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Abstract

A procedure for developing efficient aeroelastiad®sed Order Models (ROMs) for aerospace structures
containing geometric non-linearities is describ&tle structural modelling is based upon a combined
modal/ Finite Element approach that describes trelinear stiffening effects from results of nondar
static analyses for a range of prescribed inputeeQ@he structural ROM has been defined, it is Emljp

the aerodynamic model. The aeroelastic model cen the used to predict the dynamic aeroelastic
behaviour of the defined structure. The methodoisgiemonstrated on the aeroelastic model of adbllex
high-aspect ratio wing.

Nomenclature

AE = structural physical mass/stiffness p = air density
AE = structural modal mass/stiffness a, = lift curve slope
F = physical force vector M, = Non dimensional pitch damping
f = modal force vector S = half wing span
r(xt) = physical displacement vector c = chord
p(t) = modal displacement vector b = semi-1chord
Px) = eigenvectors vV = velocity
N = Number of DOF in FE model L = Lift
NR = Number of DOF in reduced M = Pitching moment
modal model AIC = Aerodynamic influence matrix

NT = Number of nonlinear static test  k = reduced frequency

cases q = dynamic air pressure
NA = Number of nonlinear stiffness A = Roger matrices

coefficients G = Aerodynamic lag parameters
NL = Number of aerodynamic lag

parameters
A, = Nonlinear stiffness coefficients
H = Contribution factor
R2 = Cumulative goodness of fit
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1 Introduction

There has been a growth of interest in the devebopraf highly flexible UAV aircraft. Perhaps thesbe
known instance is the Helios aircraft that failaedidg a flight in 2003 due to the response to &.gDae

of the causes of the accident found by the invastg that followed was the lack of appropriatelyses
for highly flexible aerospace structures [1] leapin inappropriate decisions to fly a certain cguafation.
One characteristic of such aircraft is that theicdtiral stiffness behaves in a non-linear manner tdu
geometric stiffening or softening, and consequetitly conventional approach to aeroelastic analgsis
not valid. The geometric non-linear effects of siatge structures can also have a dramatic effgoh u
the flight dynamics; Palacios et al. [2] reviewé@ tmost important aspects of high aspect ratiaadtrc
affected by the non-linear structure, including dibmdinal stability, body-freedom flutter and gust
response (and subsequent loads). They emphassatkedu for computationally efficient reduced order
time domain simulations to predict the coupled aklastic/flight dynamic interactions. The effect of
geometric non-linearities is not solely confinedHALE (High Altitude Long Endurance) aircraft arfubt
current generation of large commercial and militaigcraft exhibit some of the above characteristics
Although there has been a great deal of researebtatk to the effect of non-linearities on aeroétast
behaviour, this has primarily been directed towaadsodynamic non-linearities in the transonic fligh
regime, or structural nonlinearities such as fragpind hysteresis occurring on control surfacesstNb
the work [2-8] directed at modeling the geomettiffening characteristics for aeroelastic models of
HALE type aircraft has employed equivalent nondinbeam models.

There have been a number of approaches developesktoommercial Finite Element software to enable
the development of Reduced Order structural modielgarticular the Modal/FE approach of McEwan et
al. [9, 10] performs a static analysis for a numioér defined prescribed loading cases. These
displacements are then curve fitted using a regmessalysis in order to define non-linear stiffaésrms
that can be added to the conventional modal mo8lekimilar approach is used in the ELSTEP
methodology [11, 12] which applies prescribed dispments. Once the reduced order model is produced
it is then very efficient to run time domain simtibas for a large number of design cases. The Mbdal
Finite Element (FE) approach has been used vemesstully [10, 13] for the prediction of responde o
aircraft panels subjected to large acoustic exoitat A recent application of the ELSTEP approaah h
been to combine it [14, 15] to hypersonic aerodyioamodels in order to produce efficient coupled-non
linear aeroelastic models of membrane type strastur

In this paper, a combined modal/finite element apph of McEwan et al. [9, 10] is implemented to
model the geometric nonlinearities of studied stries where Patil and Hodge’s HALE wing model has
been taken as an exemplar for this study. The pbestload cases and resultant displacements fnem t
static nonlinear test cases are transformed irgantbdal coordinates using the modal transformation
underlying linear mode system. The regression aigly then performed to curve-fit on sets of nossir
stiffness forces information in order to find thekaown nonlinear modal stiffness coefficients. Hiavi
obtained the nonlinear modal model, the aeroelastalysis is then performed by coupling it with the
aerodynamic model. Two different types of aerodyiegamodels have been considered in this study,
which are (1) modified aerodynamic strip theoryd §8) a Rational Function Approximation (RFA) of
doublet lattice by using the Roger procedure.
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2 Formulation

2.1 Combined modal/finite element approach [9, 10]
2.1.1 Nonlinear structure modal model

The equations of motion of dynamic system in phaisgpace including stiffness nonlinearity can be
represented as

whereA is the NxN assembled mass matfix,is the NxN assembled linear stiffness matfx,(r) is the
Nx1 vector of nonlinear stiffness functioi, is the Nx1 vector of applied nodal forces,is the
proportional mass damping coefficient, and r(t)thi® Nx1 vector of spatial displacements. The
transformation between the physical space and nempaale is performed using the modal transformation

r(x,t) = ¢()p(0) 2

wherep(t) is the NRx1 vector of time-dependent generalizediah coordinates angl(x) is the NxNR
matrix of the underlying linear mode shapes. Thelmer of degrees of freedom in the modal model can
be reduced (NR<<N) depending on the frequency rawgmodes of interest. Substituting the modal
transformation of equation (2) into equation (19l @ne-multiplying by[¢]” yields

¢TAPP + adp"Agp + ¢TELdp + ¢ {Enn(M)}dp = ¢7{F} 3

Here, a set of coupled physical systems are maidifim a set of uncoupled single DOF modal systeyns
using the orthogonality of the modes. Therefore,@fuations of motion in modal coordinates become

Ap + aAp + E;p +{Ey,(p)} = {f} 4)

where matrixA andE,_ are now diagonal matrices of size NRxNR. Howeveshould be noted that the
nonlinear modal stiffness matrix{E y;(p)} which is a NRx1 vector, may contain cross-coupliegns
and is a function of modal coordinapgt).

2.1.2 Strategy for generating static nonlinear finite element test cases

The implementation of the combined modal/Finiteni8at (FE) approach is based on nodal deflections
obtained from a number of prescribed static noedmload cases. Thus, when a static system is
considered, the equations of motion which are glwerquation (4) reduce to

Eip +{Enx.(p)} = {f} (5)
and by rearranging the above equation, the nonlstétness restoring forces can be written as
{f} —Ep = {En.(p)} (6)

A set of finite element nonlinear static test cas®ee to be defined by prescribing a set of appbeds in
the finite element nodal space. The nonlinear matiffhess coefficients are identified by perforgin
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regression analysis on sets of information obtaifnech several nonlinear static test cases whickehav
been transformed into the modal coordinates. Thes® cases can be generated by using the following
equation:

B = o (25 - 1) @) +as (25 - 1) @) @
i=01,. g1
=01, g1

Here, a, and a; are the scalar weighting factors. The grid densijue, g, is used to define the
intermediate load cases and the eigenvecigysén be obtained from ‘normal mode analysis’ byngs
any proprietary finite element software package.

The Patil and Hodges HALE wing model [4,16] hasrb&ken as an example in this work. In order to
define the geometric nonlinearities of the struetdne first three fundamental bending modes aadirtst
torsion mode have been considered.

The structural bending nonlinearities are develdpaged on the simultaneous coupling of these bgndin
modes only. With g taken as 2 for the bending ctss leads to a total of 19 test cases whichlzan
derived using the equation (7). Due to the unknoharacteristics of the stiffness nonlinearitiehas to

be assumed that the nonlinear cross-couplings ketweese bending modes have significant effect on
overall static and dynamic responses where a salwf certain modes may induce a response of other
modes as well. Figure (1) shows the spatial digtidin of the first three bending modes of the wing.

Before further implementation of this approach sde, the characteristics of the stiffness nonlitiear
due to the bending of the structure need to betifteth Thus, by using any proprietary FE software
package of nonlinear static analysis, the strudsemalyzed with uniform incremental forces aldhg
structure. Figure (2) shows the resultant deflestiat the tip of the wing from this analysis. Itclearly
shown that the structure experiences a stiffnetehing effect where the ‘stiffening’ behaviour otz as
the tip of the wing is deflected above than 1.5m.

Consequently, all of the defined 19 test cases rhage minimum tip deflections greater than 1.5m.
Therefore, care has to be taken when definingdhlsweighting factor so that no physical disptaeat

of any of the test load cases will ever exceedetltesditions. To ensure that all of the load casesable

to deflect the structure into the nonlinear regioamparisons are made between the resultant nodal
displacements of linear static and nonlinear stalation as shown in figure (3).

For the structural nonlinearities due to torsidwe, above procedure is repeated. The load caseg@ved
similarly as before using equation (7) with g takerfour. This leads to a total of seven load cdSgsre

(4) shows the comparisons between the linear antinear static FE solution in terms of torsionaltba
middle section of the wing model. It should be datigat the cross couplings between the bending smode
and the torsion mode have not been consideredsrp#per; nevertheless, further work consideririg th
effect is ongoing.
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Figure (3) : displacement (bending) of Nastran-am8tatic and Nonlinear Static Solution
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Having defined the load cases, the static nonlifiaée element test cases can then be solved imgus
finite element software to obtain the resultanpldisement for each of the test cases. Following} thie
acquired information on the nodal forces and natisplacements are then transformed into the modal
space.

The transformation of nodal displacement into maghaice can be calculated from the solution
¢p=r 8
while the applied modal force vector is obtained as

f= oTF 9)

2.1.3 Regression analysis, Curve fitting

An ordinary polynomial approach has been consideremtder to curve fit the nonlinear forces. Insthi
work, simultaneous coupling of up to two modes basn considered. From other studies made by the
authors, it is found that the simultaneous couglinfmore than two modes for the considered stractu
are very weak and can be safely neglected. Thergtoe polynomial of the nonlinear restoring foragié

be derived as the following series of up to thirdes for some mode r

NR 3 NR-1 NR 2 3-i
ENL(r)(plnpz---pNR) = chﬂr p.é + Z szﬂr pé pt] (10)
s=11i=2 s=1 s+1i=1j=1

Upon completion of the static nonlinear test casmsl with the acquired data of load-displacement in
modal space, the nonlinear restoring force for edid¢he test cases can now be fitted to find thenown
nonlinear modal stiffness coefficients in a leaptages sense. The nonlinear restoring forces éartain
mode r can now be shown in matrix form to be

2 3
j fray — ELanyPra 1 Pia)  Pia) - ] ( Ar

freoy — E.'L(r)pr(z) R Piz)y  DPigz) - | c/lr: @
S @
lfr(NT) — Eyenbrovn) [pf(.NT) pf T e ] AT wa)
or represented as
frdne = {ﬁ}NL = [D,[{A} (12)

Here,{fr}mis a NTx1 vector of fitted values of nonlinear mistiffness restoring forcegD, ] is NTxNA

design matrix andleA,.} is NAX1 vector containing the unknown values ofliteear stiffness coefficients
where both of these matrices are developed baseduation (10).

The Singular Value Decomposition (SVD) techniquéniplemented in order to find fitted values of the
nonlinear stiffness coefficiefiA,.}. This technique is able to solve the pseudo-ireverfsa rectangular
matrix that is suspected to be ill-conditioned. é¢j¢he design matrijD,.] can be represented as
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[D,] = [U]W][V]" (13)

where [U] is a NTxNA matrix and [V] is a NAXNA matrix. Both of these matrices areoithogonal
form, while [W] is NAXNA diagonal matrix consistingf positive real values of singular values.

{7}, = WIWIVIT{A,} (14)
If [D,-]7[D,] is a non-singular matrix, the nonlinear stiffnessfficients are found from
(A} = VIWI L UI™{%} (15)

If [D,]7[D,] is a singular matrix, then tH&/]~* matrix will be partitioned to remove the non-cdmtiting
components such that

1
W] = ;i if o, >tol (smallthreshold) (16)
0 otherwise

and the nonlinear stiffness coefficient can thefolbed by substituting the alter¢d’]~* into equation
(15).

In order to obtain the appropriate combinationstioé nonlinear polynomial terms, the backward
elimination approach will be used to remove theurethnt terms that give less significance to thealve
solution. The contribution of each of the polynohsiaries in[D,.] matrix can be found by solving the root
mean square values (RMS) for each of the polynoterat, given as

NT
e o
H() = ﬁ;wr(umrm)z (17)

The cumulative goodness of fit parametef’, Rvill be used as an objective function for terntimg the
backward elimination process.

R =1 ((Fdy, - [Dr]{ﬂr})T ({7, — [Dr1AL)) s

P,

The threshold value of{Rs defined at a value close to one. The closeiRhealue to unity, the more
polynomial terms will be retained in the serieslotver value of R will lead to a fewer terms; however,
this may cause the model to become less accurtde ihany terms are taken away from the polynomial
series.

2.1.4 Verification

In order to verify the accuracy of the estimatedlime@ar reduced order modal model (NLROMM), the
following procedures was implemented. The modatdas first defined and the NLROMM solved using
a Newton-Raphson approach in order to compute th@ahdisplacements of the solution. The modal
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displacements are then transformed into physicatesmnd comparisons made with the finite element
nonlinear static analysis. Once close agreememtdeet the NLROMM and finite element analysis (FEA)
is achieved, the NLROMM is suitable to be considdoe further analysis.

2.2 Dynamic Aeroelastic Model

The general form of the aeroelastic analysis ishbged by coupling the aerodynamic panels and Ehe F
representations of the considered model [17]. WaAmplied to dynamic systems, the dynamic behaviour
of FE model relates the displacement and accaberatctors to the force vector via the overallfistifs
and mass matrices such that

R = A¥ + Er (19)

This equation will be coupled with the aerodynamiodel of lift and pitching moments to form the
dynamic aeroelastic equation as

AF+Er=L+M (20)

2.2.1 Dynamic Aeroelastic analysis using the modified aerodynamic strip theory

In a modified unsteady aerodynamic strip theory @A [17] approach, the wing is considered to be
composed of a number of aerodynamic panels in wthieHift acting on the quarter chord is assumed to
be proportional to the dynamic pressure, local emflattack, lift curve slope and the downwash wue
vertical motion. Since the wing is modelled by Heseof beam elements in the FEA, the equivaleme®
and moments acting at the element nodes due taefuelynamic forces on the quarter chord of the wing
have to be determined. This can be done by comsifre idea of ‘kinematically equivalent nodaldes’
where the nodal forces are assumed to do equivalert as the work done under distributed load over
the element. Figure (5) shows the equivalent foacesmoments acting on the elemental nodes.

Figure (5) : Equivalent forces and moments at #emnibnodes
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The lift and pitching moment of an elemental stregsa strip on the wing can be represented as

V2 1

L= pTTlawscTz [r(a +a,) + f(i)v (21)
V2 1 Myc .

M = pTTlsc2 [easz [r(a) + Vr'(z‘)] + ﬁTzr'(G) (22)

whereT, is the transformation matrix that maps forces leetwthe aerodynamic panels and the structural
element model, and, is another transformation matrix that relates ghgsical coordinate to the acting
forces and moments.Thus, from equation (20), thieakroelastic equations may be written in terms of
aerodynamic damping and stiffness as

V2 V2
A¥ + Er = pTAICdr' + pTAICsr (23)
This set of equations can be transformed intartbdal space using a similar modal transformatioim as
equation (2). This will allow the modal aeroelastuations of motion to be combined together with t
geometric nonlinear term that can be obtained u$iagombined modal/FE approach, such that

. pv? . pVE o, 24
Ajj +Eq + B (@) = —— ¢"AIC4$G + —— ¢ AIC;H{q + q0} (24)

It should be noted that, in this study, the aesiwaanalysis is simulated in the modal space as th
geometric nonlinearities of the structure using toembined modal/FE technique is obtained in this
coordinates. The modal form of equation (24) casdieed using time domain integration to calcutage
response for any given input force (initial deflent initial velocity or gust).

2.2.2 Dynamic Aeroelastic analysis with the inclusion of frequency dependent
aerodynamics

A better representation of the aerodynamic modetpared to the MAST which has been described
before will be used via Doublet Lattice Methods ({@Lin order to predict accurately the dependency of
aerodynamic forces and moments on the frequenciesbof dynamic motions [17]. From equation (7),
the full aeroelastic equation with the inclusiorfreiquency dependent aerodynamics may be written as

2 pv2

VZbh
A¥ + Er = pTEAICdf‘ +——AICr (25)

where AIC matrices in the above equation are ingleraform and a function of reduced frequency
k=— (26)

The modal aeroelastic equations of motion with itiidusion of geometric nonlinearities can then be
expressed as

pVZ%b

.. . pV
Ap + Epp + ENL(p) = TE tAICd(Pp + T¢tAICs¢{p + po} = Quero (27)

whereQ.q, is the generalised aerodynamic forces and is imetion of the reduced frequency.

2
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In this work, results from the three-dimensionabagnamic panel approach of DLM have been extracted
from MSC NASTRAN-Aeroelastic Analysis by using tBérect Matrix Abstraction Program (DMAP).
Here, the complex form of modal AIC matrices isadbéd at a range of reduced frequencies for a given
flight condition. A Roger procedure [18] is then@oyed to approximate the RFA of the AIC matrices
and the state-space time domain may be formed. Wghapproach, the used of convolution time domain
integral can be avoided. Thus, a much simple madkieai representation can be formed in solving the
time domain integration.

Alternatively, the above equation can be transforaned written in term of Laplace domain as:

2 PV 28
(4s? + ELp(s) + Enc(p(5)) = —— Q()p(s) (28)
and the RFA of the generalised aerodynamic mat€)gisare written in the form

Np,

0 - (e () s ()% 2

n=1

Here,A, is a NRxNR unknown matrix to be found gficare the aerodynamic lag parameters which can
be calculated as [20]

i

Bi = —1.7kmax W+ 1?2

(30)
wherekq . is the maximum reduced frequency at which the Al@trices was obtained from the MSC
NASTRAN-aeroelastic analysis, al is the number of lag parameters. Recalling thénilieih of the

reduced frequency and since the Laplace variabléus thus the RFA of equation (29) can be written in
terms of reduced frequency as

Q(s) = A + A, (ik) + A, (ik)? + z G ;*j ﬁlk (31)

The unknownA, coefficients can be estimated by using the miratnin procedure (method of least
square) of sum of squares of errors between the &EAAIC matrix as follows

= Z (Qrs(ikm) - AICrs(ikm))z (32)
m=1

with the subscript ‘rs’ indicates thé'rslement of each matrix. By differentiating equat{82) with
respect téd, and setting this gradient equals to zero such that

(;TE) =0 (33)

the following equation is then established



NON-LINEARITIES: IDENTIFICATION AND MODELLING 3119

[ lkl lkl T
1 ik, —k* - = i
1 U UGt R iy + B, | ( flo Y jﬁgg’f; )
ik, ik, L 2
1 ik, —k% - S A AIC(ik3)
z 2 Lkz + ﬁ1 Lkz + BNL Az = AIC(ikZ) (34)
ik; : ik; - L 3 )
i _k2 Nk Nk An,+2 AIC(ik
_1 Ui K iky, + B1 iky, + Bn, ] B ( NK) "

In order to obtain the fitted value of the unknovncoefficients, the complex form of above notation is
partitioned into the real and imaginary part. Thieese can be solved using the least squares method.
Thus, equation (34) may be rewritten as

k2 k2
_ k2 I "
1 0 k2 CiE B4R
: : AIC(k
oo ey [P
Nic kIZ\IK + ﬁlz kIZVK + ‘BI%JL real Ai {l AIC(kNK) real |} 35
[ . kip? ki B, 1 i A3 t B AIC (ky) (35)
IO thy 0 T+ pE T K42 : i : i
1: 1 1: Ny kANL+2J rs k AIC(kNK) imag)
. K, B2 ke BE, b
lo iky, 0 — K+ T kR +BE imag |
Having estimated the unknowns#alues, the time domain models can be written as
2 Ni
. b . (b . .
Ap + Epp + Enp(p) = Agqp + (;) Ayqp + (;) Ayqp +q Z ApPa, (36)
n=1
2
whereq = % is the dynamic pressure. Rearranging the abopeession yields
2 N
b . (b . .
A- (;) Ayq P — (;) A1qp + (B, — Aoq)p = —Eni(P) + g Z ApPa, (37)
n=1
or in a shorthand notation
N,
()5 +Dp + (Bu)p = —Enu(p) + 4 ) Anda, (38)
n=1

The augmented states which arise from the conwolutitegral of the inverse Laplace transform of the
Q(s) matrix are defined by

S } .V
Zjan = f pe 5Pn(t=D) dt 1<sn<N, Pa, =D — E.Bnpan (39)
0

Equations (38) and (39) can now be combined tegdth form the state space equations. This can be
formulated by transforming these expressions tiosa drder differential equation with the statesl dhe
state space matrix defined as
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T T T T -7 1T
x=[p" P Pa, Pa, " Pay,] (40)

x = [Ag]{x} + {b}

where the state matrix ofsAs:

-0 I 0 0 0 0
_ATE -AD A4, .. .. A Ay,
%
0 I —zhI 0 0
A, = v 41
g 0 I 0 ——B, - : (41)
b
H . 0
%
0 I 0 L

and the geometric nonlinear force vector is exgess

0
—A7'Ey (P)

(b} = :

L )

Therefore, the state space formulation can nowobed using the time domain integration in order to
calculate the response for any given input foradss initial deflection, initial velocity or gust.

(42)

3 Simulation model

The Patil and Hodges wing model [4, 5, 16] has lmmsidered, in this study. The properties of thagw
are shown in table (1) [4, 5, and 16]. The finiengent software i.e MSC NASTRAN is used to model th
wing which includes the structural information cdéted from the finite element grid and the
aerodynamic information is obtained using the deulaittice method. Figure (6) shows the finite edain
representation of structural and aerodynamic gfol a simplification of the analysis, the wing is
modelled as a beam using CBEAM elements, and g &ldimped boundary condition is defined at one
end of the beam. A mesh convergence study was toatktermine the appropriate number of elements to
be included in the model in order to give a reabtmaccuracy to the overall solution. As a reshit
element density of 36 elements along the beam é&&s thosen.

The normal mode analysis (sol 103) was first pemti using MSC NASTRAN to obtain the
eigensolutions of the model; and the mass andtetiff matrices both in physical and modal coordénate
can also be determined. The first three bendingem@ie found at 0.36Hz, 2.23Hz and 6.22Hz and the
first torsion mode is 6.0657Hz. Having defined tlmmlinear static test cases, the finite elementimear
static analysis is performed under sol 106 of MSESWRAN to obtain the resultant displacement for
each of the defined load cases.

2 J
o®*® ad .r’
. s g a) Structural Grid

b) Aerodynamic grid

Figure (6) : structural and aerodynamic grids far HALE wing
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Flutter analysis was then carried out to predietfthtter speed of the considered model at thergflight
condition by using the P-K method. At the same tithe complex AIC modal matrices are extracted from
this analysis by using the DMAP as this informatioill later be used for the approximation of the
generalised aerodynamic in term of RFA.

Half span (S§) 16m
Chord (¢) im
Mass per unit length 0.75 kg/m
Spanwise elastic axis 50 percent chord
Center of gravity 50 percent chord
Bending rigidity 2 x 10 Nnv?
Torsional rigidity 1 x 10 Nnv*
Fllghxl:tcthrl]Jcci;:on (Z)Ookégg »

Air Density ' 9

Table 1: Patil-Hodges wing data [4,5,16]

4 Results

Nonlinear stiffness coefficients were obtained ggime combined modal/FE approach. In order to
observe the accuracy of the NLROMM, a comparisantdeen made with FEA (nonlinear static) based on
the predefined nonlinear static test cases. Tél)lsl{ows the best fit solution of the nonlineaffratiss
coefficients which are to be considered for theagit aeroelastic analysis, while figure (7) andst@w
the comparison between the NLROMM and FE-nonlirs¢atic analysis. It can be seen from these figures
that a very good agreement has been achieved f®rntbdal model. Therefore, having defined the
geometric nonlinearity of the wing, it is now pdseito couple the structure with the aerodynamicde
in order to simulate the aeroelastic analysis.

Reduction of the number of polynomial terms is aakespecially when the dynamic aeroelastic
response is considered. If too many cross-coupigrgns (nonlinear coefficient) are included in the
system, the time response numerical integratorfaibto convergence.

Nonlinear Stiffness coefficient — AEROELASTIC ANAISS

mode 1 mode 2 mode 3 mode 4
P1ps° 6.425 pP4 50.72 R’ 1572 R°P4 15.67
Papr° -0.5508 P, -7.749 p'psS  -109.5
P 2pa -0.7499 P -3.609 B 196.3

Table 2: nonlinear stiffness coefficient to be ¢desed for aeroelastic analysis
(p1, P2, Ps are bending modal coordinates, whilstgfers to the torsional modal coordinate)
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NASTRAN - STATIC LINEAR & STATIC NONLINEAR COMPARISON
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Figure (7) : Comparison between the NLROMM and Elalmear static analysis in bending

NASTRAN-STATIC LINEAR & STATIC NONLINEAR COMPARISON (TORSION)
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Figure (8) : Comparison between the NLROMM andriélinear static analysis in torsion

Linear flutter analysis was carried out in ordedt&iermine the linear aeroelastic behaviour ofrtioglel
under investigation for a range of air speeds atgiven flight condition. By solving the eigenvalue
problem of the linear aeroelastic dynamic systehg flutter and divergence instabilities can be
determined by investigating on the calculated datgaphical representation of V-g anddv/diagrams.

The V-g and V-o diagrams of the wing model using the MAST are shawfigure (9). From the figure,
the flutter speed is found at 23.35m/s by the firessing of one of the mode from positive to nisgadf
the damping ratio. While Figure (10) shows the ®rgl V-w diagrams of the wing model using the DLM
which is calculated using the p-k method of MSC NRAN. The linear flutter speed of this aeroelastic
model can be found at 35.25m/s with a corresponélinter frequency of 4.123Hz when one of the
damping ratio becomes zero. This gives close aggaewith the flutter result in ref [16].

There is a huge difference between the aeroelastidels that using the MAST (Quasi-unsteady
aerodynamics) and DLM (frequency dependent -ungteadodynamics) in terms of linear flutter speed
results. This is to be expected as the MAST do¢saocurately model the frequency dependency and a
constant oM, term is used to define the unsteady behaviounefierodynamics. Therefore the effect of
frequency dependent on aerodynamics cannot beatedland needs to be accounted for.
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Figure (9): Frequency and Damping trends for the HALE model
Aerodynamic model — modifiedsteady aerodynamic strip theory
Flutter speed = 23.35 m/s
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Figure (10) : Frequency and Damping trends for-HA&E model
Aerodynamic model — DLM
Flutter speed = 35.25 m/sttEluFrequency = 4.123 Hz

Figure (11) and (12) shows the time history oftihedeflection and tip twist at flight speeds jgtightly
above the linear flutter speed. From the figurés itlearly shown that the amplitudes of the oatidins
increase until a limit cycle oscillations (LCO)dacountered. It occurs due to the changes in thaviieur

of the structural stiffness, where in this case, $tructural stiffness is increases as the defleaget
larger, hence limiting the motion of the systemalbtructure with a linear stiffness is consideitbe,
motion will grow exponentially with time to infinitwhen the critical speed is exceeded (in practice,
failure due to flutter will occur). Therefore, téng is required to deflect until the nonlinear deming
stiffness, either on bending or torsion, takes elaxclimit the oscillations. This explains the lingiycle
motion as shown in figure (11) and (12). Figure) (@3ws a steady state LCO amplitude predictethfor
wing model with the inclusion of structural nonlimgies. Above the linear flutter speed, LCO formda
the amplitude will grows as the speed increasesrmkbyritical speed. Note the very high twist values
which will require more accurate modelling of thallsbehaviour.
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Figure (11) : Time history for flapwise and tip sivdeflec
Velocity = 25m/s, Angle ofatk = 0
Aerodynamic model — Modifiddrodynamic Strip Theory

il W

Figure (12) : Time history for flapwise and tip swvdeflectio
Velocity = 37m/s, Angle of attack 20
Aerodynamic model — RFA of DLM
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LCO Amplitude versus Air Speed
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Figure 13 : LCO amplitude of tip flap and tip twist

5 Conclusions

In this paper, a geometric nonlinear modal modekhaf wing is developed based on the combined
modal/FE approach. Very good agreement betweetNtHROMM and FE nonlinear static analysis has
been obtained. Dynamic aeroelastic responses heste $imulated using the NLROMM and including
DLM. The effect of the geometric nonlinearities wagestigated and there can be significant chaimges
the aeroelastic behaviour due to the large deflestunder the aerodynamic load compared to a linear

model.

Further work is required to include the cross cimgd between bending and torsional geometric

nonlinearities, stall characteristics of the wiimglusion of the nonlinear couplings between thgeedise

bending and torsion and implementation of a noalirgability analysis.
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