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Fig. 3 Variation of density ratio across the shock with shock angle: m, 
experimental data; -, frozen predictions; and X, equilibrium pre- 
dictions. 

predictions of thermodynamic parameters, and compared with sim- 
ilarly predicted upstream density, for a variety of shock angles. 

The variation of the density ratio with shock angle is plotted in 
Fig. 3. As would be expected, density ratio tends to increase with 
increasing shock angle. The experimental data lie between the values 
predicted from ideal and equilibrium calculations. This supports the 
validity of the computed freestream conditions. 

For the cylinder, the shock standoff distance normalized by the 
cylinder radius was measured to be 0.13. A correlation given by 
Hornung7 for flow over blunt bodies was used to predict a standoff 
distance from the density jump across the shock. This value was 
calculated to he 0.47 for perfect gas conditions and 0.21 for equilib- 
rium, both being significantly larger than that measured. A number 
of possible reasons for this have been considered. First, Hornung’s 
correlation was developed for a dissociating nitrogen gas flow. The 
difference between correlations for nitrogen and air can he expected 
to he unimportant. However, the partially dissociated freestream and 
the presence of electrons behind the bow shock may influence the ac- 
curacy of the correlation in this case. Second, the assumption of two 
dimensionality may not be valid for the model used. Comparison of 
the cylinder dimensions (diameter 20 mm and length 25 mm) con- 
firms that three-dimensional effects may be significant. Deviation 
from two dimensionality results in a curvature of the shock along 
the direction of the cylinder axis and a reduction in the standoff dis- 
tance. Hornung’s correlation for a cylinder would then overpredict 
the shock standoff distance. A third possibility is  the influence of ra- 
diation cooling. At the high velocities existing in the flow, extremely 
high temperatures can be expected, at which radiative losses would 
lead to a lowering of the density and hence shock standoff distance. 
The importance of each of these effects on the shock standoff for 
the cylinder is to be the subject of future experimentation. 

Conclusions 
Good quality interferograms of superorbital air flow around a 

range of models have been recorded holographically. From the im- 
ages, shock angles and standoff distances have been measured. The 
results for flow over the wedges gave density ratios that lie within ex- 
pected limits. However, the shock standoff distance for the cylinder 
was found to be smaller than expected and a number of explanations 
have been proposed. 

The results discussed here represent the initial measurements ob- 
tainable from holographic interferometry. Considerably more in- 
formation about the density field around models is to be extracted 
by more detailed analysis of these results and extension to three- 
dimensional imaging. 
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Nomenclature 
A, 

a,  c ,  r,, rB, n,, 
X p ,  I*.. OB, O h  Ref. 2 
b = semichord 
f n (  1 
ho = initial plunge displacement 
U = freestream velocity 
u f 
X /I 

X,  = nth system state 
a, P ,  h 

zb, 9 < p  c h  

( ‘ 1  

= state-space coefficient matrix for the ith 

= typical section parameters as defined in 
linear subdomain 

= functional representation for the izth state 

= linear flutter velocity 
= additional dummy state variable used for 

Hcnon integration 

= pitch, flap, and plunge displacements, 

= modal damping coefficients 
= velocity in the given degree of freedom 

respectively 

Introduction 
HE general form of the equations of motion for the T three-degree-of-freedom aeroelastic typical section in two- 

dimensional, incompressible flow was derived by Theodorsen.’.2 
Edwards et a!.’ proposed a state-space model for this linear system 
incorporating a two-state approximation to Theodorsen aerodynam- 
ics to determine the unsteady aerodynamic loads. However, similar 
state-space models for piecewise linear systems, such as those with 
free play in the structural stiffness of one or more degrees offreedom, 

Received Aug. 21, 1995; revision received Feb. 15, 1996; accepted for 
publication Feb. 15, 1996. Copyright @ 1996 by the American Institute of 
Aeronautics and Astronautics, Inc. All rights reserved. 

*Graduate Research Assistant, Department of Mechanical Engineering 
and Materials Science. 

‘Associate Professor of Mechanical Engineering, Department of Mechan- 
ical Engineering and Materials Science. Member AIAA. 

$J .  A. Jones Professor and Dean, School of Engineering, Department of 
Mechanical Engineering and Materials Science. Fellow AIAA. 



AIAA JOURNAL, VOL. 34, NO. 10. TECHNICAL NOTES 2203 

have typically not been exploited. Such systems are usually modeled 
in one of two ways: 1)  using a describing function or harmonic bal- 
ance approach to linearize the restoring f ~ r c e ~ - ~  or 2) using a much 
more complicated model requiring the solution of finite difference 
or vortex lattice equations in a time marching s ~ l u t i o n . ~ ~ ~  ’ Recently, 
Lin and Cheng4 have used a combination of linear state-space mod- 
els to represent the distinct subdomains of a nonlinear aeroelastic 
system with free play. Their time-domain method incorporates Pad6 
approximants for the determination of the unsteady loading on the 
airfoil. A key issue in using several distinct piecewise linear mod- 
els to simulate the free-play system in the time domain is locating 
the exact point at which the system moves from one linear region 
into the next. Failure to capture this point accurately can result in a 
round-off error that may grow as the numerical integration proceeds 
and lead to numerical in~tabi l i ty .~  To avoid this type of instability, 
Lin and Cheng4 employ a numerical algorithm with a self-adjusting 
time step to ensure that the system does not skip a subdomain as a 
point of discontinuity is approached. Once it is determined that the 
system has moved into another subdomain, the method of bisection 
is used to accurately determine the switching point. An alternative 
means of accurately and efficiently determining the switching point 
in the time domain is proposed in this Note. 

Methodology 
Adaptation of Henon’s method for the computation of PoincarC 

maps allows for determination of the switching point in a piecewise 
linear system to a very high precision in just one integration step by 
rearranging the state-space equations.’ Henon’s method is used to 
integrate a system of equations onto a given surface of section or to a 
given value of a state variable. The technique involves interchanging 
the independent variable and the state variable of interest. As a result, 
the equations are altered, and time becomes a dependent variable. 
By integrating the altered (Henon) equations over a specified step 
in the chosen state variable, the time at which the system reaches 
the given surface is returned as a dependent variable along with the 
values of the other states on the surface. For control surface free 
play, the control surface displacement is the state variable that will 
determine the linear subdomain. The range of the free play is known, 
and the goal is to integrate the system to the exact values for the 
upper and lower free-play boundaries. The numerical algorithm for 
control surface free play is as follows. 

1) Identify the current linear subdomain. Within this subdomain, 
the state-space equations are of the form 

d 
dt 
- 

r 
A,  

0 
- 

where the subscript i represents the particular linear subdomain and 
xIl is a dummy variable, which will beusedin the Henon integration. 

2) Using a constant time step Runge-Kutta algorithm (with an 
appropriately sized time step), integrate the equations of motion for 
the given subdomain forward in time until a change in the piecewise 
linear subdomain is detected. 

3) The distance from the current control surface position to the 
boundary that has been crossed can be easily calculated. The equa- 
tions of motion can be rearranged so that the control surface dis- 
placement becomes the independent variable, and time becomes a 
dependent variable along with the remaining state variables. This is 
done by dividing each of the state equations in Eq. (1) by f,,, where 

n represents the equation associated with control surface displace- 
ment. 

4) The altered (Henon) system can then be integrated in space 
from the current location to the boundary. The result of this integra- 
tion step will be the time at which the system reaches thc boundary 
point and the values of the remaining states at that point. 

5) Using the state values from the Hcnon integration as the initial 
conditions, determine the new linear subdomain and integrate the 
original state equations forward in time until the next boundary is 
crossed. 

The preceding algorithm specifies the use of a constant time step 
Runge-Kutta algorithm; however, the Henon integration could eas- 
ily be incorporated into any constant or adaptive time step state- 
space integration scheme. The primary advantage of the Henon 
method is that it allows for the exact location of the switching point 
in one integration step. The algorithm is given for a system with con- 
trol surface free play, but the technique can be applied to systems 
with free-play nonlinearities in multiple degrees of freedom. Since 
the original nonlinearity has been maintained, the full spectrum of 
nonlinear response is possible, including decaying oscillations, limit 
cycles, nonperiodic motion, chaos, and divergent flutter. 

Results 
Figure 1 shows the steady-state phase projection and control sur- 

face time series for a system with control surface free play. The 
dashed lines represent the boundaries of the free-play region. The 
sharp corners at the boundaries are a result of a significant change in 
the structural stiffness between the free-play region and the regions 
with a structural restoring moment, and this is the feature that we 
wish to capture accurately and efficiently. 

Henon vs Brute Force 
Figure 2 shows how standard Runge-Kutta combined with 

Henon’s method and standard Runge-Kutta alone can give different 
solutions for the same set of initial conditions. Each figure is the re- 
sult of integrating the given system with + I  deg of control surface 
free play from the same set of initial conditions using a typical time 
step (40 stepskycle). Figures 2a and 2b show that for the given set 
of initial conditions [U = 397 in./s (0.56 * U f ) ;  ho /b  = 0.041 the 
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Fig. 1 For U = 180 i d s  (0.25* U f ) ;  h ~ / b  = 0.02: a) control surface phase 
projection and b) time series for a system with a free-play region of &1 
deg. 
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Fig. 2 Control surface determined for U = 397 inJs (0.56* U f ) ,  ho/b = 
0.04 using 40 time steps per cycle and system parameters a = -0.5, 
c = 0.5, p = 25.1, r ,  = 0.6827, rp = O.O9306,x, = 0 . 4 3 4 , ~ ~  = 0.0163, w, 
= 8.2 Hz, wp = 18.4 HZ, Wh = 4.4 HZ, Ca = 0.024, <p = 0.0095, and Ch = 
0.017 with Henon’s method and standard Runge-Kutta. 

control surface settles onto a periodic limit cycle using the algorithm 
described. Using standard Runge-Kutta integration with the same 
time step and simply changing subdomain equations at the first point 
after a boundary is crossed, the same system with the same set of 
initial conditions settles onto a coexisting periodic control surface 
motion, as shown in Figs. 2c and 2d. For the chosen system and 
parameter values, there are two competing limit cycle solutions, a 
feature commonly encountered in nonlinear systems. One of the so- 
lutions is the period 2 motion captured by the Henon integration. 
The other, found for much smaller initial plunge disturbances, is 
a periodic limit cycle, which is very similar to the solution found 
using the standard Runge-Kutta integration. In this case, the numer- 
ical error resulting from inaccurately identifying the switching point 
does not result in divergent behavior. The error does, however, cause 
the integration to settle onto an incorrect attractor. Nonlinear sys- 
tems are generally quite sensitive to small changes. Boundaries that 
separate regions of different cyclic behavior may even be fractal. 

Henon vs Bisection 
Figure 2 shows that accurately locating the switching point is nec- 

essary for a robust numerical model. Several techniques including 
time step refinement and bisection4 have been employed success- 
fully to achieve this goal. Each of these techniques requires a num- 
ber of additional numerical integration steps to locate the switching 

Table 1 Numerical iterations to convergence 

9 I 1  13 No. of significant figures 3 5 7 
Avg. no. of bisection steps 3.6 9.5 16.4 23.4 29.7 35.4 

point to a desired tolerance. In contrast, the Henon method requires 
only one additional integration step to locate the switching point 
to the accuracy of the input values for the boundaries of the free- 
play region. To determine the correlation between the desired toler- 
ance for the switching point and the required number of integration 
steps using the method of bisection, the following calculations were 
made. 

1) Using a standard Runge-Kutta algorithm, the system of equa- 
tions was integrated forward in time from a given set of initial con- 
ditions until a boundary crossing was detected. 

2) The method of bisection was then applied to the integration 
time step until the switching point was located to within a specified 
tolerance. 

3) The number of steps required to reach the switching point from 
first crossing was recorded. 

These steps were repeated for several initial conditions and two 
values for the initial integration step size (50 and 100 stepskycle). 
The results were averaged and are given in Table 1, The tolerance is 
given in terms of the number of significant digits for the switching 
point relative to the given value for the free-play boundary. Note that 
all input and calculations involve double precision specifications. 
Therefore, the input value for the free-play boundaries is given to 
16 significant digits. The Henon method achieves 16 significant 
digits of accuracy in one integration step. 

A detailed report comparing numerical results based on Henon’s 
method and experimental results for an aeroelastic typical section 
is being prepared for publication.“’ 

Conclusions 
Results show the importance of accurately locating the switch- 

ing point between linear subdomains when numerically integrating 
a piecewise linear system of equations. Henon’s method locates 
the switching point to a high degree of accuracy in one integra- 
tion step while eliminating the need for a specified tolerance. The 
benefits of the Henon algorithm would be even more evident when 
working with a chaotic system. To characterize chaotic systems, 
it is often necessary to simulate the system for thousands of cy- 
cles, since many descriptions are based on statistical properties. 
Use of Henon’s method for piecewise linear chaotic systems will 
be far more efficient than standard integration techniques because 
the numerical error associated with locating the switching point is 
minimized while only requiring one additional integration step for 
each boundary crossing. Assuming that each of the techniques is 
based on the same standard Runge-Kutta algorithm, the error as- 
sociated with the discretization for the numerical integration would 
be equivalent. 
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Introduction 
T has been analytically shown that the maximum deflection of I rectangular orthotropic plates under uniform transverse loading 

with symmetric edge conditions does not occur at the center for all 
aspect ratios (AR). Depending on the AR, curvatures for orthotropic 
plates under uniform loading have more than one maximum and 
reverse sign. 

The purpose of this Note is to validate the aforementioned theo- 
retical results. An experiment was performed to determine the de- 
flected shape of symmetrically supported orthotropic plates under 
uniform load, as shown in Fig. 1. The experimental results were then 
compared with the mathematical model for shape and deflection. A 
symmetric clamped simply supported boundary condition case was 
selected, because it has a larger difference in peak to overall plate de- 
flection compared with a plate that is simply supported on all sides. 

Experimental Apparatus and Procedures 
Fixture Fabrication 

A fixture was designed to apply transverse uniform loading to 
a rectangular clamped simply supported plate, as shown in Fig. 2. 
The fixture consists of four clamp blocks and four knife edges that 
are bolted together to form two symmetric halves that are 15.24 cm 
(6.00 in.) wide. The knife edges on the upper half of the fixture are 
aligned with the clamp block faces to provide even boundary con- 
ditions without distorting the plate. The lower knife edges, which 
also form the sides of an air chamber, or bladder, are spaced ap- 
proximately I .3 mm (0.05 in.) from the plate to allow free rotation. 
During the experiment, the bladder was inflated with air to provide 
a uniform load on the lower plate surface. The fixture was designed 
to work with three different AR (1.88, 1.00, and 0.62) by chang- 
ing the position of the clamp blocks. This required disassembly and 
realignment of the fixture for each AR tested. 

After the fixture was assembled and aligned, the bladder was 
formed across the lower half of the fixture using an aluminum base 
plate on the bottom and a thin elastic sheet of nylon film on the tops 
of the lower knife edges. The nylon film was held in place with room 

simply supported X ...:7”: 
simply upported 

4 4 . 
Fig. 1 Coordinate system for plate analysis. 

Fig. 2 Plate deflection text fixture. 

temperature vulcanizing silicone adhesive, which was also used to 
seal the rest of the joints in the fixture. The final assembly of the 
fixture consisted of bolting the test plate between the upper and 
lower fixture halves. 

Plate Fabrication 
Graphite/epoxy was chosen for plate construction, because it  was 

readily available and produces an orthotropic laminate having a 
significant ratio of maximum deflection to overall deflection vari- 
ation for this experiment. The plate was fabricated from 16 plies 
of Hercules AS-4/3501-6 graphite/epoxy prepreg, which was laid 
up and autoclave cured as recommended by the manufacturer. This 
resulted in a finished plate that was 1.83 mm (0.072 in.) thick. 

Experimental Setup 
The fixture was set up on the bed of a large vertical milling mach- 

ine, which provided the accuracy and repeatability necessary to 
make consistent deflection measurements. A dial indicator was 
mounted to the head of the milling machine in a manner that allowed 
the indicator tip to contact the plate through the complete deflection 
range. After aligning the test fixture with the dial indicator, the bed 
of the milling machine was set up to track the y axis across the 
center of the plate, because this is where the greatest amount of de- 
flection was expected. A set of zero load deflection measurements 
was taken in 2.54-mm (0.10-in.) increments across the width of 
the plate. This resulted in 58 measurements because of interference 
between the fixture edge and the indicator tip. Subsequent measure- 
ments were then taken with various amounts of pressure applied 
to the fixture to load the plate. Pressure was supplied by a preci- 
sion air pump or regulated shop air line and was recorded during 
each test using gauges that were calibrated with a U-tube mercury 
manometer. 

Numerical Analysis 
The deflection w (x, y ) ,  given by a Levy solution for a plate whose 

sides at x = f a / 2  is 

] sin (y) b4 s 2  cosh(nnslx/b) sinh(nns2c/2) - sI cosh(nrrs2xlb) sinh(nnslc/2) 
SI cosh(nns2c/2) sinh(nrrslc/2) - s2 cosh(nnslcl2) sinh(nns2c/2) 
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