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Abstract 
A procedure for developing efficient aeroelastic Reduced Order Models (ROMs) for aerospace structures 
containing geometric non-linearities is described. The structural modelling is based upon a combined 
modal/ Finite Element approach that describes the non-linear stiffening effects from results of non-linear 
static analyses for a range of prescribed inputs. Once the structural ROM has been defined, it is coupled to 
the aerodynamic model. The aeroelastic model can then be used to predict the dynamic aeroelastic 
behaviour of the defined structure. The methodology is demonstrated on the aeroelastic model of a flexible 
high-aspect ratio wing.   

Nomenclature  �,� = structural physical mass/stiffness 
A, E = structural modal mass/stiffness � = physical force vector 
f = modal force vector 
r(x,t) = physical displacement vector 
p(t) = modal displacement vector ϕ(x) = eigenvectors 
N = Number of DOF in FE model 
NR  = Number of DOF in reduced    
                           modal model 
NT = Number of  nonlinear static test  
    cases 
NA = Number of nonlinear stiffness  
     coefficients 
NL = Number of aerodynamic lag 
     parameters �� = Nonlinear stiffness coefficients  
H = Contribution factor �	
 = Cumulative goodness of fit 
 
 
 
 
 

 
ρ = air density 
aw = lift curve slope ��
   = Non dimensional pitch damping 
s = half wing span 
c = chord 
b = semi-1chord 
V = velocity 
L = Lift 
M = Pitching moment 
AIC = Aerodynamic influence matrix 
k = reduced frequency 
q = dynamic  air pressure 
An = Roger matrices βn = Aerodynamic lag parameters 
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1 Introduction 

There has been a growth of interest in the development of highly flexible UAV aircraft. Perhaps the best 
known instance is the Helios aircraft that failed during a flight in 2003 due to the response to a gust. One 
of the causes of the accident found by the investigation that followed was the lack of appropriate analyses 
for highly flexible aerospace structures [1] leading to inappropriate decisions to fly a certain configuration. 
One characteristic of such aircraft is that the structural stiffness behaves in a non-linear manner due to 
geometric stiffening or softening, and consequently the conventional approach to aeroelastic analysis is 
not valid. The geometric non-linear effects of such large structures can also have a dramatic effect upon 
the flight dynamics; Palacios et al. [2] reviewed the most important aspects of high aspect ratio aircraft 
affected by the non-linear structure, including longitudinal stability, body-freedom flutter and gust 
response (and subsequent loads). They emphasised the need for computationally efficient reduced order 
time domain simulations to predict the coupled aeroelastic/flight dynamic interactions. The effect of 
geometric non-linearities is not solely confined to HALE (High Altitude Long Endurance) aircraft and the 
current generation of large commercial and military aircraft exhibit some of the above characteristics. 
Although there has been a great deal of research devoted to the effect of non-linearities on aeroelastic 
behaviour, this has primarily been directed towards aerodynamic non-linearities in the transonic flight 
regime, or structural nonlinearities such as freeplay and hysteresis occurring on control surfaces. Most of 
the work [2-8] directed at modeling the geometric stiffening characteristics for aeroelastic models of 
HALE type aircraft has employed equivalent non-linear beam models. 

There have been a number of approaches developed to use commercial Finite Element software to enable 
the development of Reduced Order structural models. In particular the Modal/FE approach of McEwan et 
al. [9, 10] performs a static analysis for a number of defined prescribed loading cases. These 
displacements are then curve fitted using a regression analysis in order to define non-linear stiffness terms 
that can be added to the conventional modal model. A similar approach is used in the ELSTEP 
methodology [11, 12] which applies prescribed displacements. Once the reduced order model is produced 
it is then very efficient to run time domain simulations for a large number of design cases. The Modal / 
Finite Element (FE) approach has been used very successfully [10, 13] for the prediction of response of 
aircraft panels subjected to large acoustic excitations. A recent application of the ELSTEP approach has 
been to combine it [14, 15] to hypersonic aerodynamic models in order to produce efficient coupled non-
linear aeroelastic models of membrane type structures.  

In this paper, a combined modal/finite element approach of McEwan et al. [9, 10] is implemented to 
model the geometric nonlinearities of studied structure, where Patil and Hodge’s HALE wing model has 
been taken as an exemplar for this study. The prescribed load cases and resultant displacements from the 
static nonlinear test cases are transformed into the modal coordinates using the modal transformation of 
underlying linear mode system. The regression analysis is then performed to curve-fit on sets of nonlinear 
stiffness forces information in order to find the unknown nonlinear modal stiffness coefficients. Having 
obtained the nonlinear modal model, the aeroelastic analysis is then performed by coupling it with the 
aerodynamic model. Two different types of aerodynamic models have been considered in this study, 
which are (1) modified aerodynamic strip theory, and (2) a Rational Function Approximation (RFA) of 
doublet lattice by using the Roger procedure.  

 
 
 

3110 PROCEEDINGS OF ISMA2010 INCLUDING USD2010



 
 

 

2 Formulation 

2.1 Combined modal/finite element approach [9, 10] 

2.1.1 Nonlinear structure modal model 

The equations of motion of dynamic system in physical space including stiffness nonlinearity can be 
represented as 

��� � ���
 � ��� � �������� � ��� 
 

(1) 

where � is the N×N assembled mass matrix, �L is the N×N assembled linear stiffness matrix, �NL(r) is the 
N×1 vector of nonlinear stiffness function, � is the N×1 vector of applied nodal forces, α is the 
proportional mass damping coefficient,  and r(t) is the N×1 vector of spatial displacements. The 
transformation between the physical space and modal space is performed using the modal transformation 

���, �� � �������� (2) 
    
where p��� is the NR×1 vector of time-dependent generalized modal coordinates and ���� is the N×NR 
matrix of the underlying linear mode shapes. The number of degrees of freedom in the modal model can 
be reduced (NR<<N) depending on the frequency range or modes of interest. Substituting the modal 
transformation of equation (2) into equation (1) and pre-multiplying by �� 	 yields 

�	���� � ��	���
 � �	���� � �	���������� � �	��� (3) 
 
Here, a set of coupled physical systems are modified into a set of uncoupled single DOF modal systems by 
using the orthogonality of the modes. Therefore, the equations of motion in modal coordinates become 

!�� � �!�
 � "#� � �"$#���� � �%� (4) 
       

where matrix A and EL are now diagonal matrices of size NR×NR. However, it should be noted that the 
nonlinear modal stiffness matrix   �"$#���� which is a NR×1 vector, may contain cross-coupling terms 
and is a function of modal coordinate, p(t). 

2.1.2 Strategy for generating static nonlinear finite element test cases 

The implementation of the combined modal/Finite Element (FE) approach is based on nodal deflections 
obtained from a number of prescribed static non-linear load cases. Thus, when a static system is 
considered, the equations of motion which are given by equation (4) reduce to 

"#� � �"$#���� � �%�  (5) 
 
and by rearranging the above equation, the nonlinear stiffness restoring forces can be written as �%� & "#p � �"$#���� (6) 
 

A set of finite element nonlinear static test cases have to be defined by prescribing a set of applied loads in 
the finite element nodal space. The nonlinear modal stiffness coefficients are identified by performing 
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regression analysis on sets of information obtained from several nonlinear static test cases which have 
been transformed into the modal coordinates. These load cases can be generated by using the following 
equation: 

��� � () * 2,- & 1 & 1/ ���) � (0 * 21- & 1 & 1/ ���0 (7) 

i = 0,1,.. g-1 
j = 0,1,.. g-1 

Here, ar and as are the scalar weighting factors. The grid density value, g, is used to define the 
intermediate load cases and the eigenvectors {φ} can be obtained from ‘normal mode analysis’ by using 
any proprietary finite element software package. 
  
The Patil and Hodges HALE wing model [4,16] has been taken as an example in this work. In order to 
define the geometric nonlinearities of the structure, the first three fundamental bending modes and the first 
torsion mode have been considered.  
 
The structural bending nonlinearities are developed based on the simultaneous coupling of these bending 
modes only. With g  taken as 2 for the bending case, this leads to a total of 19 test cases which can be 
derived using the equation (7). Due to the unknown characteristics of the stiffness nonlinearities, it has to 
be assumed that the nonlinear cross-couplings between these bending modes have significant effect on 
overall static and dynamic responses where a solution of certain modes may induce a response of other 
modes as well. Figure (1) shows the spatial distribution of the first three bending modes of the wing.  

Before further implementation of this approach is made, the characteristics of the stiffness nonlinearities 
due to the bending of the structure need to be identified. Thus, by using any proprietary FE software 
package of nonlinear static analysis, the structure is analyzed with uniform incremental forces along the 
structure. Figure (2) shows the resultant deflections at the tip of the wing from this analysis. It is clearly 
shown that the structure experiences a stiffness hardening effect where the ‘stiffening’ behaviour occurs as 
the tip of the wing is deflected above than 1.5m. 

Consequently, all of the defined 19 test cases must have minimum tip deflections greater than 1.5m. 
Therefore, care has to be taken when defining the scalar weighting factor so that no physical displacement 
of any of the test load cases will ever exceed these conditions. To ensure that all of the load cases are able 
to deflect the structure into the nonlinear region, comparisons are made between the resultant nodal 
displacements of linear static and nonlinear static solution as shown in figure (3).  

For the structural nonlinearities due to torsion, the above procedure is repeated. The load cases are derived 
similarly as before using equation (7) with g taken as four. This leads to a total of seven load cases. Figure 
(4) shows the comparisons between the linear and nonlinear static FE solution in terms of torsional on the 
middle section of the wing model. It should be noted that the cross couplings between the bending modes 
and the torsion mode have not been considered in this paper; nevertheless, further work considering this 
effect is ongoing. 
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Figure (1) : First three bending mode shapes  

of considered model 
 

 

 
 

 

 
Figure (3) : displacement (bending) of Nastran-Linear Static and Nonlinear Static Solution 

 
Figure (4) :   Resultant displacement (torsion) of Nastran-Linear Static and Nonlinear Static Solution 

Nonlinear Linear 

Figure (2) : Wing tip Nonlinear Deflection  
                 (NASTRAN static nonlinear analysis) 
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Having defined the load cases, the static nonlinear finite element test cases can then be solved by using 
finite element software to obtain the resultant displacement for each of the test cases. Following this, the 
acquired information on the nodal forces and nodal displacements are then transformed into the modal 
space. 

The transformation of nodal displacement into modal space can be calculated from the solution 

�� � r (8) 
 

while the applied modal force vector is obtained as 

% � �	� (9) 

2.1.3 Regression analysis, Curve fitting 

An ordinary polynomial approach has been considered in order to curve fit the nonlinear forces. In this 
work, simultaneous coupling of up to two modes has been considered. From other studies made by the 
authors, it is found that the simultaneous couplings of more than two modes for the considered structure 
are very weak and can be safely neglected. Therefore, the polynomial of the nonlinear restoring forces will 
be derived as the following series of up to third order for some mode r 

"$#�)���3, �
. . . �56� � 7 7 �)
8

9:
 �09
56
0:3 � 7 7 7 7 �)

8;9
<:3 �09



9:3 �=<

56
0>3

56;3
0:3  

 

(10) 

Upon completion of the static nonlinear test cases, and with the acquired data of load-displacement in 
modal space, the nonlinear restoring force for each of the test cases can now be fitted to find the unknown 
nonlinear modal stiffness coefficients in a least squares sense. The nonlinear restoring forces for a certain 
mode r can now be shown in matrix form to be 

?@A
@B C)�3� & "#�)��)�3�C)�
� & "#�)��)�
�DDC)�5	� & "#�)��)�5	�E@F

@G �
HII
IIJ

p3�3 �
         p3�3 � 8  … … p3�
 �
         p3�
 �8  … … D              D             D              D             p3�LM�
        p3�LM�8 … … NOO
OOP

?@A
@B �) �3��) �
�DD�) �5Q�E@F

@G
 

 

(11) 

or represented as 

�C)�5R S TC)U V5R � �W) ��)� (12) 
          

Here, TC)U V5Ris a NT×1 vector of fitted values of nonlinear modal stiffness restoring forces, �W)  is NT×NA 

design matrix and ���� is NA×1 vector containing the unknown values of nonlinear stiffness coefficients 
where both of these matrices are developed based on equation (10). 
    
The Singular Value Decomposition (SVD) technique is implemented in order to find fitted values of the 
nonlinear stiffness coefficient ����. This technique is able to solve the pseudo-inverse of a rectangular 
matrix that is suspected to be ill-conditioned. Here, the design matrix �W)  can be represented as 
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�W) � �X �Y �Z 	 (13) 
        

where [U] is a NT×NA matrix and [V]T  is a NA×NA matrix. Both of these matrices are in orthogonal 
form, while [W] is NA×NA diagonal matrix consisting of positive real values of singular values. 

TC)U V5R � �X �Y �Z 	���� (14) 
          

If �W) 	�W)  is a non-singular matrix, the nonlinear stiffness coefficients are found from 

���� � �Z �Y ;3�X 	TC)U V5R (15) 
        

If �W) 	�W)  is a singular matrix, then the �Y ;3 matrix will be partitioned to remove the non-contributing 
components such that 

�Y ;3 � [ 1\9 ,C \9 ] �^_     �`a(__ �b�c`b^_d�0 ^�bc�f,`c g (16) 

      

and the nonlinear stiffness coefficient can then be found by substituting the altered �Y ;3 into equation 
(15). 

In order to obtain the appropriate combinations of the nonlinear polynomial terms, the backward 
elimination approach will be used to remove the redundant terms that give less significance to the overall 
solution. The contribution of each of the polynomial series in �W)  matrix can be found by solving the root 
mean square values (RMS) for each of the polynomial term, given as 

h�1� � i 1jk 7�W)�,, 1����1��
5	
9:3  (17) 

 

The cumulative goodness of fit parameter, RT
2, will be used as an objective function for terminating the 

backward elimination process. 

�	
 � 1 & lTC)U V5R & �W) ����m	 lTC)U V5R & �W) ����mTC)U V5R	 TC)U V5R  (18) 

 

The threshold value of RT is defined at a value close to one. The closer the RT value to unity, the more 
polynomial terms will be retained in the series. A lower value of RT will lead to a fewer terms; however, 
this may cause the model to become less accurate if too many terms are taken away from the polynomial 
series.  

2.1.4 Verification 

In order to verify the accuracy of the estimated nonlinear reduced order modal model (NLROMM), the 
following procedures was implemented. The modal force is first defined and the NLROMM solved using 
a Newton-Raphson approach in order to compute the modal displacements of the solution. The modal 
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displacements are then transformed into physical space and comparisons made with the finite element 
nonlinear static analysis. Once close agreement between the NLROMM and finite element analysis (FEA) 
is achieved, the NLROMM is suitable to be considered for further analysis.  

2.2 Dynamic Aeroelastic Model 

The general form of the aeroelastic analysis is developed by coupling the aerodynamic panels and the FE 
representations of the considered model [17]. When applied to dynamic  systems, the dynamic behaviour 
of FE model relates the displacement and acceleration vectors to the force vector via the overall stiffness 
and mass matrices such that 

� �  ��� � �� (19) 
         

This equation will be coupled with the aerodynamic model of lift and pitching moments to form the 
dynamic aeroelastic equation as 

��� � �� � n � � (20) 
  

2.2.1 Dynamic Aeroelastic analysis using the modified aerodynamic strip theory 

In a modified unsteady aerodynamic strip theory (MAST) [17] approach, the wing is considered to be 
composed of a number of aerodynamic panels in which the lift acting on the quarter chord is assumed to 
be proportional to the dynamic pressure, local angle of attack, lift curve slope and the downwash due to 
vertical motion. Since the wing is modelled by a series of beam elements in the FEA, the equivalent forces 
and moments acting at the element nodes due to the aerodynamic forces on the quarter chord of the wing 
have to be determined. This can be done by considering the idea of ‘kinematically equivalent nodal forces’ 
where the nodal forces are assumed to do equivalent work as the work done under distributed load over 
the element. Figure (5) shows the equivalent forces and moments acting on the elemental nodes.  

 

Figure (5) : Equivalent forces and moments at the beam nodes 
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The lift and pitching moment of an elemental streamwise strip on the wing can be represented as 

n � oZ
2 pq(r`spt u��� � �v� � �
�w
� 1Zx (21) 

� � oZ
2 pq`s
 uc(rpt u���� � 1Z �
�w
�x � ��
 s4Z pt�
�z
 �x (22) 

 
where T1 is the transformation matrix that maps forces between the aerodynamic panels and the structural 
element model, and T2 is another transformation matrix that relates the physical coordinate to the acting 
forces and moments.Thus, from equation (20), the full aeroelastic equations may be written in terms of 
aerodynamic damping and stiffness as 

��� � �� � oZ
2 !{|}�
 � oZ
2 !{|~� (23) 

 

 This set of equations can be transformed into the modal space using a similar modal transformation as in 
equation (2). This will allow the modal aeroelastic equations of motion to be combined together with the 
geometric nonlinear term that can be obtained using the combined modal/FE approach, such that 

!�� � ��� � ������ � oZ
2 �=!{|}��
 � oZ
2 �=!{|~��� � �v� (24) 

 

It should be noted that, in this study, the aeroelastic analysis is simulated in the modal space as the 
geometric nonlinearities of the structure using the combined modal/FE technique is obtained in this 
coordinates. The modal form of equation (24) can be solved using time domain integration to calculate the 
response for any given input force (initial deflection, initial velocity or gust).  

2.2.2 Dynamic Aeroelastic analysis with the inclusion of frequency dependent 
aerodynamics         

A better representation of the aerodynamic model compared to the MAST which has been described 
before will be used via Doublet Lattice Methods (DLM) in order to predict accurately the dependency of 
aerodynamic forces and moments on the frequency content of dynamic motions [17]. From equation (7), 
the full aeroelastic equation with the inclusion of frequency dependent aerodynamics may be written as 

��� � �� � oZ
2 �� !{|}�
 � oZ
2 !{|~� (25) 

 

where AIC matrices in the above equation are in complex form and a function of reduced frequency 

� � ��Z  (26) 

 

The modal aeroelastic equations of motion with the inclusion of geometric nonlinearities can then be 
expressed as 

!�� � ��� � ������ � oZ
2 �� �=!{|}��
 � oZ
2 �=!{|~��� � �v� � ���)v (27) 

where Qaero is the generalised aerodynamic forces and is in a function of the reduced frequency.  

NON-LINEARITIES: IDENTIFICATION AND MODELLING 3117



 
 

 

In this work, results from the three-dimensional aerodynamic panel approach of DLM have been extracted 
from MSC NASTRAN-Aeroelastic Analysis by using the Direct Matrix Abstraction Program (DMAP). 
Here, the complex form of modal AIC matrices is obtained at a range of reduced frequencies for a given 
flight condition. A Roger procedure [18] is then employed to approximate the RFA of the AIC matrices 
and the state-space time domain may be formed. With this approach, the used of convolution time domain 
integral can be avoided. Thus, a much simple mathematical representation can be formed in solving the 
time domain integration.  

Alternatively, the above equation can be transformed and written in term of Laplace domain as: 

�!`
 � �����`� � ������`�� � oZ
2 ��`���`� (28) 

 

and the RFA of the generalised aerodynamic matrices Q(s) are written in the form 

��`� � �� � �3 *`�Z / � �
 *`�Z /
 � *Z�/ 7 ��>
  `l` � lZ�m ��m
5�

�:3  (29) 

 

Here, An is a NR×NR unknown matrix to be found and βn are the aerodynamic lag parameters which can 
be calculated as [20] 

�9 � &1.7���� ,�jR � 1�
 (30) 

 

where kmax is the maximum reduced frequency at which the AIC matrices was obtained from the MSC 
NASTRAN-aeroelastic analysis, and NL is the number of lag parameters. Recalling the definition of the 
reduced frequency and since the Laplace variable s = iω, thus the RFA of equation (29) can be written in 
terms of reduced frequency as 

��`� � �� � �3�,�� � �
�,��
 � 7 ��>
  ,��,� � ���
5�

�:3  (31) 

 

The unknown An coefficients can be estimated by using the minimization procedure (method of least 
square) of sum of squares of errors between the RFA and AIC matrix as follows 

�)0 � 7 ��)0�,��� & ���)0�,����
5�
�:3  (32) 

 

with the subscript ‘rs’ indicates the rsth element of each matrix. By differentiating equation (32) with 
respect to An and setting this gradient equals to zero such that 

* �����/)0 � 0 (33) 
 

the following equation is then established 
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HII
III
IJ1 ,�3 &�3
 ,�3,�3 � �3 … ,�3,�3 � �5�1 ,�
 &�

 ,�
,�
 � �3 … ,�
,�
 � �5�D D D D D D1 ,�5� &�5�
 ,�5�,�5� � �3 … ,�5�,�5� � �5�NOO

OOO
OP

?@A
@B ���3�
�8D�5�>
E@F

@G

)0
�

?@@
A@
@B ����,�3�����,�
�����,�8�����,���D����,�5��E@@

F@
@G

)0
 (34) 

 

In order to obtain the fitted value of the unknown An coefficients, the complex form of above notation is 
partitioned into the real and imaginary part. Then these can be solved using the least squares method. 
Thus, equation (34) may be rewritten as 

HII
III
III
III
J
        

HII
IIJ1 0 &�3
 �3
�3
 � �3
 … �3
�3
 � �5�
D D D D D1   0 &�5�
   �5�
�5�
 � �3
 …     �5�
�5�
 � �5�
 NOO

OOP

)���   

        
HII
IIJ0 ,�3 0 & �3�3
�3
 � �3
 … & �3�5�
�3
 � �5�
D D D D D0 ,�5� 0 & �5��3
�5�
 � �3
 … & �5��5�
�5�
 � �5�
 NOO

OOP

9���

  

NOO
OOO
OOO
OOO
P

?@A
@B ���3�
�8D�5�>
E@F

@G

)0
�

?@@
A@
@B      � �����3�D�����5���

)���   
      � �����3�D�����5���

9��� E@@
F@
@G

)0
 (35) 

 

Having estimated the unknown Ars values, the time domain models can be written as 

!�� � ��� � ������ � ���� � *�Z/ �3��
 � *�Z/
 �
��� � � 7 ���
��
5�

�:3  (36) 

 

where � � � ¡
   is the dynamic pressure. Rearranging the above expression yields 

¢! & *�Z/
 �
�£ �� & *�Z/ �3��
 � ��� & ����� � &������ � � 7 ���
��
5�

�:3  (37) 

 

or in a shorthand notation 

�!¤��� � ¥¤�
 � ��¦��� � &������ � � 7 ���
��
5�

�:3  (38) 

 

The augmented states which arise from the convolution integral of the inverse Laplace transform of the 
Q(s) matrix are defined by 

�
�� � § �
c; ̈©��=;ª�=
� d«              1 ¬ ­ ¬ jR              ���� � �
 & Z� ���
�� (39) 

 

Equations (38) and  (39) can now be combined together to form the state space equations. This can be 
formulated by transforming these expressions to a first order differential equation with the states and the 
state space matrix defined as  
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� � ®�	 �
	 �
�¯	 �
�¡	 ° �
�±�	 ²	
 (40) �
 � ��0 ��� � ��� 

 

where the state matrix of As is: 

�0 �  
HII
III
IIJ

0 � 0 0 0 0&!¤;q"¤ &!¤;q¥¤ !¤;q�8 … … !¤;q�5�>
0 � & Z� �3� 0 … 0
0 � 0 & Z� �
� ³ DD D D ³ ³ 00 � 0 … 0 & Z� �5�� NOO

OOO
OOP
 (41) 

 

and the geometric nonlinear force vector is expressed as 

��� �
?@A
@B    

0&�;3"$#�´�00D0
  

E@F
@G    

 

(42) 

Therefore, the state space formulation can now be solved using the time domain integration in order to 
calculate the response for any given input force such as initial deflection, initial velocity or gust. 

3 Simulation model 

The Patil and Hodges wing model [4, 5, 16] has been considered, in this study. The properties of the wing 
are shown in table (1) [4, 5, and 16]. The finite element software i.e MSC NASTRAN is used to model the 
wing which includes the structural information calculated from the finite element grid and the 
aerodynamic information is obtained using the doublet lattice method. Figure (6) shows the finite element 
representation of structural and aerodynamic grid. For a simplification of the analysis, the wing is 
modelled as a beam using CBEAM elements, and a fully clamped boundary condition is defined at one 
end of the beam. A mesh convergence study was made to determine the appropriate number of elements to 
be included in the model in order to give a reasonable accuracy to the overall solution. As a result, the 
element density of 36 elements along the beam has been chosen.  

The normal mode analysis (sol 103) was first performed using MSC NASTRAN to obtain the 
eigensolutions of the model; and the mass and stiffness matrices both in physical and modal coordinates 
can also be determined. The first three bending modes are found at 0.36Hz, 2.23Hz and 6.22Hz and the 
first torsion mode is 6.0657Hz. Having defined the nonlinear static test cases, the finite element nonlinear 
static analysis is performed under sol 106 of MSC NASTRAN to obtain the resultant displacement for 
each of the defined load cases.  

 

a) Structural Grid b) Aerodynamic grid 

Figure (6) : structural and aerodynamic grids for the HALE wing 
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Flutter analysis was then carried out to predict the flutter speed of the considered model at the given flight 
condition by using the P-K method. At the same time, the complex AIC modal matrices are extracted from 
this analysis by using the DMAP as this information will later be used for the approximation of the 
generalised aerodynamic in term of RFA. 

Half span (S) 16m 
Chord (c) 1m 
Mass per unit length 0.75 kg/m 
Spanwise elastic axis 50 percent chord 
Center of gravity 50 percent chord 
Bending rigidity 2 × 104 Nm2 
Torsional rigidity 1 × 104 Nm2 
Flight condition 
        Altitude 
        Air Density 

20km 
0.0889 kg/m3 

Table 1: Patil-Hodges wing data [4,5,16] 

4 Results 

Nonlinear stiffness coefficients were obtained using the combined modal/FE approach. In order to 
observe the accuracy of the NLROMM, a comparison has been made with FEA (nonlinear static) based on 
the predefined nonlinear static test cases. Table (2) shows the best fit solution of the nonlinear stiffness 
coefficients which are to be considered for the dynamic aeroelastic analysis, while figure (7) and (8) show 
the comparison between the NLROMM and FE-nonlinear static analysis. It can be seen from these figures 
that a very good agreement has been achieved for this modal model. Therefore, having defined the 
geometric nonlinearity of the wing, it is now possible to couple the structure with the aerodynamic forces 
in order to simulate the aeroelastic analysis. 

Reduction of the number of polynomial terms is essential especially when the dynamic aeroelastic 
response is considered. If too many cross-coupling terms (nonlinear coefficient) are included in the 
system, the time response numerical integrator may fail to convergence.  
 

Nonlinear Stiffness coefficient – AEROELASTIC ANALYSIS 

mode 1 mode 2 mode 3 mode 4 

p1p4
2 6.425 p2p4

2 50.72 p3
3 1572 p1

2p4 15.67 

p2p1
2 -0.5508 p1p2

2 -7.749   p1*p4
2 -109.5 

p1
2p4 -0.7499 p1

2p2 -3.609   p4
3 196.3 

Table 2: nonlinear stiffness coefficient to be considered for aeroelastic analysis 
(p1, p2, p4 are bending modal coordinates, whilst p3 refers to the torsional modal coordinate) 
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Figure (7) : Comparison between the NLROMM and FE-nonlinear static analysis in bending 

 

  Figure (8) : Comparison between the NLROMM and FE-nonlinear static analysis in torsion 

 

Linear flutter analysis was carried out in order to determine the linear aeroelastic behaviour of the model 
under investigation for a range of air speeds at the given flight condition. By solving the eigenvalue 
problem of the linear aeroelastic dynamic system, the flutter and divergence instabilities can be 
determined by investigating on the calculated data in graphical representation of V-g and V-ω diagrams. 

The V-g and V- ω diagrams of the wing model using the MAST are shown in figure (9). From the figure, 
the flutter speed is found at 23.35m/s by the first crossing of one of the mode from positive to negative of 
the damping ratio. While Figure (10) shows the V-g and V-w diagrams of the wing model using the DLM 
which is calculated using the p-k method of MSC NASTRAN. The linear flutter speed of this aeroelastic 
model can be found at 35.25m/s with a corresponding flutter frequency of 4.123Hz when one of the 
damping ratio becomes zero.  This gives close agreement with the flutter result in ref [16].  

There is a huge difference between the aeroelastic models that using the MAST (Quasi-unsteady 
aerodynamics) and DLM (frequency dependent -unsteady aerodynamics) in terms of linear flutter speed 
results. This is to be expected as the MAST does not accurately model the frequency dependency and a 
constant of Mǿ term is used to define the unsteady behaviour of the aerodynamics. Therefore the effect of 
frequency dependent on aerodynamics cannot be neglected and needs to be accounted for. 
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Figure (9) : Frequency and Damping trends for the HALE model  
                    Aerodynamic model – modified unsteady aerodynamic strip theory 
                   Flutter speed = 23.35 m/s 

 
 

Figure (10) : Frequency and Damping trends for the HALE model 
                     Aerodynamic model – DLM 
                     Flutter speed = 35.25 m/s, Flutter Frequency = 4.123 Hz 

 

Figure (11) and (12) shows the time history of the tip deflection and tip twist at flight speeds just slightly 
above the linear flutter speed. From the figure, it is clearly shown that the amplitudes of the oscillations 
increase until a limit cycle oscillations (LCO) is encountered. It occurs due to the changes in the behaviour 
of the structural stiffness, where in this case, the structural stiffness is increases as the deflection get 
larger, hence limiting the motion of the system. If a structure with a linear stiffness is considered, the 
motion will grow exponentially with time to infinity when the critical speed is exceeded (in practice, 
failure due to flutter will occur). Therefore, the wing is required to deflect until the nonlinear hardening 
stiffness, either on bending or torsion, takes place to limit the oscillations. This explains the limit cycle 
motion as shown in figure (11) and (12). Figure (13) shows a steady state LCO amplitude predicted for the 
wing model with the inclusion of structural nonlinearities. Above the linear flutter speed, LCO form and 
the amplitude will grows as the speed increases beyond critical speed. Note the very high twist values 
which will require more accurate modelling of the stall behaviour. 
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Figure (11) : Time history for flapwise and tip twist deflection 
                      Velocity = 25m/s, Angle of attack = 0o  
                      Aerodynamic model – Modified Aerodynamic Strip Theory 
 

 

Figure (12) : Time history for flapwise and tip twist deflection 
    Velocity = 37m/s, Angle of attack = 0o 

Aerodynamic model – RFA of DLM 
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(b) 

Figure 13 : LCO amplitude of tip flap and tip twist 

5 Conclusions 

In this paper, a geometric nonlinear modal model of the wing is developed based on the combined 
modal/FE approach. Very good agreement between the NLROMM and FE nonlinear static analysis has 
been obtained. Dynamic aeroelastic responses have been simulated using the NLROMM and including 
DLM. The effect of the geometric nonlinearities was investigated and there can be significant changes in 
the aeroelastic behaviour due to the large deflections under the aerodynamic load compared to a linear 
model.  

Further work is required to include the cross couplings between bending and torsional geometric 
nonlinearities, stall characteristics of the wing, inclusion of the nonlinear couplings between the edge-wise 
bending and torsion and implementation of a nonlinear stability analysis. 
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