inertia lumping
can be assembled into the structural mass matrixMS. Then, the first
nm natural modes of the structure containing the internal fluid, that is
the structure characterized by the finite-element matrices �MS �
MA� andK, are computed, and Eq. (19) is projected onto the modal
basis defined by these modes to obtain a governing equation similar
to Eq. (24).

6. Implementation in AERO

Both time domain and frequency domain aspects of the linearized
CFD-based computational framework for flutter analysis described
previously are implemented in the CFD-based aeroelastic software
platform AERO [28,29]. This software has been validated for several
wind-tunnel and flight-test configurations, including the AGARD
Wing 445.6 and the F-16 Block 40 aircraft [28,29]. Its time-domain
capability is used in this work to perform all reported flutter analyses.

7. Implementation in REELC

The frequency domain component of the linearized CFD-based
computational framework for flutter analysis described previously is
also implemented in the code REELC [30]. Hence, this code is also
used in this work to perform and verify all reported flutter analyses.

B. Non-Computational-Fluid-Dynamics-Based Computational
Framework

For both purposes of verification and compare-and-contrast, the
doublet-lattice method (DLM) and ZONA51 lifting-surface theory
are also considered in this work for predicting the sloshing effects of
an internal fluid on the flutter envelope of an aeroelastic system.
These two methods, which operate in the frequency domain, are
complementary representatives of non-CFD-based computational
frameworks. They are equipped herewith thep − kmethod for flutter
analysis [26,27]. The DLM is commonly used in the aircraft industry
for load computations in the subsonic regime, and the ZONA51
lifting-surface theory is typically used for similar computations in
supersonic air streams. Both methods can account for interference

among multiple lifting surfaces and bodies. However, ZONA51
assumes planar lifting surfaces. Because both methods are well
covered in the literature [19,31,32], they are not overviewed next.
Instead, only the ability or inability of these methods to handle
aeroelastic configurations with stores and fuel tanks is briefly
discussed.

1. Doublet-Lattice Method for Subsonic Flows

To represent the lifting characteristics of bodies like a fuselage,
nacelle, or an external store, the slender-body theory has been
associated with the DLM [33] in the subsonic domain. The primary
wing–body interference is approximated by a system of images of the
DLM trailing vortices and doublets within a cylindrical interference
body that circumscribes each slender body. The secondary wing–
body interference that results from the DLM-bound vortices and
doublets is accounted for by a line of doublets located on the
longitudinal axis of each slender body. The boundary conditions of
no flow through the lifting surfaces or through the body (on the
average about the periphery) lead to the equations for the lifting
pressure on the surfaces and longitudinal (and/or lateral) loading on
the bodies in terms of the normal washes on the wing–body
combination.

2. ZONA51 Lifting-Surface Theory for Supersonic Flows

Unlike the DLM, ZONA51 has no extension to slender bodies.
Consequently, it cannot handle configurations with stores and
fuel tanks. For this reason, it is used in this work primarily for the
purpose of verification when assessing the validity of ignoring
the store aerodynamics during the flutter analysis of a wing–store
configuration with an internal fluid.

3. Implementation in NASTRAN and Incorporation of the Internal Fluid

Models

The DLM and ZONA51 packages used in this work are those
implemented in the SOL145 “Dynamic Flutter Analysis” of the
commercialMSCNASTRANsoftware. For the purpose of this study,
the hydroelastic and frozen-mass models described in Secs. II.A and
II.B, respectively, were incorporated in both methods by using
NASTRAN’s programming language DMAP (from “Direct Matrix
Abstraction Program”) to superpose the added-mass matrix of the
internal fluid to the structural massmatrix. Alternatively, the standard
virtual mass approach available in NASTRAN could have been used
for the same purpose. It was recently verified (see [34]) that both
aforementioned approaches give the same results. For both DLM and
ZONA51,MSCNASTRAN’s implementation of thep − kmethod is
used for flutter analysis.

Fig. 2 Wing–store system: hypothetical assembly of the 2.5 ft weakened
model 3 of the AGARDWing 445.6 and a store.
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IV. Flutter Analysis of a Wing–Store Configuration
at Different Fill Levels

To develop an insight into the effect of fuel sloshing on the
flutter envelope of an aircraft, the flutter analysis of a hypothetical

wing–store configuration filled with JP-8 is considered in this
section. The numerical results obtained for different flight regimes
and various store fill levels are reported and discussed.

A. Wing–Store Test System

The hypothetical aeroelastic system considered herein consists
of the assembly of the 2.5 ft weakened model 3 of the AGARD
Wing 445.6 [35] and a store with a 3∕32-in.-thick aluminum
(E � 1.44 × 1010 lb∕ft2, ν � 0.33, ρS � 5.24 slugs∕ft3) shell. The
internal fluid has the same density as that of JP-8 fuel (ρF �
1.5579 slugs∕ft3). The wing and the store are connected by two sets
of linear multipoint constraints (see the Appendix for a detailed
description of the geometry).
An undamped finite-element model of the wing with 800

triangular composite shell elements and 2646 DOF is constructed
using the information given by Yates [35]. It predicts natural
mode shapes and frequencies that are similar to those derived
experimentally. The hypothetical store is discretized into 1408
triangular shell elements and 4188 DOF. Figure 2 shows the finite-
element mesh of the geometry.

Table 1 Variations with the store fill level of the natural frequencies computed by AERO

Frequency, Hza

Mode 0% fill 30.9% fill 50.0% fill 69.1% fill 99.9% fill

Hydroelastic representation of the internal fluid

First flexion 11.55 11.42 (−1.10) 11.29 (−2.22) 11.17 (−3.29) 11.05 (−4.32)
Second flexion 39.61 35.52 (−10.34) 33.58 (−15.22) 31.20 (−21.22) 29.50 (−25.52)
First torsion 45.96 37.93 (−17.46) 31.50 (−31.45) 28.19 (−38.67) 25.71 (−44.06)

Second torsion 57.79 53.61 (−7.23) 52.48 (−9.18) 51.96 (−10.09) 51.66 (−10.60)
Third flexion 97.87 93.00 (−4.97) 90.39 (−7.64) 88.77 (−9.30) 85.92 (−12.21)
Third torsion 129.19 126.36 (−2.19) 123.70 (−4.25) 125.89 (−2.55) 125.48 (−2.87)

Store axirotation 158.29 146.70 (−7.32) 129.32 (−18.30) 108.94 (−31.18) 91.78 (−42.02)
Coplanar 163.08 162.40 (−0.42) 161.37 (−1.05) 159.42 (−2.24) 152.40 (−6.55)

Frozen-mass representation of the internal fluid

First flexion 11.55 11.39 (−1.32) 11.24 (−2.65) 11.09 (−3.93) 10.97 (−5.01)
Second flexion 39.61 35.41 (−10.60) 32.27 (−18.54) 29.93 (−24.45) 28.22 (−28.75)
First torsion 45.96 36.56 (−20.44) 31.00 (−32.54) 27.49 (−40.19) 25.09 (−45.40)

Second torsion 57.79 53.63 (−7.19) 52.53 (−9.10) 52.02 (−9.99) 51.74 (−10.46)
Third flexion 97.87 91.84 (−6.15) 92.33 (−5.66) 83.92 (−14.25) 85.87 (−12.25)
Third torsion 129.19 102.89 (−20.36) 126.29 (−2.24) 125.96 (−2.50) 125.86 (−2.58)

Store axirotation 158.29 127.18 (−19.65) 86.67 (−45.25) 90.28 (−42.96) 91.79 (−42.01)
Coplanar 163.08 159.44 (−2.23) 155.34 (−4.75) 150.92 (−7.45) 147.27 (−9.69)

aBetween parentheses: percent change with respect to the 0% store fill level.

Table 2 Relative differences between the frequencies computed by
AERO using the hydroelastic and frozen-mass models

Discrepancies in the frequencies computed using
two different internal fluid models (as a percentage
of the frequency computed using the hydroelastic

added-mass model)

Mode 0% fill 30.9% fill 50.0% fill 69.1% fill 99.9% fill

First flexion — −0.23 −0.44 −0.66 −0.72
Second flexion — −0.30 −3.91 −4.09 −4.34
First torsion — −3.61 −1.58 −2.47 −2.40
Second torsion — 0.05 0.09 0.11 0.15
Third flexion — −1.24 2.15 −5.46 −0.05
Third torsion — −18.57 2.09 0.06 0.30
Store axirotation — −13.31 −32.98 −17.13 0.01
Coplanar — −1.82 −3.74 −5.33 −3.37

Table 3 Variations with the store fill level of the natural frequencies computed by NASTRAN

Frequency, Hza

Mode 0% fill 30.9% fill 50.0% fill 69.1% fill 99.9% fill

Hydroelastic representation of the internal fluid

First flexion 11.20 11.00 (−1.79) 10.90 (−2.68) 10.65 (−4.91) 10.60 (−5.36)
Second flexion 39.70 34.53 (−13.02) 32.50 (−18.14) 28.79 (−27.48) 27.80 (−29.97)
First torsion 42.80 35.54 (−16.96) 32.00 (−25.23) 26.65 (−37.73) 25.50 (−40.42)

Second torsion 57.10 49.82 (−12.75) 49.10 (−14.01) 47.98 (−15.97) 48.20 (−15.59)
Third flexion 99.60 92.23 (−7.40) 91.70 (−7.93) 87.87 (−11.78) 87.20 (−12.45)
Third torsion 122.00 117.20 (−3.93) 118.00 (−3.28) 117.00 (−4.10) 119.80 (−1.80)

Store axirotation 162.00 146.60 (−9.51) 130.00 (−19.75) 104.20 (−35.68) 93.00 (−42.59)
Coplanar 176.00 179.90 (2.22) 174.00 (−1.14) 170.00 (−3.41) 155.60 (−11.59)

Frozen-mass representation of the internal fluid

First flexion 11.20 11.03 (−1.52) 10.80 (−3.57) 10.69 (−4.55) 10.50 (−6.25)
Second flexion 39.70 34.81 (−12.32) 30.60 (−22.92) 29.53 (−25.62) 27.70 (−30.23)
First torsion 42.80 36.31 (−15.16) 32.10 (−25.00) 27.47 (−35.82) 25.30 (−40.89)

Second torsion 57.10 50.60 (−11.38) 49.10 (−14.01) 48.57 (−14.94) 48.30 (−15.41)
Third flexion 99.60 93.38 (−6.24) 93.70 (−5.92) 85.68 (−13.98) 87.40 (−12.25)
Third torsion 122.00 104.90 (−14.02) 119.40 (−2.13) 119.10 (−2.38) 119.00 (−2.46)

Store axirotation 162.00 120.20 (−25.80) 88.40 (−45.43) 91.53 (−43.50) 93.40 (−42.35)
Coplanar 176.00 171.20 (−2.73) 165.40 (−6.02) 159.30 (−9.49) 154.50 (−12.22)

aBetween parentheses: percent change with respect to the 0% store fill level.
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B. Simulated Ground Vibrations

Because in both computational frameworks adopted in this work
the structure is represented by its natural modes, an eigenanalysis of
the aeroelastic system described previously is first performed for
various store fill levels. In general, the results obtained using AERO
and NASTRAN are in good agreement, with relative discrepancies
lower than 7% for all frequencies. For this reason, the analysis
reported next refers only to the AERO computational results (see
Tables 1 and 2). However, the NASTRAN counterparts are also
provided for reference (see Tables 3 and 4).
Table 1 reports the first natural frequencies computed by AERO

and listed using their physical description. The reader can observe
that these two models of the internal fluid lead to a general trend of
decreasing frequencies with increasing store fill levels. However,
both models lead to results that also differ in an interesting manner.
When the hydroelastic model of the internal fluid is used, the
computed frequencies decrease monotonically with an increasing fill
level. However, when the frozen-mass model is used, some
frequencies, namely those associated with the third flexional and
torsional modes, reach their minima at intermediate fill levels.
Moreover, one can see that the store fill level affects some modes
more significantly than others. As this fill level increases from 0 to
99%, the natural frequencies corresponding to the second bending

mode and store-roll modes drop by more than 40%, whereas those
corresponding to the other modes drop by as little as 3%.
Table 2 reports the relative discrepancies between those

eigenfrequencies computed using the hydroelastic and frozen-mass
models. Except for certain frequencies that are identically computed
(within 0.5% discrepancy) using either model, the frozen-mass
model tends to lead to lower frequencies than the hydroelastic model
for the same fill level. The largest discrepancies are observed at
intermediate fill levels (e.g., 30.9, 50, and 69.1%). In any case, the
reader can observe that freezing the mass of the internal fluid instead
of accounting for its small motion relative to the containing structure
leads to the overestimation of the added-mass effect. Moreover, the
hydroelastic model essentially predicts a monotonic decrease in the
frequency for the first three torsional/bending modes, the coplanar
mode, and the store-roll mode (which, as its name suggests, is
predominantly characterized by the displacement of the store). This
suggests that the effect of the internal fluid increases when the store
fill level is increased. However, the frozen-mass model predicts that
the presence of the internal fluid alters most significantly the
frequency of the store-roll mode at the 50% fill level. It is furthermore
observed that the largest differences between the frequencies
obtained using the two internal fluid models occur for the store-roll
mode. This is expected because the representation of the roll inertia of
the fluid differs significantly from one model to the other.

C. Flutter Analysis

Next, the results of the flutter analysis performed on thewing–store
test configuration using both computational frameworks described
previously are reported and discussed. In both cases, the structure is
represented by its first 10 natural modes. Flutter predictions are
performed for various freestream Mach numbers spanning the
subsonic, transonic, and early supersonic flow regimes, following the
guidelines established by Yates [35] for the stand-alone AGARD
Wing 445.6 configuration (see Table 5).

1. AERO Results

First, the CFD-based results obtained using the higher-fidelity
code AERO are presented. Table 6 reports, for both internal fluid
models considered in this work and various freestream Mach
numbers M∞, the variation with the store fill level of the critical

Table 4 Relative differences between the frequencies (ordered
according to corresponding mode shapes) computed by

NASTRAN using the hydroelastic and frozen-mass models

Discrepancies in the frequencies computed using different
internal fluid models (as a percentage of the frequency
computed using the hydroelastic added-mass model)

Mode 0% fill 30.9% fill 50.0% fill 69.1% fill 99.9% fill

First flexion — 0.27 −0.92 0.38 −0.94
Second flexion — 0.81 −5.85 2.57 −0.36
First torsion — 2.17 0.31 3.08 −0.78
Second torsion — 1.57 0.00 1.23 0.21
Third flexion — 1.25 2.18 −2.49 0.23
Third torsion — −10.49 1.19 1.79 −0.67
Store axirotation — −18.01 −32.00 −12.16 0.43
Coplanar — −4.84 −4.94 −6.29 −0.71

Table 6 Variations of the critical freestream velocity with the store fill level predicted by AERO

Vcr
∞, ft∕sa

M∞ Fuel model 0% fill 15.0% fill 30.9% fill 50.0% fill 69.1% fill 99.9% fill

0.499 Hydroelastic 695.6 721.4 (3.71) 708.0 (1.78) 682.1 (−1.95) 652.4 (−6.21) 627.0 (−9.86)
0.499 Frozen mass 695.6 720.0 (3.52) 703.7 (1.17) 668.3 (−3.92) 631.4 (−9.23) 593.2 (−14.72)
0.678 Hydroelastic 981.5 995.1 (1.38) 978.8 (−0.28) 956.1 (−2.59) 928.7 (−5.38) 902.6 (−8.04)
0.678 Frozen mass 981.5 993.4 (1.20) 975.7 (−0.60) 944.0 (−3.82) 907.9 (−7.50) 872.5 (−11.11)
0.901 Hydroelastic 1260.9 1256.4 (−0.36) 1241.7 (−1.52) 1222.5 (−3.05) 1200.6 (−4.78) 1182.9 (−6.19)
0.901 Frozen mass 1260.9 1254.8 (−0.49) 1236.0 (−1.98) 1212.9 (−3.81) 1183.5 (−6.14) 1162.4 (−7.82)
0.960 Hydroelastic 1279.2 1266.9 (−0.97) 1251.9 (−2.14) 1223.9 (−4.32) 1190.0 (−6.97) 1171.3 (−8.43)
0.960 Frozen mass 1279.2 1235.2 (−3.44) 1193.7 (−6.68) 1187.4 (−9.91) 1163.3 (−9.06) 1128.7 (−11.77)
1.072 Hydroelastic 2199.8 2172.2 (−1.26) 2107.7 (−4.19) 1997.8 (−9.18) 1917.1 (−12.85) 1857.4 (−15.57)
1.072 Frozen mass 2199.8 2158.4 (−1.88) 2064.4 (−6.16) 1916.2 (−12.89) 1783.0 (−18.95) 1689.5 (−23.20)
1.141 Hydroelastic 1419.3 1393.8 (−1.80) 2218.4 (56.30) 1983.8 (39.77) 1819.2 (28.17) 1709.1 (20.42)
1.141 Frozen mass 1419.3 1378.2 (−2.90) 2139.8 (50.76) 1863.0 (31.26) 1701.5 (19.88) 1600.4 (12.76)
1.201 Hydroelastic 1139.7 1122.5 (−1.50) 2500.4 (119.40) 2168.2 (90.25) 1919.2 (68.40) 1761.2 (54.53)
1.201 Frozen mass 1139.7 1143.9 (0.37) 2358.8 (106.97) 1868.0 (63.91) 1712.1 (50.22) 1617.7 (41.95)
1.272 Hydroelastic 3141.4 3026.4 (−3.66) 2847.3 (−9.36) 2589.5 (−17.57) 2408.9 (−23.32) 2285.5 (−27.24)
1.272 Frozen mass 3141.4 3029.1 (−3.57) 2735.1 (−12.93) 2436.7 (−22.45) 2207.7 (−29.72) 2069.5 (−34.12)

aBetween parentheses: percent change with respect to 0% store fill level.

Table 5 Freestream parameters chosen for the flutter analysis [35]

M∞ 0.499 0.678 0.901 0.960 1.072 1.141 1.201 1.272
ρ∞, kg∕m3 0.4278 0.2082 0.0995 0.0634 0.0551 0.0783 0.0644 0.0593
ρ∞, slugs∕ft3 0.000830 0.000404 0.000193 0.000123 0.000107 0.000152 0.000125 0.000115
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values Vcr
∞ of the freestream velocity, that is its values at the onset of

flutter.
Regardless of the internal fluid model used, the critical flutter

speed, and therefore also the critical pressure, predicted byAERO are
found to generally decreasewith an increasing fill level, meaning that
flutter onsets earlier at higher fill levels. Also, these critical quantities
are found to change most significantly as the fill level varies from 30
to 70%. Exceptions are noticeable, however, at the two supersonic
Mach numbers M∞ � 1.141 (see Fig. 3) and M∞ � 1.201, where
AERO predicts that the aforementioned critical quantities
significantly increase when the fill level is increased from less than
20 to about 31%, before they decrease when the fill level is further
increased.
Overall, the reader can observe that the choice between the two

internal fluid models considered in this work has little impact on the
critical quantities predicted by AERO. In most cases, the difference
between the critical velocity values, and therefore critical pressure
values, computed using both models are within a few percent of the
corresponding zero-fill reference values (see Fig. 3). Nevertheless,
large relative differences are found for the caseM∞ � 1.201, where
the reference critical quantities are very small.
To characterize further the dependence on the flight conditions of

the impact of the internal fluid model, the following quantity:

f�Vcr
∞� �

Vcr
∞;frozen − Vcr

∞;hydroelastic

Vcr
∞;hydroelastic

is plotted in Fig. 4. At all Mach numbers where the critical speed
decreases monotonically with the increasing fill level, two
observations are noteworthy. First, f is almost always negative,
meaning that the frozen-mass representation of the internal fluid

underpredicts the flutter quantities or, in other words, overestimates
the added-mass effects of the internal fluid, in comparison to the
hydroelastic representation of the internal fluid. Second, in most
cases, the absolute value of f increases with the store fill level.
Therefore, the overprediction of the added-mass effects is
exacerbated by an increasing fill level. At Mach 1.201 and fill level
15%, f becomes positive. This means that, at these conditions, the
cruder frozen-massmodel overpredicts the size of the flight envelope.
Given that this model is an approximation of the hydroelastic model,
the following comment can be reasonably added. From a design
perspective, these findings imply that the frozen-mass model could
be treacherous because, if relied on, it could lead to a design
configuration that may experience unexpected flutter at certain flight
conditions.
Next, Fig. 5 reports the computed variations of the flutter speed

index with the freestream Mach number for the half-full store and
almost-full store cases, and both internal fluid models. Here, the
flutter speed index is defined as

FSI �
�

Vcr
∞

bsωα
���
�μ
p

�
(36)

whereωα is the first dry torsional mode of the structural system; bs is
the semichord of thewing at the root; and �μ � �mS∕ρ∞V̂�, where ρ∞
is the freestream density of the test medium. In the absence of a store,
V̂ is the volume of a conical frustrum with lower and upper base
diameters equal to the streamwise root and tip chords of the wing,
respectively, and height equal to the wing semispan; and mS is the
structural mass of the wing [35]. In the context of this work, the
volume of the smallest cylinder enclosing the store is added to V̂, and
the structural mass of the empty store is added tomS. The reader can
observe that, at certain flight conditions (e.g., M∞ � 0.96 and

Fig. 3 Variations of the critical freestream velocity with the store fill level predicted by AERO.

Fig. 4 Variations with the store fill level of the relative difference in the
critical speeds computed by AERO due to the difference between the two
considered internal fluid models.

Fig. 5 Variations of the flutter speed index with the freestream Mach
number predicted by AERO.
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M∞ � 1.072), the flutter speed index is affected by the choice of the
internal fluid model as much as, if not more than, taking into account
the presence of an internal fluid in the flutter analysis.

2. REELC Results

Next, the computational results obtained for supersonic airstreams
using the higher-fidelity codeREELC are presented in Table 7. These
results are in good agreement with those predicted by the codeAERO
(see Fig. 6).

3. NASTRAN Results

Finally, the flutter analysis results obtained using NASTRAN
are summarized in Table 8. For subsonic airstreams, the comparison

of the critical freestream velocities obtained using the DLM
andAERO is performed in Fig. 7. The reader can observe that AERO
and NASTRAN predict similar results that lead to the same
conclusions.
In supersonic airstreams, the comparison of the results obtained

using NASTRAN (ZONA51), AERO, and REELC is performed in
Fig. 6. Here, the reader can observe that the lower-fidelity ZONA51
method cannot reproduce the results of the higher-fidelity CFD-
based codes AERO andREELC. The discrepancies are due primarily
to the absence of the aerodynamics of the tank from the ZONA51
computational model due itself to the inability of this method to deal
with slender bodies. (This explanation was verified by repeating the
flutter analysis in supersonic airstreams for the computational

Fig. 6 Comparisonof the variations of the critical freestreamvelocitywith the store fill level predictedbyAERO,REELC, andNASTRAN (ZONA51) for
supersonic airstreams.

Table 7 Variations of the critical freestream velocity with the store fill level predicted by REELC in supersonic domain

Vcr
∞, ft∕sa

M∞ Fuel model 0% fill 15.0% fill 30.9% fill 50.0% fill 69.1% fill 99.9% fill

1.072 Hydroelastic 2205.8 2168.9 (−1.7) 2021.3 (−8.4) 1917.9 (−13.1) 1792.6 (−18.7) 1725.2 (−21.8)
1.072 Frozen mass 2205.8 2148.0 (−2.6) 2003.9 (−9.2) 1792.9 (−18.7) 1628.5 (−26.2) 1514.9 (−31.3)
1.141 Hydroelastic 1447.3 1389.0 (−4.0) 2017.8 (39.4) 1805.9 (24.7) 1645.8 (13.7) 1500.1 (3.6)
1.141 Frozen mass 1447.3 1337.2 (−7.6) 1952.1 (34.9) 1718.0 (18.7) 1594.4 (10.1) 1514.4 (4.6)
1.201 Hydroelastic 1861.3 1723.2 (−7.4) 2450.5 (31.6) 2198.7 (18.1) 2004.6 (7.7) 1918.7 (3.1)
1.201 Frozen mass 1861.3 1614.9 (−13.2) 2373.6 (27.5) 2013.4 (8.2) 1832.3 (−1.6) 1728.5 (−7.1)
1.272 Hydroelastic 3277.2 3139.0 (−4.2) 2700.2 (−17.6) 2477.2 (−24.4) 2269.7 (−30.7) 2188.3 (−33.2)
1.272 Frozen mass 3277.2 3081.0 (−6.0) 2672.2 (−18.5) 2269.8 (−30.7) 2038.3 (−37.8) 1906.9 (−41.8)

aBetween parentheses: percent change with respect to 0% store fill level.
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aeroelastic model excluding the aerodynamics of the tank using
AERO and REELC, and reproducing the results obtained using
ZONA51.) On the other hand, the reader can observe once again that
AERO andREELCdeliver relatively close predictions. This suggests
that the aerodynamics of a store cannot be, in general, ignored when
performing the aeroelastic analysis of a wing–store configuration.

4. Further Discussion of the Impact of the Chosen Model for the

Internal Fluid

Figure 8 highlights the differences found between the critical
freestream velocities predicted using a hydroelastic model for the
internal fluid or a frozen-mass simplification and thevarious software
packages considered in this work. These differences tend to be

Table 8 Variations of the critical freestream velocity with the store fill level predicted by NASTRAN

Vcr
∞, ft∕sa

M∞ Fuel model 0% fill 15.0% fill 30.9% fill 50.0% fill 69.1% fill 99.9% fill

0.499 Hydroelastic 669.1 666.0 (−0.5) 652.3 (−2.5) 628.9 (−6.0) 606.6 (−9.3) 584.7 (−12.6)
0.499 Frozen mass 669.1 664.3 (−0.7) 647.6 (−3.2) 616.5 (−7.9) 583.8 (−12.7) 558.2 (−16.6)
0.678 Hydroelastic 919.8 916.0 (−0.4) 903.8 (−1.7) 881.3 (−4.2) 860.9 (−6.4) 838.6 (−8.8)
0.678 Frozen mass 919.8 913.9 (−0.6) 897.9 (−2.4) 871.3 (−5.3) 840.2 (−8.7) 809.9 (−11.9)
0.901 Hydroelastic 1156.2 1154.0 (−0.2) 1141.4 (−1.3) 1120.5 (−3.1) 1105.3 (−4.4) 1089.7 (−5.7)
0.901 Frozen mass 1156.2 1151.0 (−0.4) 1135.9 (−1.8) 1114.0 (−3.6) 1091.3 (−5.6) 1071.4 (−7.3)
0.960 Hydroelastic 1275.6 1272.0 (−0.3) 1259.2 (−1.3) 1234.0 (−3.3) 1221.1 (−4.3) 1204.6 (−5.6)
0.960 Frozen mass 1275.6 1268.9 (−0.5) 1252.5 (−1.8) 1228.6 (−3.7) 1206.8 (−5.4) 1186.8 (−7.0)
1.072 Hydroelastic 1376.5 1323.4 (−3.9) 1389.3 (0.9) 1294.5 (−6.0) 1313.4 (−4.6) 1209.9 (−12.1)
1.072 Frozen mass 1376.5 954.3 (−30.7) 717.1 (−47.9) 1294.1 (−6.0) 1249.8 (−9.2) 1232.5 (−10.5)
1.141 Hydroelastic 1447.3 1189.5 (−17.8) 1376.3 (−4.9) 1337.2 (−7.6) 1303.7 (−9.9) 1269.4 (−12.3)
1.141 Frozen mass 1447.3 862.3 (−40.4) 642.6 (−55.6) 1318.1 (−8.9) 1226.9 (−15.2) 1206.2 (−16.7)
1.201 Hydroelastic 1392.4 1264.4 (−9.2) 1829.0 (31.3) 1752.6 (25.9) 1689.0 (21.3) 1631.2 (17.1)
1.201 Frozen mass 1392.4 984.4 (−29.3) 681.9 (−51.0) 1685.3 (21.0) 1597.1 (14.7) 1537.8 (10.4)
1.272 Hydroelastic 1664.4 1544.5 (−7.2) 2399.5 (44.1) 2210.0 (32.8) 2070.1 (24.4) 1988.1 (19.4)
1.272 frozEn mass 1664.4 1274.7 (−23.4) 818.7 (−50.8) 2100.2 (26.2) 1924.3 (15.6) 1810.8 (8.8)

aBetween parentheses: percent change with respect to 0% store fill level.

Fig. 7 Comparison of the variations of the critical freestream velocity with the store fill level predicted by AERO and NASTRAN (DLM) for subsonic
airstreams.
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smaller in the subsonic regime (below 6%) and larger in supersonic
airstreams (above 10%). Interestingly, however, except for the case of
the fill level of 99% at M∞ � 1.141, these differences have always
the same negative sign, at least for the wing–store configuration

considered in this work. This suggests that the frozen-mass
assumption is most often a conservative one, in the sense that it leads
to smaller critical freestream velocities than the hydroelastic model
for the internal fluid.

Fig. 8 Differences between the critical freestreamvelocities predicted using a hydroelasticmodel of the internal fluid or a frozen-mass simplification and
AERO, REELC, and NASTRAN.
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V. Conclusions

Flutter computations were performed for a wing–store test config-
uration in subsonic, transonic, and early supersonic air streams, using
both computational-fluid-dynamics-based and linear-theory-based
computational frameworks. Various JP-8 fill levels of the store were
considered. In each case, the fuel was represented using both a
hydroelastic added-mass model, which accounts for the sloshing
effect, and a frozen-mass model, which ignores it. Both independent
sets of obtained computational results suggest that, in general, the
critical pressure and flutter speed decrease with an increasing fill
level. They also reveal that ignoring the hydroelastic vibration effect
by representing the internal fluid as a simplified frozen mass leads to
natural frequencies of the dry wing–store system that are more
sensitive than otherwise to the store fill level. More importantly, they
also suggest that, in general, but not necessarily at all speeds, ignoring
the hydroelastic effect tends to overestimate the added-mass effect
and underestimate the critical pressure and flutter speed. The
obtained sets of computational results also reveal that, at least in
the supersonic regime, excluding the aerodynamics of the store from
the computational aeroelastic model, for example to accelerate
parameteric studies, leads to erroneous numerical predictions.
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Appendix A: Store Geometry

The test geometry considered in Sec. IV.A consists of the 2.5 ft
weakened model 3 of the AGARD Wing 445.6 [35] and an
axisymmetric store with smooth front and back ends. Using a
coordinate system (in feet) centered at the leading edge of the root of
the wing (the same system as in Yates [35]), the store is positioned so
that its front tip is in the plane x � −0.1667 and its centerline is at the
intersection of the planes y � 0.75 and z � −0.375. The wing and
the store are connected by two sets of linear multipoint constraints.
The first set connects the point on thewing with coordinates (0.7966,
0.7500, 0.0000) to the two points on the store with coordinates
�0.7395; 0.6783;−0.2018� and �0.7395; 0.8218;−0.2018�, respec-
tively. The second set connects the point (1.947, 0.7500, 0.0000) on
the wing to the two points �2.000; 0.6783;−0.2018� and
�2.000; 0.8218;−0.2018� on the store (see Fig. 2).
The store is a cylinder capped at both ends by identical tapered

sections, each of which begins with a spherical tip then varies

smoothly toward the cylindrical section. The following figure shows
a quarter of the store cross section through the centerline (the
remainder of the store profile can be obtained by symmetry) and
highlights the parameters that completely define the geometry.
Each cross section of a tapered section has two arcs: the leading-

edge arc sLE, and the arc s2, which connects the leading-edge arc to
the cylindrical section. These two arcs are centered at cLE and c2,
respectively. The arc s2 is tangent to sLE at one end and tangent to the
line representing the cross section of the cylindrical wall at the
other end.
The values of the parameters shown in Fig. A1 are as

follows: Rcyl � 0.1875 ft, Lcyl � 1.8333 ft, Lcap � 0.3333 ft,
RLE � 0.04249 ft, and ψ � 47 deg. From these values and the
tangency conditions stated previously, it follows thatR2 � 0.4099 ft
and d2 � 0.2224 ft.
The local coordinates are aligned so that the x1 axis runs along the

centerline of the store, from the root to the tip of the tapered section.
The variation of the radius of the tapered section with the coordinate
x1 is given by

r�x1� �

8>><
>>:

����������������
R2
2 − x21

p
� �Rcyl − R2�; x1 ≤ x1crit

RLE sin

�
cos−1

�
1 − Lcap−x1

RLE

��
; x1 > x1crit

where x1crit � Lcap − RLE�1 − sin�90 ° − ψ��.
The wall thickness of the store twall is relatively small. Hence, the

mass of the empty store can be computed as follows:

mempty
store � 2πρaluminumtwall

�
LcylRcyl � 2

Z
Lcap

0

r�x1� dx1
�
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