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Time-Domain Analysis of Low-Speed Airfoil Flutter

K. D. Jones* and M. R Platzer1

U.S. Naval Postgraduate School, Monterey, California 93943-5106

A time-domain aeroelastic analysis code is described for single airfoils and two-foil systems in incompressible,
inviscid flow. Flow solutions are obtained using a time-stepping panel code, and airfoil motions are computed using
a two-degree-of-freedom spring/mass model. The time-stepping aeroelastic code is evaluated through comparisons
with several classical frequency-domain studies for single-degree-of-freedom pitching motion. Results show excel-
lent agreement with past studies and provide a look into the evolution of the motion in time. Additionally, using
a two-foil system, it is shown that flutter of a trailing airfoil can be controlled by proper oscillation and phasing
of a leading airfoil. Three applications of the aeroelastic code are presented, including a feedback loop to actively
stabilize flutter of a trailing airfoil, simulations of wake interference in rotary-wing flowfields, and simulations of
flutter in ground effect.

Nomenclature
Cf = lift coefficient per unit span
Cm = pitching moment coefficient per unit span
c = chord length
h = bending displacement (positive downward)
hg - distance from ground
hr = wake spacing in rotary-wing flows
la = moment of inertia about the elastic axis
Kh = spring constant for plunging
Ka = spring constant for pitching
k = reduced frequency, coc/ V^
kf = reduced flutter frequency
kh = reduced natural plunging frequency, o)hc/ V^
ka = reduced natural pitching frequency, co^c/ V^
L = lift per unit span
M = pitching moment per unit span
m - mass of the wing per unit span
mr = co/Q
qjk = source strength on panel j at tk
r = radius of rotary-wing blade section
Sa = static moment, xam
t = time
Va = reduced velocity, 1 / ka
Voo = freestream velocity magnitude
^shift = horizontal offset of the control airfoil
xp = leading edge to elastic axis distance
xa = elastic axis to center of mass distance
^shift = vertical offset of the control airfoil
ot = angle of attack
Fjt = circulation about the airfoil at tk
yk = vorticity per length on airfoil at tk
Ywk

 = vorticity per length on the wake panel at tk
Ajt = length of wake panel at tk
9k = incidence of wake panel with respect to airfoil at tk
X = wake wavelength, 2n/k
Poo = freestream density
r = nondimensional time, tV^/c
£2 = rotary-wing rotational frequency
co = circular frequency
cot, = uncoupled natural bending frequency,.
coa = uncoupled natural torsional frequency,.
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= differentiation with respect to t
= differentiation with respect to T

Introduction

FOR many decades, scientists have been aware of the danger
of structural failure because of aerodynamically driven oscilla-

tions. A classic example of this phenomenon occurred in 1940 when
the Tacoma Narrows bridge, driven by the ambient wind, came apart
after many hours of divergent resonation.1 This behavior, called
flutter, also occurs on aircraft wings and empennages, helicopter
and propeller blades, and in turbomachines, such that applications
for this research are plentiful. The study of these aerodynamically
driven motions of flexible systems is referred to as aeroelasticity.

Most flutter codes used in the aerospace industry are based on
linearized oscillatory aerodynamic theory as input into the flutter
equations, solving the flutter problem in the frequency domain rather
than in the time domain. However, many modern computational fluid
dynamics codes employ a time-marching approach that suggests
that the use of such codes for the prediction of airfoil/blade flutter
and dynamic response may become a practical approach in the near
future.

The current method utilizes such a time-stepping approach with
an unsteady panel method to describe the inviscid, incompressible
flowfield and with a two-degree-of-freedom spring/mass system to
model the bending/torsion flutter. The algorithms used in the code
are outlined in the following sections as well as the applications
for active flutter suppression, wake-induced flutter in rotary-wing
flowfields, and flutter in ground effect. Some of this work has been
presented earlier in Ref. 2.

Approach
Aeroelasticity is a multidisciplinary subject combining aerody-

namics and structural dynamics. The methods used for each of these
fields are outlined in this section. Additionally, the methods used
for the feedback control loop are discussed, and the applications to
active flutter control, the simulation of wake interference in rotary-
wing flowfields, and the simulation of flutter in ground effect are
described.

Aerodynamics
Consider incompressible, inviscid flow over two airfoils of arbi-

trary geometry that may execute an arbitrary motion relative to each
other. The basic governing equation for this problem is the Laplace
equation.

In the past, a number of investigators have solved the steady flow
problem using source and vortex paneling, the most prominent ones
being Hess and Smith.3 A few authors have extended this approach
to the case of unsteady motion of single airfoils, notably Basu and
Hancock4 and Kim and Mook.5 Teng6 developed a computer code
for the numerical solution of unsteady, inviscid, incompressible flow
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over an airfoil. Teng's work was extended by Platzer et al.7 to inves-
tigate interference effects with multiple airfoils. Each airfoil surface
is approximated by a large number of surface elements, and a uni-
form source distribution and vorticity distribution are placed on
each element. The source strength varies from element to element,
whereas the vortex strength is the same for all elements. The singu-
larity strengths are determined from the flow tangency condition on
both airfoil surfaces and the Kutta condition at each trailing edge.

The unsteady flow problem differs from the steady flow problem
in that the continuous shedding of vorticity into each foil's trailing
wake needs to be included in the computation. According to the
vorticity conservation theorem, any change in circulation around an
airfoil must be matched by an equal and opposite vortex shed from
the foil's trailing edge. The presence of the countervortices provides
the flow with a kind of memory in that the flow at a particular time
is affected by the bound circulation of the past. It is this influence
that distinguishes the numerical technique required for the unsteady
flow solution from the simpler steady flow problem of solving N
linear equations in N unknowns.

The present approach follows closely the original panel method
of Hess and Smith,3 whereas with regard to the modeling of the
wake it adopts the procedure advocated by Basu and Hancock.4
Uniform source and vorticity distributions are placed on each panel
at time t. The wake consists of a single vorticity panel attached as an
additional element on each airfoil through which discrete vortices
are shed into the respective wake and convected downstream with the
fluid. A uniform vorticity distribution is placed on the wake panel of
each airfoil. This panel is further characterized by its length A* and
its inclination with respect to the local frame of reference 9k. After
each time step, the vorticity of the wake panel is concentrated into
a single point vortex and convected downstream. Simultaneously, a
new wake panel is formed.

The flow tangency conditions are satisfied at the exterior mid-
points (control points) of each panel. The Kutta condition postulates
that the pressure on the upper and lower surface at the trailing edge
of each foil be equal. The wake panels are formed with a length and
inclination to the respective local frames of reference that satisfy
the Helmholtz theorem

(1)

This unsteady flow model introduces an additional boundary con-
dition, the conservation of vorticity. However, the introduction of
the wake creates three additional unknowns for each airfoil: the vor-
ticity of the wake panel, its length, and its inclination. Therefore,
two additional conditions are required for each airfoil to solve the
system. The approach suggested by Basu and Hancock4 is extended
to the two-foil case.

1) Each wake panel is oriented in the direction of the local resul-
tant velocity at the panel midpoint.

2) The length of each wake panel is proportional to the magnitude
of the local resultant velocity at the panel midpoint and the size of
the time step.

The essential elements of this scheme are summarized in Fig. 1.
Implementation of this approach requires an iterative scheme, since
the velocity direction and magnitude at the panel midpoints are not
initially known.
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Fig. 1 Schematic of unsteady wake representation.

Fig. 2 Panel code step-size dependency.

In classical aeroelastic studies the wake is confined to the plane
that the airfoil lies in with a sinusoidal vorticity distribution thereby
maintaining linearity in the solution procedure. Here the wake is
modeled by a finite stream of discrete vortices, with a new vortex
released by each airfoil at each time step, and the vortices convect
through the flow, influencing and being influenced by the airfoils and
all of the other vortices. Thus, the iterative wake panel determination
and the discrete vortex wake modeling are nonlinear effects and
result in a new class of nonlinear solutions.

Details of the single and two airfoil codes are given in Refs. 6
and 8, respectively. A thorough evaluation of the accuracy of the
panel code was performed by Riester9 by comparing the computed
lift and moment coefficients for both pitch and plunge motions with
those of Theodorsen and Garrick.10

Past studies, as well as the present, have noted a small step-size
dependency of the potential flow code, resulting in slight phase
errors in the predicted unsteady lift and moment values. Results
are shown in Fig. 2 for a NACA 0012 airfoil pitching sinusoidally
about its leading edge with a reduced frequency of 0.1532 and an
amplitude of ±0.5 deg. The sinusoidal motion and the resulting
sinusoidal moment coefficient are shown in the left graph with a
detailed view shown in the right graph. Flutter occurs when Cm is
180 deg out of phase from the pitch angle a, and it can be seen
that as the number of steps/cycle is varied, the predicted phase and,
hence, the predicted flutter frequency change. The dotted, vertical
grid lines on the right graph correspond to 1-deg increments in
phase. There is slightly less than a 1-deg phase change between the
cases with 120 and 1920 steps/cycle. This phase error is not large
but will affect the predicted flutter boundaries for both frequency-
domain and time-domain studies. The step size may not be reduced
indefinitely. First, as the step size is reduced, the vorticity of the
discrete wake vortices decreases and eventually cannot be resolved.
Second, the computational time for a simulation increases as roughly
the square of the number of total steps, such that the panel code
becomes more expensive than Euler or Navier-Stokes simulations if
more than a few thousand time steps are used. The cases with 960 and
1920 steps/cycle required double precision accuracy to resolve the
wake vorticity, and the latter case required about eight times the CPU
time needed for a comparable Euler simulation. However, typical
panel code simulations with around 120 steps/cycle require only
about 5% of the CPU time needed for an Euler solution; therefore,
it is a good choice for developing and evaluating the time-domain
aeroelastic approach.

The incompressible panel code is limited to low-speed calcula-
tions. For steady solutions the approximation of incompressibility
is generally considered accurate to a Mach number of around 0.3,
but in unsteady flows the Mach number dependence becomes much
stronger because of the waves generated by the airfoil oscillations.

The panel code does permit wake interference studies including
wake impingement on the trailing airfoil if a sufficiently small time
step is used. Results are shown for a NACA 0012 airfoil plunging
with a reduced frequency of 1.5, an amplitude of ±0.2c, and with a
second, stationary NACA 0012 airfoil a chord length downstream.
The simulation has 240 steps/cycle, and individual wake vortices are
plotted for a sequence of time steps in Fig. 3. The circles and squares
correspond to discrete wake vortices from the leading and trailing
airfoils, respectively. Clearly, the wake from the leading airfoil is
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a) 0.875 cycle

b) 1.000 cycle

c) 1.125 cycle

Fig. 3 Wake impinging a stationary trailing airfoil.

impinging the trailing airfoil. The wake is split and the discrete
vortices are deflected around the upper and lower surfaces of the
trailing airfoil. The computed lift on the trailing airfoil is plotted in
Fig. 4 with a comparison to the Navier-Stokes simulation of Tuncer
and Platzer.11 Note that the plotted lift values from the panel code are
smoothed using localized averaging. High-frequency fluctuations in
the lift result from numerical resolution errors of the small distances
between the wake vortices and the trailing airfoil control points. The
smoothed results compare well with the Navier-Stokes solution,
but the high-frequency fluctuations make aeroelastic computations
difficult; hence, the present work is limited to wake interference
where the interfering wake does not directly contact the free airfoil.

Structural Dynamics
Structural modeling is facilitated using a two-degree-of-freedom

spring/mass system (Fig. 5) to simulate the bending and twisting of
a wing. The equations governing this motion are

mh + Saa = —L

and

Sah + /«<* + Iao>la = M

(2)

(3)

Note that Eqs. (2) and (3) assume that a is small, since cos a is
replaced with 1.0 in the coupling term.

Nondimensionalizing the system using reference values of length
= c, velocity = VQO, time = c/Voo, and mass = c2np00/4, and
rewriting the system in matrix notation, one obtains

[M]{X}ff = {F} (4)

where

[M] =

Equation (4) is a system of two coupled, second-order, nonlinear,
differential equations, coupled through the terms containing Sa and
the dependence of C/ and Cm on h and a, and nonlinear through

.1 0.5

& 0.0

-0.5

. A A

V V V V
10
T

15 20

Fig. 4 Lift on the trailing airfoil: ——, Navier-Stokes (Ref. 11) and
- - - - , panel code (smoothed).

xshift

Fig. 5 Schematic of the aeroelastic two-foil system.

the dependence of Ct and Cm on the nonlinear wake model. Single-
degree-of-freedom simulations are performed by setting Sa = 0 and
either m = oo and coh = 0 or 7a = oo and &>a = 0 for pitching-only
or plunging-only motions, respectively.

Equation (4) is advanced in time by inverting the system, yielding

(5)

then rewriting the result as a system of two coupled, first-order
equations

{X}' = {¥}
(6)

and, finally, integration is performed using either a second-order
modified Euler scheme or a fourth-order Runge-Kutta scheme. Note
that the iterative modified Euler scheme reduces to a second-order
Runge-Kutta scheme if just two iterations are used.

The two-degree-of-freedom spring/mass integration procedure
was validated by setting C/ = Cm = 0 (simulating an undamped
system) and computing the total energy (kinetic and potential) of
the system at each time step. With as few as 30 steps per cycle
the fourth-order scheme computed less than a 0.005% loss in total
energy per cycle for coupled or uncoupled motions.

Feedback Control Loop
A certain amount of feedback is inherent in a single-foil system

through the aerodynamic modeling of the wake and its influence
on the airfoil. The influence of this feedback is necessarily small,
since the wake rapidly convects downstream. However, in a two-
foil system the wake of an upstream airfoil may pass very near or
come into contact with and may have a substantial influence on
the aeroelastic behavior of a downstream foil. With this in mind,
it is desirable to move an upstream control airfoil in a manner that
suppresses flutter in a downstream free airfoil.

A system diagram representing the two-foil system is shown in
Fig. 6a, where o .̂ (t) is an initial pitch disturbance of the free airfoil
and «2(0 defines the motion of the control airfoil. The aerodynamic
model takes the position of both foils as input and provides lifts
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Fig. 6 System diagrams of a) basic two-foil system, b) first feedback
loop, and c) second feedback loop.

and moments of both foils as output. Note that the aerodynamic
model also includes memory in the form of the convecting wake
structures, and the wake provides an additional form of feedback.
The free airfoil has a spring/mass model that accepts the lift and
moment as well as the airfoil position as input and results in a new
airfoil position that is then fed back into the loop.

Two methods are provided for controlling the motion of one airfoil
based on the free aeroelastic motion of another. The first provides
a simple feedback loop, as shown in Fig. 6b, with only gain control
(Gi = const). Note that phase control of the feedback signal is
available through the geometric placement of the control airfoil,
since the time necessary for the wake to convect downstream to the
position of the free airfoil results in a signal phase delay.

The second feedback loop, shown in Fig. 6c, provides a more
sophisticated gain control and an additional phase control. Here
the gain is varied to maintain a roughly constant pitch amplitude
of the control airfoil until the pitch amplitude of the free airfoil
drops below a, threshold value, at which time the gain switches to
a constant value. These feedback loop capabilities are used in the
three applications described next.

Rotary-Wing Flows
Simulations of wake interference in rotary-wing flowfields are

performed in a two-dimensional, strip-theory fashion similar to the
approach of Loewy.12 Loewy approximated the helical wake struc-
ture beneath a hovering helicopter at a given radial station by a
two-dimensional flow with a single blade section and an infinite
series of wakes beneath it (Fig. 7a). The wake separation hr is a
function of the inflow velocity, and the phasing is determined by
the ratio of the pitching frequency to the rotational frequency o>/ £2.
The interfering wakes are assumed to extend to ±00.

In the present approach only a single interfering wake of finite
length is considered, and this is facilitated by placing a second blade
upstream a distance 2nr (the circumferential length for a given
radius) and below the first blade the distance hr (Fig. 7b). The

b)

Xshift=27cr

Fig. 7 Rotary-wing wake representations of a) Loewy12 and b) present.

Ground level

Image airfoil and image wake

Fig. 8 Schematic of ground effect simulations.

reduced pitching frequency is determined directly from the spec-
ified frequency ratio rar .

The interfering wake is intended to represent the wake from the
previous blade or, for a one-bladed system, from the reference blade
after one rotation. To model this the upstream blade is moved exactly
as the reference blade, such that the vortex street created by the
upstream blade is a clone of the vortex street created by the reference
blade. This approach incorporates the first feedback option using an
amplitude scale factor of 1.

Flutter in Ground Effect
The potential flow about a body in the presence of a wall is com-

puted by creating a mirror image of the body within the wall. There-
fore, the flow about an airfoil in ground effect is simulated by placing
an image airfoil underground (Fig. 8).

To model the aeroelastic behavior of an airfoil in ground effect,
the fictitious second airfoil is moved in a mirror-image fashion,
employing the first feedback option with an amplitude scale factor
of-1.

Active Flutter Suppression
As shall be seen, the suppression of flutter through fixed sinu-

soidal motions of a control airfoil is transitory at best, since the
frequency and phase of the free airfoil are not fixed in time. To sta-
bilize the free airfoil for all time, an active control loop is required.

The first feedback option will stabilize the free airfoil but, since
the stabilizing effect of the interfering wake is proportional to the
magnitude of the wake vorticity, which is proportional to the oscilla-
tion amplitude of the control airfoil, the rate at which the amplitude
is dampened diminishes as 1/r.

The second feedback approach stabilizes the free airfoil much
more quickly. In fact, as will be shown, this approach reduces the
oscillation amplitude of the free airfoil linearly in time. When the
motion becomes sufficiently damped, the algorithm switches to the
first feedback approach.

Results
The following subsections present results of single- and two-

airfoil systems undergoing single-degree-of-freedom pitching
motions. Results are presented demonstrating the accuracy of the
time-stepping approach through comparisons with theory and other
numerical studies. Additionally, results are presented for the three
applications illustrating the utility of the time-stepping aeroelastic
code.
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Single Airfoil
Results for a single airfoil undergoing pitching motions are com-

pared with the classical works of Theodorsen and Garrick10 and of
Smilg13 and the more contemporary work of Turner.14 Theodorsen
and Garrick considered the pitching motion of a flat plate with arbi-
trary ka and /« about a specified elastic axis xp. They showed that
the frequency at which flutter occurred, kf, was independent of 7a,
and for xp = Q 9 k f & 0.08.

In the present method the airfoil is released with a small angle-of-
attack displacement at r = 0, and the resulting motion is computed
as a function of time. Sample time histories of a are given in Fig. 9
at a stable, a neutral, and an unstable frequency for a NACA 0007
airfoil pivoting about its leading edge (xp = 0) with 7a = 150.

The resultant pitching frequency predicted by the present ap-
proach is compared with the flat-plate results in Fig. 10 for a spec-
trum of airfoil thicknesses and 7a, all with xp — 0. Each cluster of
three curves corresponds to the value of 7a indicated in the legend,
with the lower, middle, and upper line of each threesome corre-
sponding to NACA 0001, NACA 0007, and NACA 0012 airfoils,
respectively. The symbols O, D, and 0 are located at the predicted
flutter frequencies for the different airfoils and 7a values (i.e., the
frequency where the oscillation amplitude remains constant). Note
that for each of the NACA airfoils kf is constant with respect to
7a, and even though the frequency response does not change much
with thickness, the flutter frequency changes significantly. As Ia
increases, the effect of thickness becomes less apparent in the fre-
quency response, and the curves approach the theoretical undamped
response for Ia =.oo.

According to Smilg,13 a flat plate will not flutter for 7a less than
about 143. This is indicated by the frequency response curves shown
in Fig. 10. For Ia lower than about 150 the response curves do not
intersect the line kf = 0.08.

The method employed by Turner14 used the current panel code,
pitching the airfoil sinusoidally. A sinusoid was fit to the result-
ing Cm curve, and stability was determined by the sign of the
out-of-phase portion. For a NACA 0007 airfoil Turner predicted

i.o
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Fig. 9 Time history of a as a function of ka: -
k = 0.0905; - - -, ka = 0.09 and kf = 0.1205; and -
k = 0.1606.
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kf ^0.115, whereas the present method predicts kf « 0.120. This
much variation can be accounted for by variations in step size.

Two Airfoils
Airfoil/wake interference simulations with two airfoils are com-

pared with the frequency-domain work of Turner. For these cases
the leading or control airfoil is pitched sinusoidally about its leading
edge with pitch amplitude a — ±0.5 deg and with chord lengths of
1, i, £, and -j^. The trailing airfoil starts at a = —0.5 deg and is
released in phase with the control airfoil with xp = 0, 7a = 150,
and ka = 0.0585. In the absence of the leading airfoil, these con-
ditions yield an unbounded pitching motion with k = 0.1. The
control airfoil is placed two chord lengths below the reference air-
foil (Fshift = — 2) and a variable distance upstream, with Xshift varied
between 0 and —63 (in nondimensional space A « 63) providing a
full spectrum of wake phase angles.

Values of Xshift resulting in flutter suppression or amplification
agree well with Turner. Sample plots are shown in Fig. 11 for cases
that are initially stable, neutral, and unstable. Flutter is suppressed
at Xshift = -14 (^ -A./4), and flutter is induced at Xshift = -44
(« -3A./4).

Of particular interest is the evolution of the free-airfoil motion in
time, a facet of the problem not captured by the frequency-domain
methods. The motion with Xshift = —14, although initially stable,
changes phase by 180 deg once the pitch magnitude is small, and
then the motion becomes unstable. This phase/magnitude relation-
ship is illustrated in Fig. 12. The phase of the case that is initially
unstable remains unchanged for all time, but the phase for the case
that is initially neutral begins to drift toward an unstable mode im-
mediately. This tendency for the phase to drift to unstable modes
was previously noted in Ref. 15.

Rotary-Wing Flows
The effect of wake interference in rotary-wing flowfields is quali-

tatively compared with the frequency-domain work of Loewy.12 The
effect of wake interference from the preceding blade on the pitch
stability of the reference blade is shown for pitch oscillations about
the leading edge. The blade has a NACA 0007 profile, 7a = 375, and
yshift = — hr = — 2.5. The present time-domain approach provides
the decay or growth of the pitch oscillation; therefore, the time rate of
change of pitching amplitude is a convenient measure of the stability
or instability of the pitch oscillation and is plotted on the ordinate
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Fig. 11 Time history of a as a function of Xsnift.
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Fig. 10 Resultant pitching frequency and flutter boundaries. Fig. 12 Phase/magnitude relationship.
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of Fig. 13 as a function of Loewy's frequency ratio mr on the ab-
scissa. For conventional cyclic inputs, mr = 1 since blade pitching
is mechanically coupled to blade rotation via the swashplate, but
for higher harmonic control and multibladed rotor systems, mr will
typically be noninteger. Since k = mr /r, a variation of mr implies a
variation of k for a given radial station r and thus a relative shifting
of the phase between the impinging wake vorticity and the reference
blade motion. In Fig. 13, r = 8, resulting in Xshift « 50.

In the absence of the interfering wake, a single airfoil with the
stated characteristics becomes unstable at reduced frequencies be-
low about 0.12, as shown by the dashed line in Fig. 13. Although
the single blade is stable for k > 0.12 (mr > 0.96), the inclu-
sion of wake interference from the preceding blade produces a
second region of instability for 1.52 < mr < 1.84. The stabiliz-
ing/destabilizing effect of the impinging wake is essentially sinu-
soidal with period w r, promoting stability through half the cycle
and instability for the other half. The magnitude of the interference
effect diminishes with increasing m r, such that for higher values
of mr no instability occurs. Figure 15 of Ref. 11 shows a similar
phenomenon.

Flutter in Ground Effect
Simulations are presented for a NACA 0007 airfoil, pitching about

the leading edge, with Ia = 150. Far from the ground it was found
that an airfoil with these characteristics becomes unstable for k <
0.12. Here a naturally unstable frequency is used (k = 0.1) and
the time rate of change of the pitching amplitude is plotted as a
function of hg/c in Fig. 14. Note that the motion is stable for very
low level flight, but flutter is induced for hg/c > 3. The airfoil is
most unstable at hg/c « 7, and this agrees well with Ref. 14.

Active Control Loop
The short-lived success of flutter suppression demonstrated in

Fig. 11 suggests the use of an active control loop for determining
appropriate motions of a control airfoil. Using the second feedback
loop previously discussed with the same airfoil configuration as that
used in Fig. 11, and with the control airfoil located at —A./4, the free-
airfoil motion is rapidly damped. Results are shown for a control
airfoil of chord length 1 (Fig. 15) and 1/16 (Fig. 16).

Airfoil separations other than —A/4 are possible if an appropriate
signal phase delay is given; however, because of the increased time
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Fig. 13 Pitch stability in rotary-wing flows.
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Fig. 14 Pitch stability in ground effect: ——, in ground effect and - - - -,
out of ground effect.
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Fig. 15 Flutter suppression through active control (scale = 1).
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Fig. 16 Flutter suppression through active control (scale = 1/16).

delay required for the wake vorticity to convect downstream to the
free airfoil, complete damping becomes difficult.

Conclusions
A time-stepping flutter analysis code was introduced, combin-

ing an unsteady, two-foil panel code with a two-degree-of-freedom
spring/mass structural dynamic model for simulating inviscid, in-
compressible flows. The accuracy and limitations of the approach
were demonstrated through comparisons with past frequency-
domain studies for single-degree-of-freedom pitching motions.

Computed results agreed well with the frequency-domain results.
The time-stepping approach provided the additional capability to
analyze the evolution of the motion in time. Qualitatively, trends
in the resultant pitching frequency due to sectional thickness and
moment of inertia were clearly correct, and quantitative agreement
was within the expected bounds afforded by the panel method.

Feedback loop algorithms were developed, and the included re-
sults demonstrated their success in simulating wake interference in
rotary-wing flows, flutter in ground effect, and actively suppressing
flutter.

Wake interference in rotary wing flows was modeled by placing
a second airfoil an appropriate distance upstream to simulate the
interfering wake from the previous blade. The computed stability
boundaries agreed well with past frequency domain studies.

Flutter in ground effect was simulated by placing an image air-
foil within the ground, moving in a mirror-image fashion. Presented
results demonstrated the stabilizing effect of low-level flight and
suggest that vehicles designed to fly in ground effect do so at an
altitude of less than three chord lengths. For the conditions tested,
it was shown that flight near a ground plane at higher altitudes
promotes instability. A more extensive study of the conditions pro-
moting stability and instability is recommended in the future.

Active control simulations indicated that the controlling airfoil
remains effective even with greatly reduced chord lengths, but that
effectiveness was lost as the distance between the foils increased.
This suggests that a closely placed canard or leading-edge flap may
be sufficient for controlling flutter.

The time-domain approach presented here is quite robust and
efficient. Typical single airfoil simulations run on a workstation in a
few minutes. The active control loop, ground effect, and rotary-wing
simulations demonstrate just a few of the many applications of the
time-domain approach.
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