
AIAA JOURNAL

Vol. 40, No. 9, September 2002
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In this von Kármán lecture, a subject is addressed whose foundations were signi� cantly in� uenced by the
work of Theodore von Kármán. A classic paper by von Kármán and Sears � rst considered the determination of
aerodynamic forces on an airfoil undergoing general time-dependent motion. Also, early in his career, von Kármán
investigated fundamental issues in structural mechanics and derived the celebrated von Kármán plate equations
for determining the large (nonlinear) de� ections of an elastic plate under a distributed force. Finally, he authored a
widely cited paper on the importance of nonlinearities for engineers and engineering. In this lecture, these themes
are recalled and the current state of the art in nonlinear aeroelasticity and unsteady aerodynamics is discussed.
Several of the most signi� cant nonlinearities arising in a structure or in an aerodynamic � ow � eld are identi� ed.
Recent and relevant theoretical and experimental studies are reviewed and future developments are projected that
are expected to have a signi� cant impact on our ability to understand and bene� cially use nonlinear dynamic
aeroelastic behavior.

Nomenclature
b = semichord of the airfoil section
Ncl = � rst harmonic aerodynamic nondimensional lift
Ncm = � rst harmonic aerodynamic nondimensionalmoment
h; Nh = plunge displacement and amplitude
M = Mach number
r® = nondimensional rotational inertia

about the elastic axis
t = time
UF = � utter velocity
V = � ow velocity
x® = nondimensionaldistance between elastic axis

and c.g. of the airfoil section
®; N® = pitch angle and pitch amplitude
¯; N̄ = � ap angle and amplitude
± = freeplay region of control surface
¹ = mass ratio
½ = air density
! = frequency
!F = � utter oscillatory frequency
!h ; !® = uncoupled plunge and torsional natural frequencies
!¯ = uncoupled � ap natural frequency

Introduction

N ONLINEAR phenomena in aeroelasticity have been known
for many years. In the past decade or so, such effects have

become of more serious concern to practitioners.1¡4 For that rea-
son, and also becauseof the advance in theoreticaland experimental
methods, a more substantial and concentrated effort has been made
by the research community to understand and pursue how unfavor-
able nonlinear aeroelastic effects may be diminished and favorable
effects exploited.

Moreover, in the past few years, signi� cant advances have been
made in constructing reduced-order models for unsteady aerody-
namic � ows.5 This key enablingmethodologyis also discussedhere
as it relates to nonlinear aeroelasticity.
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There are two possible principal consequences of any nonlinear
effect. One is that the exponentiallygrowing oscillations predicted
by an unstable linear model are attenuated due to the nonlinear ef-
fects, and a � nite amplitude, steady-state oscillation is obtained.
Such limit-cycle oscillations (LCO) have been observed in oper-
ational aerospacecraft and in wind-tunnel models. LCO per se is,
thus, benign in that the nonlinearityreduces the amplitudeof the os-
cillations. Of course, structural integrity may still be at issue if the
LCO amplitudes are too large. The second principal consequenceis
wholly detrimental. In this instance, a system that may be stable to
a suf� ciently small perturbationcan become unstable due to a large
disturbance.

The generic possibilities are illustrated in Fig. 1, where the LCO
amplitude is plotted vs � ight speed. In Fig. 1a, an aeroelasticsystem
is depicted that is stable to small or large perturbations below the
� utter (instability) boundary predicted by a linear dynamic model.
Beyond the � utter boundary, LCO arise due to some nonlinear ef-
fect, and typically the amplitude of the LCO increases as the � ight
speedincreasesbeyondthe � utter speed.In Fig. 1b, the othergeneric
possibility is shown. Whereas again LCO exist beyond the � utter
boundary, now LCO may also exist below the � utter boundary, if
the disturbances to the system are suf� ciently large. Moreover both
stable (solid line) and unstable (dotted line) LCO now are present.
Stable LCO exist when, for any small disturbance, the motion re-
turns to the same LCO at a large time. Unstable LCO are those for
whichany small perturbationwill cause themotion to move from the
unstable LCO to a stable LCO. Theoretically, in the absence of any
disturbance, both stable and unstable LCO are possible dynamic,
steady-state motions of the system. Information about the magni-
tude of the disturbance, required to move from one stable LCO to
another stable LCO can also be obtained from data such as those
shown in Fig. 1b. Note also that the hysteretic response as � ight
speed increases and then decreases.

The balance of this paper summarizes several distinct yet related
research thrusts that have proven particularly fruitful. Although the
authors draw largely on the experienceof the Duke University aero-
elasticity team, reference is made to the work of many other inves-
tigators for those readers who wish to pursue the ever-increasing
literature on these topics. However, an in-depth summary of the to-
tal literature is not included, but rather a selective commentary is
provided on the efforts of the broader community in the context of
the work discussed here.

There are several physical sources of nonlinearity in either the
aerodynamic � ow or elastic structure. These are listed and brie� y
described as follows and will be further considered throughout the
paper.

The physicalsourcesof nonlinearityin elastic structureinclude1)
free play, or bilinear stiffness arising from loosely connected struc-
tural components; 2) strain displacementor geometric nonlinearity,
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Fig. 1a Schematic of LCO response for a benign nonlinearity leading
to (only) stable LCO.

Fig. 1b Schematic of LCO response for a detrimental nonlinearity
leading to both stable (——) and unstable (– – –) LCO. Arrows de-
note path of system response when � ight speed is increasing ( ¡ ! ) or
decreasing ( Ã ¡ ).

which comprise the nonlinear stiffness arising from large displace-
ment gradients; and 3) dry friction, or nonlinear damping arising
from structural components in sliding contact.

The physical sources of nonlinearity in aerodynamic � ow (� uid
sources) include 1) shock motions in transonic � ow, which are par-
ticularly important for low, reduced frequencies and 2) separated
� ow, the most common in transonic� ow (may be inducedby shock)
and/or at large angles of attack.

Scope of Paper
Four speci� c aeroelasticmodels are consideredin this paper.The

� rst is an airfoil with a control surface that has freeplay in its at-
tachment to the airfoil. Such a con� guration exhibits LCO due to
freeplaywell below the classical linear � utter speed (LFS). The sec-
ond is a wing with a platelike structurethat undergoesLCO once the
LFS is exceeded but not usually below the LFS. Here, the nonlin-
earity is a result of the tension induced in the plane of the plate wing
when the wing bending is on the order the wing thicknessor greater.
The third is a very high-aspect-ratiowing that exhibits LCO above
the LFS but that also exhibits a sensitivity to initial disturbances
below the LFS that may lead to LCO there as well. Here, the nonlin-
earity is due to the couplingamong � apwise bending, chordwise (or
lag) bending, and torsion of the wing structure. This coupling has
long been known to be important for rotorcraft blades that are can-
tilevered at the rotor hub (sometimes called hingeless blades). Also
modeledsemi-empiricallyare theeffectsof aerodynamicstall.More
recently,very high-aspect-ratiowings have been identi� ed as of im-
portance for high-altitude long-endurance (HALE) uninhabited air
vehicles (UAV). Fourth and � nally, the aeroelastic responses due to
nonlinear aerodynamic forces arising from large shock motions in
the transonic � ow range are considered.

For each of the � rst three models, experiments (conducted in
a low-speed wind tunnel) are also discussed and correlated with
theory. For the fourth model, the NASA Langley Research Center
aeroelasticity team has provided valuable benchmark experiments
that are directed toward aerodynamicnonlinearitiesin the transonic
� ow regime.6¡9 Some encouraging correlations with available the-
ory have been made by the NASA Langley Research Center team
as well. It can be expected that our ability to pursue more such
correlations will continue to advance due to the work of the NASA
LangleyResearchCenter teamand theeffortsof theaeroelasticcom-
munity at large. Also noteworthy, the aeroelasticity group at DLR,
Gottingen has conducted valuable two-dimensional oscillating air-
foil � utter and LCO experimental/theoretical studies as reported in
Refs. 10–12.

Cunningham13 provides an insightful discussion of certain non-
linear aerodynamics issues based on his extensive experience
with operational aircraft and wind-tunnel models. Friedmann14 has
touched on particular nonlinear aeroelasticity issues in his broad-
ranging survey of aeroelasticity as well. Both are recommended to
the reader who wishes further backgroundand a broader context for
the present discussion.

Airfoil Plus a Control Surface with Freeplay
Many investigators over the past 50 years have considered the

effects of a structural stiffness nonlinearity on an airfoil with or
without a control surface.15¡43 Broadly speaking, the literature is
characterizedby the type of nonlinearity, that is, continuousor dis-
continuous (freeplay), whether the nonlinear spring stiffness is for
the airfoil per se or the control surface, and, � nally, the nature of
the aerodynamic model. Most of the analysis has been done at low
Mach number using classical Théodorsen aerodynamic theory or
approximationsthereto, or at very high Mach number where piston
theory aerodynamicscan be applied. Also, most of the studies have
been theoretical/numerical,but some interestingexperimentalwork
has been done as well. For a more thorough review of the literature,
particularly as regards freeplay nonlinearities, see Connor et al.36

For continuous spring nonlinearities, the recent publication by Liu
et al.42 has a nice summary.

Here, we focus on theoretical/experimental correlation as
achieved at low Mach number, the theoretical effects of transonic
Mach number, and the physical and fundamental insights that have
been gained over the years. For another recent study of freeplay for
an airfoil in the transonic, low supersonicrange, see Kim and Lee.41

Their results appear comparable to those discussed here, although
they use different solution methods and do not consider a control
surface per se.

The con� guration considered is the simplest that models the fun-
damental physical phenomena. See Fig. 2, which depicts an airfoil
with a control surface in two-dimensional� ow. The airfoil structure
has three degrees of freedom, plunge (vertical translation), pitch
(rotation about the spring or elastic axis), and � ap rotation (rotation
of the control surface relative to the airfoil per se). The nonlinear-
ity modeled is the bilinear torsional stiffness of the attachment of
the � ap to the airfoil (Fig. 3). For small � ap rotation, the bilinear
torsional stiffness is very small (here set to zero and, hence, the
term free play), whereas for large � ap rotation the torsional spring

Fig. 2 Aeroelastic typical section with control surface.
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Fig. 3 Elastic restoring moment or torque with a symmetric freeplay
region about ¯ = 0.

Fig. 4 Numerical and experimental normalized steady-state rms am-
plitude for pitch vs normalized � ow velocity.

stiffnessapproachesa nominal � xed value.By the use of Lagrange’s
equations for the structure, including the bilinear free-play nonlin-
earity and an appropriate aerodynamic model, one may determine
the � utter boundary and the LCO. For the details of the theoretical
model and the wind-tunnel experimental model, see Refs. 36, 38,
and 43. Theodorsen aerodynamics or the corresponding theory of
von Kármán and Sears44 is used for the low-Mach-numberanalyses
and results.

In Fig. 4, an LCO amplitude (in pitch) is plotted vs � ow speed
(velocity) where the latter is normalized by the � utter speed in the
absenceof freeplay.Beyond the � utter speedwithout free play (here
normalized to unity), the LCO amplitude becomes very large (in� -
nite in the present theoretical model), and no experimental testing
was done for this range of � ow speed due to safety concerns. Note
that the effect of free play is detrimental in that LCO is induced
by free play at � ow speeds substantially below the nominal � utter
speed without free play. No LCO exists above the � utter boundary
predicted by linear theory for this con� guration, but rather expo-
nentially growing oscillations (diverging � utter) are predicted by
the theoreticalmodel.

Now considerthe LCO amplitudebelow the nominal linear � utter
boundary.As shown in Fig. 4, the LCO amplitude in pitch response
® is normalizedby the free-playangle ±. See Fig. 2 for the de� nition
of ±. The theoreticalmodel predicts that by using this normalization
the normalizedLCO amplitude results for any ± will lie on a single,
universalcurve (Fig. 4). The results from numericalsimulationcon-
� rm this, and the results from experiment for several ± over a range
from 0.5 to 2.2 deg are also in close correspondencewith each other
and the theoretical prediction.

Note that there are both stable and unstable LCO predicted by
theory. The unstable LCO is indicated by the dashed line in Fig. 4.

This has a simple and important physical interpretation,as follows.
In addition to the nominal � utter speed without free play, there is
another and different � utter speed predicted by the linear theory
when there is only free play (formally, when ± ¡! 1). For the
combination of � ow and structural parameters considered in the
present example36;38;43 this normalized � ow speed is about 0.37
(Fig. 4). Note, however, that both a stable and an unstable LCO
exist at yet lower � ow speeds. The lowest � ow speed for an LCO
to exist (where the stable and unstable LCO meet) corresponds to
the minimum � ow speed for � utter to occur for any control surface
torsionalstiffnessbetweenzero (oscillationsentirelyin the free-play
range) and the nominal stiffness in the absence of free play. In the
present example, this normalized � ow velocity is about 0.18. See
Ref. 38 for a more detailed discussion.

This physicalphenomenonpersists into the transonic � ow range,
although with some added features. Turning to transonic � ow, con-
sider � rst the � utter boundary in the absence of free play. These
results were obtained using a reduced-order aerodynamic model
based on proper orthogonal decomposition for the time-linearized
Euler equations of � uid mechanics.43 The � utter boundary is shown
in Fig. 5 in terms of a nondimensional� utter speed (� utter index) vs
Mach number. At low Mach number the results are similar to those
shown before for M D 0. However, for a high subsonic/transonic
Mach number, there are important differences. Note that the � utter
speed tends to a minimum in the transonic Mach number regime;
however, also note that the � utter speed rises sharply with Mach
number after the � utter minimum occurs. This is often called the
transonic bucket.

The corresponding � utter frequency is shown in Fig. 6. This
illustrates another important characteristic of transonic � ow, that
is, the change in � utter mode as the transonicMach number range is
traversed. For low Mach numbers, it is the plunge mode that dom-
inates the � utter motion, although all modes participate to some

Fig. 5 Flutter velocity vs Mach number.

Fig. 6 Flutter frequency vs Mach number.
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Flutter velocity Flutter frequency ratio

Fig. 7 Flutter velocity and frequency vs � ap frequency ratio; M = 0.8.

Fig. 8 Nondimensional equivalent � ap frequency, !¯ /!¯;nominal, vs
normalized � ap rotation ¯/±.

degree. Above M D 0:8, the pitch mode becomes dominant, and
for yet higher Mach numbers, the � ap mode dominates. To detect
these rapid changes in � utter mode, many � utter calculations must
be performed for a range of Mach numbers and other parameters.
Reduced-orderaerodynamicmodeling is a key enabling methodol-
ogy for these calculations.43

Once the � utter boundary and � utter mode are determined, the
harmonicbalancemethodis averyusefulandcomputationallyeffec-
tive method to compute LCO. The present con� guration provides a
good example of how the LCO may be determinedusinga harmonic
balance approach.

Consider a � xed Mach number and all other parameters speci-
� ed except the � ap torsional stiffness (or equivalently, natural fre-
quency). Treating the � ap stiffness or � ap natural frequency as a
free parameter,one may determine the � utter speed as a functionof,
for example, � ap natural frequencyusing a linear aeroelasticmodel
(Fig. 7). However, in reality, because of free play, the � ap natural
frequency is a function of � ap rotation amplitude (Fig. 8). For an
assumed harmonic motion of the � ap, the equivalent stiffness or
natural frequency of the � ap may be determined as a function of
� ap amplitude from a (nonlinear) Fourier analysis of the bilinear
torque–� ap rotation characteristic, that is, by a harmonic balance
method (recall Fig. 3), and the result is shown in Fig. 8. Cross plot-
ting Figs. 7 and 8, one may determine the LCO amplitude vs � ow
speed or velocity relationship. In a sense, a nonlinear eigenvalue
problem has been solved, that is, the amplitude (at a given � ow
speed) for which neutrally stable oscillations (LCO) may exist has
been determined.By consideringperturbationsin amplitudeor � ow
speed about these LCO, one may determine whether the LCO is
stable or unstable. The result for LCO amplitude vs � ow speed is
shown in Fig. 9. Such results can be and have been obtained over a
broad range of Mach numbers.43

Low-Aspect-Ratio, Platelike Wing
From one perspective, the literature for this con� guration in

the context of nonlinear aeroelasticity is very recent and relatively

small.45¡51 However, if one takes a broader view and notes the basic
physical mechanism for the nonlinear effect (that a tension force is
induced in the midplane of the plate wing by the out-of-planebend-
ing when the latter de� ection is of the order of the plate thickness),
then we recall that this is indeed the same physical mechanism that
leads to nonlineareffects in general,and LCO in particular,for panel
� utter, or the � utter of plates and shells. A panel is a local portion
of a wing between pairs of spars and stringers. See the monograph
by Dowell,45 which gives an early account of the fundamentals of
the phenomena, and the recent review by Mei et al.46 that summa-
rizes the recent literature on panel � utter. Note that in much of the
recent (and not so recent) panel � utter research, the simple piston
theory aerodynamic model is used that is valid only at suf� ciently
high supersonic Mach number. However, it is the subsonic, tran-
sonic, and low supersonic � ow regimes that are often most impor-
tant for applications.Fortunately, recent theoretical advances make
calculations in these Mach number regimes more feasible and at-
tractive. When such calculations were � rst done 25 years ago, they
were a feat.45 Today, although they do require an understandingof
the more sophisticatedaerodynamicmodels, the calculationsthem-
selves are no longer extraordinary in their demand on computer
resources.5;47;48 The most recent work for a platelike wing per se is
discussed in Refs. 49–51.

For a low-aspect-ratiowing structure that has signi� cant bending
in both thechordwiseandspanwisedirection,it may,withina certain
approximation, be modeled as a plate (as distinct from a bending
beam/torsional rod model that is often used for high-aspect-ratio
wing structures). It was shown by von Kármán52 that, if the bending
de� ectionsof a plateare comparableto theplate thickness,then there
is a tension induced into the plate by midplane stretchingthat varies
as the square of the plate de� ection (more precisely as the square
of the local slopes). This tension, when appropriatelymultiplied by
the plate curvature to give the relevant transverse force, gives rise
to a cubic stiffness nonlinearity in the bending plate de� ection.

Von Kármán52 and many subsequent investigators were con-
cerned with plate postbuckling.In the early days of aeronauticsand
continuing to the present, plate skins on aircraft between spars and
stringers are allowed to buckle. Yet, because of the stiffness nonlin-
earity, they retain some useful stiffness even when buckled. Many
years after von Kármán’s original studies, his theoreticalmodel was
a key to our understandingof the � utter of aerospacecraftskin pan-
els. This is because the static pressure and thermal stress loading of
thin-skin aircraft panels can often deform them into the nonlinear
regime. Thus, to predict the � utter boundary of such panels, not to
mention LCO, requires the nonlinear plate theory of von Kármán.
Indeed, this theory may be used to determine the LCO as well. As
expected, the LCO is almost invariably benign, and the LCO am-
plitude is typically of the order of the plate thickness. For a further
discussion of these matters, see Refs. 45 and 46.

Now, at least in retrospect, none of the preceding is surprising
perhaps, although for several years there was distressing disagree-
ment between theory and experiment for panel � utter until the von
Kármán52 nonlinear model was adopted. After all, when an elastic
plate or beam is � xed at its edges, it will stretch when it bends, and a
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LCO � ap rotation LCO frequency ratio

Fig. 9 Normalized LCO � ap rotation ¯/± and LCO frequency ratio !/!® vs reduced velocity; M = 0.8.

Photograph Physical representation

Fig. 10 Photograph of experimental model for a delta wing in a wind tunnel and physical representation of the experimental model; both a � nite
element grid for the wing structure and a boundary element, horseshoe vortex grid for the three-dimensional vortex lattice model (linear) of the
unsteady � ow are shown.

nonlinear tension force will be induced.However, what may be less
expected, but nevertheless also true, is that when a plate is only re-
strained on a single edge (e.g., a low-aspect-ratiowing cantilevered
to a wind-tunnel wall or an aerospacecraft fuselage), a signi� cant
tensionmay still be inducedas predictedby the von Kármán theory.
Typically,however, the de� ections must be larger for a cantilevered
plate than for a plate � xed on opposite edges for the nonlineareffect
to be important. The LCO amplitude of a cantileveredplate may be
as largeas severalplate thicknesses,whereasthat for a plate clamped
on all edges is usually less than one plate thickness.

In Fig. 10, a low-aspect-ratio delta wing model cantilevered to
a wind-tunnel wall is shown. Von Kármán’s52 plate theory and an
appropriatereduced-orderaerodynamicmodelareused to determine
the LCO amplitude as a function of � ow speed. A representative
result is shown in Fig. 11 (Refs. 49–51). Note that the LCO is entirely
benign. No LCO occurs below the � utter boundary predicted by
linear theory. The small oscillations seen in the experiment at � ow
speeds below the � utter speed are a result of small turbulent � ow
� uctuations in the wind tunnel not modeled in the present theory.
Theory and experimentare in essential agreement for both the onset
of � utter and the LCO beyond the � utter boundary.

High-Aspect-Ratio, Beamlike Wing
For very high-aspect-ratiobeams that may bend and twist, it has

been known for many years that the � apwise bending, chordwise
bending (lag), and torsional deformation (twist) may couple among
themselves to produce a signi� cant structural nonlinearity.53 Also,
nonlinear aerodynamic stall effects are known to be important and
have been modeled successfully, though semi-empirically.54 Such
issues were � rst pursued in the context of rotor blades that are of-
ten, of course, long and slender. They have not been important for
� xed-wingaircraftfor the most part.However, recently,and particu-
larly in the contextof some UAVs, very high-aspect-ratio� xed-wing
con� gurationsare of interest.Thus, researchershavepursuedaeroe-
lastic studies of this con� guration. Notable work has been done by

Fig. 11 Theoretical and experimental nondimensional transverse
velocity of LCO vs � ow velocity.

Patil et al.55;56 and Patil and Hodges.57 Their pioneering theoretical
studies have shown a number of interesting nonlinear effects, in-
cluding the presenceof LCO, the sensitivityof the onset of classical
� utter, as well as LCO to temporal disturbances including initial
conditions. Their work and that of the Duke University research
team58 are discussed here. The latter includes both theoretical and
experimental studies.

For a very high-aspect-ratio wing, the structural nonlinearity is
of a kind very different from that for a low-aspect-ratio platelike
wing. However, it can still be attributed to a nonlinear relationship
betweenstrain and displacement(gradient). Such a nonlinearitywas
� rst investigated in the context of helicopter rotor blades (which
are very high-aspect wings) dating from the paper by Hodges and
Dowell.53 Subsequently, Hodges,59 Friedmann,14 and many others
have improved on this original work.

The key physical aspect of the structural nonlinearityarises from
a subtle, mutual coupling among the chordwise bending, as well as
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Photograph Physical representation

Fig. 12 Photograph of experimental model for a high-aspect-ratio wing in a wind tunnel and physical representation of the experimental model:
NACA 0012 airfoil, span L = 18 in., chord c = 2 in., and bending stiffness ratio, EI2 /EI1 = 44.

Flutter velocity Flutter frequency

Fig. 13 Perturbation stability solution of the nonlinear aeroelastic system vs pitch angle.

transverse bending of the wing in conjunction with twisting about
the beam–rod elastic axis of the very high aspect ratio wing. As in
classical high-aspect-wing structural theory, the chordwise defor-
mation is treatedas a combinationof rigid-bodyplunge(translation)
and pitch (rotation), with all elastic deformationoccurringalong the
(one-dimensional) axis of the beam–rod (Fig. 12). There can be both
static, as well as dynamic, effects of the structural nonlinearity.For
example, static gravity loadingor static aerodynamicloadingdue to
a static angle of attackmay change the structuralnatural frequencies
and, hence, the � utter speed. The effect of a static angle of attack on
� utter speed is shown in Fig. 13. The LCO amplitude vs � ow speed
is shown in Fig. 14 for a speci� ed angle of attack.

From Fig. 13, which shows both � utter velocity and � utter fre-
quencyvs static angleof attackor pitch angle, it is seen that the theo-
reticalmodel captureswell the resultsobservedexperimentally.The
LCO results in Fig. 14 show hysteretic response in both the theory
and experimentwith increasingand decreasing� ow velocity.When
the nonlinear structural effects are studied with and without � ow
separation in the theoretical model, it is found that the hysteretic
behavior is due to � ow separation.Flow separationis accounted for
theoretically using the ONERA aerodynamic model.54

The agreement between theory and experiment is encouragingly
good for what is the rather complex behaviorof a multidimensional
nonlinearsystem.The � uttermode is dominatedby the secondspan-
wise transverse bending and � rst torsion structural natural modes.
The � rst chordwise bendingmode is also an essential contributorto
the LCO, however. For further discussion of this case, see Ref. 58.

Nonlinear Inviscid Aerodynamic Effects
on Transonic Divergence Flutter and LCO

The presence of a shock wave per se may give rise to two signi� -
cant effects on aeroelastic response.First, if the shock wave motion

is small enough, then the aerodynamic force will be linearly pro-
portional to the structural motion. However, the linear relationship
will be quantitativelydifferentwith a shock wave present than with-
out. Hence, the � utter boundary will be changed by the shock even
for small (in� nitesimal) shock motions. However, in addition, to
predict LCO, the nonlinear relationship between the aerodynamic
forces and the structuralmotion that arise from large shock motions
must be taken into account. This is the primary subject here. How-
ever, as will be seen, determining the � utter condition is a key step
in determining the LCO. A representative sample of the relevant
literature is contained in Refs. 60–64.

It hasbeenfoundthatbothbenignanddetrimentalLCO may result
from aerodynamicnonlinearitiesdue to large shock wave motion.

To solve the Euler equations of � uid dynamics for large motions,
a novel formof the harmonicbalance(HB) methodhas beenderived
by Hall et al.62 and Thomas et al.64 In this method, the aerodynamic
forces are determined as a Fourier series in time for a prescribed
structuralmotion that is a harmonic in time. The Fourier coef� cients
for the aerodynamicforcesare, in general,nonlinearfunctionsof the
airfoil (or wing) motion amplitude.It is found that a singleharmonic
approximation for the structural motion is suf� cient, but typically
two or three harmonics are needed in the aerodynamicmodel to ob-
tain a good � rst harmonic representationof the aerodynamic forces
required for the structural equations of motion.

Now the keys to the ef� cient calculation of LCO are twofold.
First, if the structural motion is known, then the HB method will
determine the aerodynamicforces very ef� ciently relative to a time-
marching code. Note that the results from a time-linearized model
in the frequency domain for small airfoil or wing motions may be
used to construct an initial guess for an iteration method to deter-
mine the HB aerodynamicsolutionfor larger airfoil and shock wave
motions.
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LCO amplitude

LCO frequency

Increasing � ow velocity

Decreasing � ow velocity

Fig. 14 Midspan LCO amplitude, LCO frequency vs � ow velocity, and LCO time history at midspan for increasing and decreasing � ow velocities
for µ0 = 0.25 deg.

HB solution iteration CFD solution iteration

Fig. 15 Iterative solution technique for LCO variables; structural and aerodynamic parameters are NACA 64A010A, M = 0.8, ®0 = 0 deg, a = ¡ ¡ 0.6,
Å® = 2 deg, N = 2, x® = 0.25, r2

® = 0.75, !h/!® = 0.5, and ¹ = 75.

Second, when dealing with the nonlinear aeroelastic equations,
another rapid iteration method may be used to determine the LCO.
One such method follows.

For de� niteness and clarity, consider an airfoil with plunge h and
pitch ® degrees of freedom. In a standard nondimensionalnotation,
the structural/aeroelastic equations of motion for the � rst harmonic
in time are

[¡ N!2 M C .1=V 2/K ]fug D 4=¼¹f f g (1)

where h D Nhei!t , ® D N®ei!t , and

M D
µ

1 x®

x® r 2
®

¶
; K D

µ
.!h=!®/2 0

0 r 2
®

¶
(2)

fug D
» Nh=b

N®

¼
; f f g D

»
¡Ncl

2 Ncm

¼
(3)

where Ncl and Ncm are the � rst harmonic aerodynamicnondimensional
lift and moment. In general, Ncl and Ncm are nonlinear functions of Nh
and N®. However, Nh and N® are to be determinedas part of the solution.

One can construct a very ef� cient iteration scheme to solve these
equations, as follows. First, select the amplitude (of the � rst har-
monic) of N®. Then, determine the corresponding amplitude (� rst
harmonicincludingboth in-phaseandout-of-phasecontributions)of
Nh from the aeroelasticeigenvectorcalculatedfrom a time-linearized
model. Also choose the (reduced) frequency to be that from a time-
linearized aeroelastic � utter analysis. Now Nh and N® are known to
some approximation and, thus, Ncl and Ncm can be determined from a
nonlinearHB aerodynamicanalysis.With Ncl and Ncm known to a � rst
approximation,Eq. (1) may be solved for new estimates of reduced
frequency, reduced velocity (the � rst approximation is the reduced
velocity at � utter), and the ratio of the in-phase and out-of-phase
plunge amplitude to the chosen pitch amplitude. With these new
estimates, Ncl and Ncm may be reevaluated,and the iterationcontinues.
A typical result is shown in Fig. 15 for the LCO reduced velocityvs
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iteration number N for a prescribed pitch amplitude of 2 deg. For
N D 0, the reduced velocity is that given at the � utter point. Note
that N D 2 or 3 gives a good approximation. The convergence of
the HB computational � uid dynamic (CFD) solution is also shown
in Fig. 15. Note that, as N increases, the CFD solution converges
more rapidly from one iteration to the next. This attractive result is
because the differencebetween the aerodynamicsolution for N and
that for N C 1 decreases as N increases. In more recent work (as
yet unpublished), it has been found that sometimes the preceding
iteration method fails to converge. However, in those cases, a stan-
dard Newton–Raphson method has been used successfully to solve
Eq. (1) with even more rapid convergence.

Repeating this calculation for different selected pitch ampli-
tudes provides results for LCO pitch amplitude vs reduced velocity
(Fig. 16). This is an example of a relatively strong transonic non-

Fig. 16 Computed LCO behavior; structural and aerodynamic
parameters are NACA 64A010A, M = 0.8, ®0 = 0 deg, a = ¡¡ 0.6, Å® =
2 deg, N = 2, x® = 0.25, r2

® = 0.75, !h/!® = 0.5, and ¹ = 75.

LCO reduced frequency

LCO frequency ratio

Real part

Imaginary part

Fig. 17 Effect of pitch amplitude on LCO reduced frequency and frequency ratio and LCO structural mode shape for Mach number M = 0.8.

linearity leading to a benign LCO. If the Mach number is reduced
so that no shock is present, the LCO amplitude vs reduced velocity
curvewould be a near vertical line, indicatinga weaker nonlinearity.

In addition to the result shown in Fig. 16, one may also calculate
the reduced frequency, the ratio of LCO frequency ! to the pitch
natural frequency!® , and the real and imaginary (in-phaseand out-
of-phase) components of h normalized by ® (Fig. 17). As expected,
all of these quantities are weak functions of LCO pitch amplitude.
UsingFigs. 16and 17,onecanalsoconstructplotsof thesequantities
as a function of reduced velocity.

Detrimental LCO due to shock-related nonlinearities may also
occur below the nominal (linear) � utter-boundary, as reported
in Ref. 64. Finally, this methodology can be extended to three-
dimensional � ows and to includeviscous � ow effects and structural
models with several degrees of freedom. Such work is currently
underway.

Future Work
NASA Langley Research Center has developed, over the past

decade, a substantialbody of experimental data for transonic � utter
and LCO that can be compared to the results from newly emerging
computationalmodels and methods.Also, the InstituteforAeroelas-
ticity at DLR has providedsome interestingexperimental results. In
addition,time-marchingCFD codeshaveprovidedsomebenchmark
theoretical results that may be used for comparisonswith the newly
emerging methods. Further insights into LCO will undoubtedly be
developed as a result of such correlation studies.

The inclusion of viscosity in nonlinear aerodynamic models re-
mains an open challenge. There are global, semi-empirical models
such as that developed by Tran and Petot54 at ONERA. These use
experimental data to represent aerodynamic forces directly, based
on equation forms suggestedby inviscid theory. On the other hand,
there is extensive literature on semi-empirical models for the lo-
cal � ow (so-called turbulence models). Incorporation of these in
emerging, unsteady aerodynamic models based on the concept of
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aerodynamic modes is within reach, and results may be expected
in the near term. However, the adequacy of semi-empirical turbu-
lence models for the � ows of interest in aeroelasticity remain to
be assessedby systematic studies using reduced-orderaerodynamic
models.A far deeperquestionis whether theconceptof aerodynamic
modes will prove useful for developing solutions to the Navier–
Stokes equations from � rst principles,without the necessity of em-
pirical turbulencemodeling.This remains very much an open ques-
tion, albeit an intriguing one. However, it appears that representing
the � uid � ow� eld in terms of aerodynamicmodes is one of the few
prospective and promising methods for solving the Navier–Stokes
equationsde novoat the Reynolds numbersof interest for aerospace
applications.

Finally, and in summary, there is real cause for optimism based
on the progress to date in developing a more fundamental under-
standing of LCO and other nonlinear aeroelastic phenomena, as a
result of the recent emergence of computationally ef� cient models
and methods. These are providing new insights into the fascinating
phenomena of nonlinearaeroelasticityand unsteady aerodynamics,
as well as providing a � rmer basis for more rational designs and
improved performance. One may hope that Theodore von Kármán
would be pleased that today’s aerospace engineers are grappling
more successfullywith nonlinearities than ever before.65

Summary
Nonlinear effects in aeroelastic systems may be either favorable,

unfavorable, or a combination of both. For example, when a struc-
tural stiffness nonlinearity is equivalent to a hardening spring, as
in the von Kármán model of a plate, no LCOs will exist below the
� utter boundary determined in the absence of nonlinearity. Above
the � utter velocity, the nonlinearitywill limit the response,a clearly
favorableoutcome.However, for other nonlinearities,such as struc-
tural free play or aerodynamicnonlinearitiesdue to � ow separation
or large shockmotion, the effectof thenonlinearitymay be to induce
LCO below the nominal � utter velocity but to still limit the LCO
response to a � nite amplitude both below and above the nominal
� utter velocity. Whether such nonlinear effects are favorable or not
will depend very much on the particular circumstancesand param-
eters involved. Nonetheless, it is clear that nonlinear effects often
lead to LCO, and, in their absence, the alternative would be catas-
trophic � utter leading to structural failure. Hence, nonlinearities in
aeroelastic systems provide an opportunity for improved safety and
performanceof modern aerospacecraftif reliable and computation-
ally effective analysis and design methods can be developed.

Recent advances in computational models and solution tech-
niques now permit ef� cient nonlinear aeroelastic analysis, includ-
ing the determination of LCOs for a number of nonlinearities as
described in this paper. The most promising methods are based
on two fundamental ideas. First, time-linearized models of the
� uid (and the structure) may be used to construct highly compact,
reduced-order aerodynamic (and structural) models. Second, with
the � utter velocity, frequency, and eigenmode (the aeroelastic mo-
tion) determined from such an analysis, the results may be used as
the � rst step in a rapidly convergingiterationprocess to solve for the
nonlinear LCO using a novel form of the harmonic balance method
for determining the nonlinearaerodynamicforces and the structural
deformation.

Nonlinearities that have been successfullymodeled theoretically
(and the results con� rmed by experiment) include 1) structural free
play, 2) structuralgeometric (strain-displacement) nonlinearitiesfor
low- and high-aspect wings of relatively simple construction, and
3) separated � ow nonlinearities[at low Mach number using a semi-
empirical (ONERA) aerodynamic model].

In addition, theoretical� uid models for inviscid, large shock mo-
tion have now been developed that permit computationallyef� cient
� utter and LCO analysis arising from such aerodynamic nonlinear-
ities. Correlation with experiment remains an open challenge.

Appendix: Modeling of Fluid–Structural
(Aeroelastic) Interaction

There are three aspects to be consideredin the modeling of � uid–

structural (aeroelastic) interactions: 1) the modeling of the time-

dependentaerodynamicforceson a deformingstructure,2) the mod-
eling of the deforming structure under the action of a distribution
of forces, and 3) the determination of the aerodynamic forces and
structural deformations simultaneously in time for purposes of a)
assessing stability or instability (� utter) due to small perturbations
and also b) the LCOs and sensitivity to � nite disturbances arising
from nonlinear effects. The nonlinearities may originate 1) in the
� uid, 2) in the structure, or 3) in both.

For a more in-depth discussion, the interested reader is referred
to Refs. 5 and 66. Here an overview is presented that may serve as
an introduction for those to whom the subject is relatively new and
as a useful summary for the expert. We begin with a discussion of
linear models as a point of reference.

Modeling of the Structure
Most structures of interest may be modeled as being constructed

of linearly elastic materials, that is, it is assumed that there is a lin-
ear relationshipbetween stress and strain with known material con-
stants. If the strain–displacement (gradient) relationships are also
linear (as they are for suf� ciently small structuraldeformation) then
the structural model will be entirely linear, that is, deformations
will be proportional to the aerodynamic forces acting on the struc-
ture. Then, for the small damping typical of an elastic structure,
the structure will possess a discrete set of resonant eigenmodes.
For aeroelastic analysis (linear or nonlinear) the structural model
may be most compactly (and usually most conveniently) expressed
in terms of these eigenmodes and their modal amplitudes. A typ-
ical � nite element structural model may have 103–104 degrees of
freedom (unknowns), whereas a typical eigenmode model of com-
parable accuracy for aeroelastic analysis will have 10–102 degrees
of freedom.

There are two further points to be made, however. One is that
even for a linear structural model, if the structural con� guration is
at all complicated, then a � nite element analysisof the structurewill
be required to determine the structuraleigenmodes. If the structural
con� gurationis then changed,one may need to do the � nite element
analysis again to determine the new eigenmodes. However, if the
con� guration changes are small enough, then the original eigen-
modes may still be a suf� ciently good basis for representing the
modi� ed structural model.

The secondpointconcernsthe impact of nonlinearityon the struc-
tural model. If, as is usually the case, one can express the kinetic
energy and strain energy of the structure in terms of the structural
deformations, then one can still expand the latter into a series of the
eigenmodes. However, now the structural modal amplitude equa-
tions of motion, as derived from Lagrange’s equations, for exam-
ple, will be nonlinear, and, indeed, the nonlinear terms will couple
the (modal) equations of motion even if one uses an eigenmode
expansion.

Modeling of the Fluid
Readers new to the � eld of aeroelasticitymay not be surprised if

they are told that one can also compactly model the aerodynamic
� ow in terms of � uid eigenmodes. However, the expert will recog-
nize this approach for representing the aerodynamic � ow is quite
a recent development. This is the case for two reasons. First, it is
substantiallymoredif� cult to computethe eigenmodesof an aerody-
namic � ow compared to the structuraleigenmodes.Second, strictly
speaking,the aerodynamiceigenmodesare a result of the discretiza-
tion and � niteness of the computational domain in a typical CFD
code. Indeed, in the classical Theodorsen/von Kármán and Sears44

theory for incompressible � ow over an oscillating airfoil in an in� -
nite domain,only a branchcut appears in theexact solution,whereas
poles or eigenvaluesappear in the correspondingCFD or vortex lat-
tice model5 due to the approximation made in the latter models by
spatial discretizationand a � nite computational domain.

Even so, becauseof recent advances, it is now recognizedthat the
eigenmodes of CFD aerodynamic � ow models are very useful for
deriving a compact unsteady aerodynamic model. However, note
that determining the � uid eigenmodesdirectly from a CFD model is
quite dif� cult, and, indeed, an alternative set of aerodynamicmodes
or basis functions derived from a proper orthogonaldecomposition
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(POD) is a more attractive approach for constructing a compact
reduced-order aerodynamic modal model. A typical CFD model
in three-dimensional � ow will have 105 –106 degrees of freedom,
whereas an aerodynamic reduced-order modal model will usually
have fewer than 102 .

In principle, the eigenmode or POD approach may be used to
constructa time-linearizedor a fullydynamicallynonlinearreduced-
order aerodynamic modal model. However, the nonlinear models
still require further development,as of this writing, before they will
be available for practical use. Time-linearized, three-dimensional
inviscid � ow, reduced-order aerodynamic modal models are now
available.

For now, and perhaps for some time to come, the HB method
developed for CFD models by Hall et al.62 and Thomas et al.64

is a very attractive approach to the fully nonlinear aerodynamic
modeling challenge for reasons to be described hereafter.

Solving the Aeroelastic Equations
First considera dynamically linear aeroelasticmodel that is suf� -

cient to establishthe onset of � utter (instabilitywith respect to small
or strictly in� nitesimal perturbations) and often the onset of LCOs.
For the strictly linear case, the dynamic structural deformationwill
be about some trivial (zero deformation) static equilibrium,and the
steady (static) � ow solution will be one of uniform velocity every-
where in the � ow� eld before the dynamic perturbation. In general,
the static equilibrium per se may be a nonlinear state, however.

By the use of dynamically linear structural and aerodynamic
reduced-ordermodal models, the equations governing the dynamic
perturbationsabout any (linear or nonlinear) static aeroelastic equi-
librium state will themselves be in state-space form, that is, a linear
system of ordinary differential equations (ODEs). The number of
structural modes (states) will typically be of order 10 and the num-
ber of aerodynamic modes (states) less than 100. Thus, one may
follow the migrationof the aeroelasticpoles or eigenvaluesas some
parameter, for example, � ow velocity,density, or dynamic pressure,
is varied. That is, one may construct a root locus. When the real
part of any aeroelastic eigenvalue becomes positive corresponding
to exponentiallygrowing oscillationswith time, the aeroelasticsys-
tem is unstable with respect to small perturbations about the static
equilibrium condition.

In transonic � ow, the steady (or static) � ow condition will be
nontrivialand must be � rst determinedby a nonlinearstatic or time-
independent analysis before a small dynamic perturbation (� utter)
analysis may be carried out. Similarly, static forces on the structure
(due to steadyaerodynamic� ow or gravity, for example)may be suf-
� cient to induce a nontrivial nonlinear static equilibrium condition
for the structure. When this is the case, a nonlinear static aeroelas-
tic analysis must be performed before the (linear) small dynamic
perturbation analysis.

Finally, to determine LCOs or the sensitivity of any static or dy-
namic state to large or � nite perturbations,a full nonlinear dynamic
� nite perturbation analysis must be performed. There are several
possibilities for how this may be done.

The simplest conceptually, but the most expensive computation-
ally, is to time march the nonlinear ODEs governing the structure
(either a modal model or a � nite element model) together with the
nonlinear ODEs governing the aerodynamic � ow CFD model. This
has been done by several investigators, but the results are typically
for a small parameter range because of the large computational
expense.

The computational expense can be greatly reduced by using
modal models for the structure and aerodynamic � ow. Such struc-
tural modes for a variety of nonlinearities have been constructed
and used effectively. However, the construction of such dynami-
cally nonlinearaerodynamic � ow models is still a subject for ongo-
ing research. Although certainly possible in principle, the size and
complex form of typical CFD models renders a practical modal re-
duction for fully dynamically nonlinear aerodynamic � ows a more
dif� cult challenge than, for example, for typicalnonlinearstructural
models. Even so, one may expect useful techniques for such non-
linear aerodynamic modal reduction to be developed, and certainly
efforts are underway to do so by the research community.

Another effective approach has been developed for determining
LCOs and other nonlineardynamic responses,however, that is very
attractive. This is the well-known HB method, modi� ed and ex-
tended for aeroelastic analysis by Hall et al.62 and Thomas et al.64

One reason this approach is computationallyef� cient for determin-
ing LCO is that the solution of the nonlinear equations for LCO
is reduced to � nding the solutions of a set of nonlinear, algebraic
equations for the structural modal amplitudes and the correspond-
ing aerodynamicgeneralizedforces. This requires an iteration solu-
tion method, for example, Newton–Raphson, but the iteration con-
verges rapidly because a � utter solution (based on a linear dynamic
analysis) gives an excellent starting point for the iteration to deter-
mine LCO. Note that, in particular, the � utter solution provides the
aeroelastic eigenvector for the � utter condition that gives the rela-
tive proportions of each structural modal amplitude or generalized
coordinate (and also each aerodynamic � ow� eld variable). Thus,
the iteration process for determining the LCO from the solution of
the nonlinear, algebraic HB equation can begin with an excellent
estimate of the spatial (or equivalently modal) distribution of the
structural and � ow� eld dynamic amplitudes from the � utter solu-
tion. Hence, the iteration convergesvery rapidly, typically in one or
two iteration cycles.
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