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SUMMARY

An analytical investigation is made of a precession-type instability

which can occur in a flexibly supported aircraft-engine--propeller com-

bination. By means of an idea!izedmathematical model which is comprised

of a rigid power-plant system flexibly mounted in pitch and yaw to a fixed

backup structure, the conditions required for neutral stability are

determined. The paper also examines the sensitivity of the stability

boundaries to changes in such parameters as stiffness, damping, and asym-

metries in the engine mount, propeller speed, airspeed, Mach number, pro-

peller thrust_ and location of pitch and yaw axes. Stability is found

to depend strongly on the damping and stiffness in the system.

With the use of nondimensional charts theoretical stability bound-

aries are compared with experimental results obtained in wind-tunnel

tests of an aeroelastic airplane model. In general, the theoretical

results, which do not account for wing response, show the same trends

as observed experimentally; however, for a given set of conditions cal-

culated airspeeds for neutral stability are consistently lower than the

measured values. Evidently, this result is due to the fact that wing

response tends to add damping to the system.

INTRODUCTION

A flexibly mounted aircraft-propeller--power-plant combination can,

under certain conditions, develop a dynamic instability in which the

propeller axis together with the power plant precesses in a diverging

whirl-type motion. The existence of such a phenomenon was recognized

and briefly investigated by Taylor and Browne as early as 1938 (ref. i),

but until recently has not been encountered in actual airplane configura-

tions. An experimental investigation (unpublished) of this phenomenon

was conducted on an aeroelastic model of an aircraft in the transonic

dynamics tunnel at the Langley Research Center. These tests established

the boundaries between stable and unstable operation of the system over a



range of such parameters as stiffness and damping of the engine mount,
propeller speed, fuel loading, and so forth.

The aim of this paper is to present a parallel analytical investiga-
tion to shed further light on the basic mechanismof propeller whirl.
The mathematical model treated represents a gross simplification of
power-plant installations found in practice in that an isolated power-
plant system is assumedto be flexibly mountedto a rigid backup struc-
ture and the only aerodynamic forces considered are those acting on the
propeller. It is hoped that, by following a tractable solution of the
propeller-precession problem, reduced to its most elementary form, impor-
tant nondimensional parameters will be identified and suitable design
criteria will evolve by which the stability characteristics of arbitrary
propeller--power-plant configurations can be readily assessed.

SYMBOLS

#

ai,bi

b

ce

c_

C(k)

Cm

C n

CT

Cy

aerodynamic coefficients in equation (19)

propeller blade section chord

viscous damping coefficient

section llft-curve slope of propeller blade element

Theodorsen's oscillatory lift function

pitching-moment coefficient,
My

pV2S ' R

Mz

yawing-moment coefficient, pV2S 'R

thrust coefficient,
T

side-force coefficient,
Fy

CZ vertical-force coefficient, FZ

V2S '
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D

E

fe,f_

F(k) ,G(k)

Fy, FZ

g

G

H

IX

Iy, Iz

J

k

k e

Z

M

5

dissipation function (see eq. (5))

angular momentum ratio,

generalized aerodynamic force functions (see eq. (18))

real and imaginary parts, respectively, of C(k)

aerodynamic forces along Y- and Z-axes, respectively

structural damping coefficient

structural damping in pitch required for neutral stability

of system

ratio of damping in yaw to damping in pitch, g-_
ge

moment of inertia ratio,
_I x

Iy

moment of inertia of propeller about axis of rotation

moment of inertia of propellermpower-plant system about

the pitch and yaw axes, respectively.

propeller advance ratio,
2nR

reduced frequency of propeller blade element, _---
2U

reduced frequency of propeller--power-plant system, _eR
V

distance from propeller plane of rotation to gimbal axes

free-stream Mach number

effective Mach number for propeller



My,Mz

n

ql

%1

R

S'

S

t

T

U

V

V e

X a

Xs,Ys,Zs

X,Y,Z

_0

7

moments about Y- and Z-axes, respectively; positive sense

is according to right-hand rule

propeller rotational speed, revolutions per second

generalized coordinate in Lagrange's equation

generalized forces in Lagrange's equation where qi = e

or qi = @

propeller radius

propeller disk area

rotational stiffness of power-plant mount

time

kinetic energy of system or thrust

potential energy of system or helical velocity of propeller
blade element

forward velocity

equivalent air speed, p_L V

auxiliary coordinate in Euler axis transformation

orthogonal space-flxed axis system (see fig. 2)

orthogonal body-fixed axis system (see fig. 2)

geometric blade angle measured from plane of propeller
rotation

blade angle to zero lift measured from plane of propeller

rotation

square root of ratio of yaw stiffness to pitch stiffness,
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lag angle of oscillatory aerodynamic forces, tan-l[F(--_j

5W

O,_

O,_

P

.1-

virtual work

virtual displacement in 0 and 4, respectively

ratio of viscous damping to critical damping

pitch and yaw angles, respectively (see fig. 2)

effective pitch and yaw angles, respectively (see eq. (ii))

ratio of air to structural moment of inertia,

frequency ratio, _----
mO

air density

propeller solidity at 0.75R,
8b

5_R

Vt
nondimensional distance traveled in propeller radii, --

R

_X,_f, _Z

frequency

undamped natural frequency in pitch (at zero airspeed),

undamped natural frequency in yaw (at zero airspeed),

components of total angular velocity of system about the

X-j Y-, and Z-axes, respectively

propeller rotational speed, radians/sec



Subscript s:

av

1,2

0

P

rms

SL

O. 75R

average value

forward and backward whirl modes, respectively

amplitude of oscillation (eq. (20))

axes in plane of propeller rotation

differentiation with respect to 8__V
R

differentiation with respect to _V
R

root mean square

sea level

three-quarter propeller radius

pitch and yaw directions, respectively

Dots over symbols indicate differentiation with respect to

primes denote differentiation with respect to T.

8Cy _Cy

are denoted thusly: Cy_ - 8_ , CYe - 8e ' Cmq -

t;
Partial derivatives

8Cm
m , and so forth.
q_
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DYNAMIC SYSTEM

General Remarks

The problem to be considered in this paper is the dynamic aeroelastic

stability of a rigid engine-propeller combination which is flexibly mounted

so as to permit angular deflections of the propeller axis in a vertical

(pitch) plane and a horizontal (yaw) plane. (See fig. 1.) The primary

forces and moments to be considered are those associated with small ampli-

tude pitching and yawing motions of the system. These forces and moments

are functions of the inertia of the system, the elastic and damping prop-

erties of the mount, the gyroscopic moments due to propeller rotation,

and the aerodynamic forces acting on the propeller. Thus, in contrast

with actual airplane configurations, the wing structure on which the



power plant is mounted is assumedto be rigid and aerodynamic inter-
ference effects induced by the wing and adjacent propellers are ignored.

Consider first the free vibratory motions of the system whendamping
and aerodynamic forces are neglected. Assumethat with a nonrotatlng
propeller there is no coupling between the pitch and yaw degrees of free-
dom; that is, natural vibrations in pure pitch and pure yaw can occur
independently. Whenthe propeller is splnning_ however, gyroscopic moments
are produced wherein an angular pitching velocity causes a momentabout
the yaw axis and vice versa. Thus, the significant characteristic of
this system is that the pitch and yaw modesare coupled by the action of
gyroscopic moments. (The coupling of natural modesof aircraft structures
due to propeller gyroscopic forces is investigated by Scanlan and Truman
in ref. 2.) Gyroscopic coupling causes the natural frequency of the
higher frequency uncoupled modeto increase and that of the lower fre-
quency uncoupled modeto decrease. Thesemodesare characterized by a
precesslon-type motion. In the lower frequency modethe propeller axis
precesses in a sense opposite to that of the propeller rotation and in
the higher frequency modethe direction of precession and propeller
rotation are the same. (See_ for example, ref. 3.) In the present paper
these modeswill be referred to as the backward and forward whirl modes,
respectively.

Although gyroscopic effects tend to couple the pitch and yaw degrees
of freedom, gyroscopic action alone cannot lead to an oscillatory
dlvergent-type instability because the mechanismfor adding energy to
the system is lacking. The mechanismfor an energy transfer, either into
or out of the system, can, however, be found in the aerodynamic forces
acting on the propeller. Whenthe propeller axis is deflected in pitch,
an aerodynamic vertical force and a yawing momentabout an axis in the
plane of the propeller are developed which, for small deflections, are
proportional to the pitch angle. In addition to these static forces,
other aerodynamic forces and momentsproportional to the rate of change
of the angular deflection are also present. Someof these air forces
drive and others resist motion of the previously discussed whirl modes.
A condition of neutral stability, that is, a self-sustalning oscillation,
is achieved whenthe energy input due to aerodynamic driving forces on
the propeller is exactly balanced by the energy dissipated by internal
damping in the system.

In the following analysis a modified Euler axis system together with
Lagrange's formulation of the differential equations of motion are used.
The equations of motion are cast in a nondimensional form from which
approximate closed form expressions for conditions leading to neutral
stability are derived and presented graphically.
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Equations of Motion

The coordinate system to be used in describing the motion of the

propeller system is illustrated in figure 2. Two sets of orthogonal

axes are considered. The Xs- , Ys-, and Zs-axes are fixed in space with

the origin at the glmbal center and the X-, Y-, and Z-axes pitch and yaw

with the power plant but do not rotate with the propeller. The Euler

angles relating the body system to space-fixed coordinates are the pitch

angle e and the yaw angle @. The order of rotation in transforming

from the space-flxed to the body-flxed coordinate system is as follows:

(a) Pitch through an angle 8 about the space-flxed Ys-axis to give

Xa, Ys, and Z coordinates.

(b) Yaw through an angle @ about the body-fixed Z-axis to give

X, Y, and Z coordinates.

It can be seen that the Z-axis is constrained to lle in the Xs,Z s plane,

that is, the vertical plane. Positive sense is in accordance with the

right-hand rule and is indicated by the direction of arrows in the fig-

ure. The total angular yeloclty of the.system is comprised of three

vectors: a pitch rate 6, a yaw rate @, and the propeller rotational

speed _ as indicated in figure 2. These vectors can be resolved into

components a_X, a_f, and _Z along the X-, Y-, and Z-axes, respectively.

The total kinetic of the system may be expressed
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1 1 1
T = _ IX_X 2 + _ Iy_f 2 + _ IZa_Z2 (i)

where Ix is the polar moment of inertia of the propeller, and Iy and

IZ are moments of inertia of the complete system about the Y- and Z-axes,

respectively. In the present analysis it is assumed that IZ = Iy. The

kinetic energy of rotating engine parts coul@ have also been included in

equation (i); however, since this energy is generally small, it has been

neglected in the present analysis. The relations between the angular

velocities in the body-flxed coordinate system and those in the space-

fixed coordinate system are for small pitch and yaw angles (see fig. 2)

: @ cos _ = @ (2)



Thus, with equation (2), the expression for the total kinetic energy of

the system for small pitch and yaw deflections about the gimbal axes
becomes

+ +
2 2

(3)
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The potential energy associated with pitching and yawing daflec-
tions is

U : _i see2 + _i S_@2 (4)

where, as indicated in figure i, S 0 and S@ are the rotational spring

constants for pitch and yaw, respectively.

Assume for the present that the damping in the engine mount system

is defined by the structural damping concept commonly employed in

flutter analysis. This type of damping produces a force in phase with

the velocity of oscillation but proportional to the elastic restoring

force. (See ref. 4.) A dissipation function applicable to structural

damping with sinusoidal motion may be written

D: elSege_62+ 21scg_@2 (_)

where _ is the frequency of oscillation, and ge and g_ are the

damping coefficients for the uncoupled pitch and yaw modes, respectively.

Although the choice of assuming a structural type of damping over,

for example, viscous damping (force proportional to velocity), is at

present arbitrary, since it is not known which is the better representa-

tion of the damping in the system, it will be shown later that the type

of damping assumed does have a significant effect on the stability

boundary.

The generalized forces are determined from the work done by the aero-

dynamic forces acting through a virtual displacement of each generalized

coordinate. In terms of the aerodynamic moments about the gimbal axes
the total work done is

6W = MySe + MZ_ _ (6)
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from which the generalized momentsare determined to be

Qe - 5w 45e = My

and Z_ (7)
8W M

=

where My and M z are the propeller aerodynamic pitch and yaw moments

about the gimbal axes.

Now, the Lagrange equation is

dt\_qi/ _qi + _ql + _ = Qqi (8)

where ql is the generalized coordinate e or _. With the expressions

for T, U, and D given by equations (3)3 (4), and (5)_ the differential

equations of motion become

Iye + ix£_ + See + Seg--e_ @ = My t

(9)

In order to determine My and M z in equation (9), it is convenient

to consider next the aerodynamic forces and moments that act on the pro-

peller. As stated previously, when the axis of propeller rotation is

inclined relative to the direction of the free stream, aerodynamic forces

and moments are generated which_ for small deflections, are proportional

to the angle of inclination and rate of change of the inclination angle.

It is convenient to express these aerodynamic forces and moments in terms

of nondimensional propeller derivatives which can either be dete_mlned

experimentally or calculated by methods such as that given by Ribner in

reference 5. On the basis of Ribner's work the forces and the moments

about axes in the propeller plane maybe expressed as
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FZ -- _ Ze_ + cz** + CZr

NZ, p = oV2S'R + Cn r

(i0)

The derivatives CZ¢ and CYe are not considered in reference 5 but are

included here because these derivatives have been observed experimentally

and can be shown to have a significant stabilizing effect on propeller
whirl. The angles _ and @ are the effective pitch and yaw angles

between the propeller axis and the relative wind. They consist of two

parts, a geometric angle and an angle due to translational velocity of

the propeller hub. Thus,

_=e_ z6
v

J

(ll)

where _ is the distance from the rotation axes (glmbal axes) to the

plane of the propeller.

Because of symmetry the following reciprocal relations hold between

the derivatives for pitching and yawing motions:
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Cze : -Cy_

Cn8 = -Cm_

Cye = Cz_

Cmq = Cnr

Cyq = CZr

(12)

With equation (i0) the moments referred to the gimbal axes became

My = My,p - _Fz_

and _ (13 )

Mz = MZ, p + _Fy I
M

Before seeking solutions to these equations of motion it is advan-

tageous to write equation (9) in terms of certain nondlmensional param-

eters. For this purpose define a new independent variable T as the

distance traveled in propeller radii

Vt
- (14)

R

Then, in terms of T, the derivatives in equation (9) become

(.)_Vd()__ )' (l>)R dT
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and

.. ,,()= - )
dT 2

(16)
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With these substitutions and some algebraic manipulations the equations

of motion may be written in the following nondimensional form:

ke 8' =
8" + JH @, + ge -_- + ke29 _fe

Gk 8
_,, H O' + go 72_'' + 72ke 2@" = _f_/

(17)

The nondimensional parameters in equation (17) are defined as

follows :

H ratio of polar moment of inertia of propeller to pitching moment

of inertia of entire system, Ix_/l Y

J propeller advance ratio, V/2nR

ke reduced frequency, _sR/V

72 ratio of yaw stiffness to pitch stiffness, $8

G ratio of yaw damping to pitch damping, g@/g8

ratio of mass moment of inertia of cylinder_,of air to pitching

moment of inertia of the structure, _PRD/IYI

h frequency ratio, e/w e
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The generalized force functions are in the form

fe = aoe + ale' + a2e" + bo_ + bl_' + b2@"_

(
f@ = -boe - ble' - b2e" + a0@ + al_' + a2_' _

(18)

where the

propeller derivatives and the gimbal axis location.

are:

a 0 - 2 R CZe

l/Z\2 

a and b values in equation (18) are functions only of the

These coefficients

- ZCmqa2=

i ZCz_bo =_ 2R

b I = - _ CZr + b

(19)

It should be pointed out that the present analysis does not consider

the apparent mass effects of air surrounding the propeller, which, if

accounted for, would lead to additional terms in the a2 and b 2

coefficients.
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Evaluation of Propeller Aerodynamic Derivatives

The aerodynamic derivatives used in this analysis were calculated
for a propeller having the characteristics shownin figure _. All
derivatives were evaluated by Ribner's method (ref. 5) with the excep-
tion of CZ_ which is not treated by Ribner. Such a derivative has,
however, been observed experimentally and is believed, because of its
stabilizing effect, to be of sufficient importance in the analysis of
propeller whirl to merit someconsideration. An approximate derivation
of the derivative CZ_ is presented in the appendix.

Because, as will be shownlater, the thrust developed by a pro-
peller has very minor effects on the aerodynamic derivatives of interest,
wind-milling propellers were used here as they were in the experimental
wind-tunnel tests (unpublished). From experimental data, the relation
between the propeller advance ratio J and the geometric blade angle
_0.75R was determined and is plotted in figure 4. Figures _ and 4
together with data in table I provide the information neededto cal-
culate propeller derivatives for the windmilling case.

The calculated propeller derivatives plotted against _0.75R are

presented in figure 5. Also shownfor comparison are the derivatives
calculated for a thrusting propeller for _0.75R = 46o"

In order to account for the effect of Machnumberon the coeffi-
cients in figure 5, an approximate Machnumber correction factor

i
, calculated by the method of reference 5, is shownplotted

1 - Me 2

in figure 6 against _0.75R for various free-stream Mach numbers.

(The symbol M e represents an effective Mach number on the propeller.)

This correction is to be applied as a multiplying factor to the deriv-

atives determined for the incompressible case.
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DYNAMIC STABILITY CONSIDERATIONS

Conditions for Neutral Stability

In order to find the conditions for which the system becomes neu-

trally stable, sinusoidal motion is specified for 8 and _ in the

equations of motion. Thus, when

8(t) = 80 ei_t

or in nondimensional form

and e(T) = eoeihke T 1
_(T) : _oeikke T

are substituted into equation (17), a nontrivial solution is obtained

when the determinant of the coefficients

I(2z)

is set equal to zero.

When equation (21) is expanded and the resulting real and imaginary

parts equated to zero, it is found that in the real equation ge always

appears either multiplied by itself or by one of the aerodynamic terms.

By neglecting these second-order terms, which appears to be a valid

assumption for the range of _- and g-values of interest, the real part

of the expanded determinant becomes a quadratic in h2. The two roots

of h 2, corresponding to the forward and backward whirl modes, are,

respectively,
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where

2A

2A

!

/
A=ke4__2_a2+_2{a22+b22)

I- olB = k@ 2 (I + y2)k02 _ 2 + 2_a + ke2_L2bl H_ + a2(l + 72)k@ 2

(22)

-2_(a0a2 + b0b2 ) - _(a12 + b12)

C = 72ke 4 - _a0(l + 72)ke2 + _(a02 + b02)

The tems beneath the bars are 3 for conditions of the present analysis,

considered to be negligible and have been ignored.

The amount of damping required for neutral stability, is found by

equating the imaginary part of the expanded determinant to zero and

solving for ge

(23)

The _ superscript is used to denote a neutral stability condition.

The procedure for determining stability boundaries from equa-

tions (22) and (23) is as follows: For a given set of parameters

equation (22) is first evaluated to give the forward and backward whirl

frequencies _i and _2" 0nly positive roots are used in order to be
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consistent with the motion assumed in equation (20). With these

frequencies substituted separately into equation (23) the damping

required for neutral stability is determined for each whirl mode.

Figure 7 shows typical plots of kl, 2 and g81,2 against the

parameter V/P_% for a system having symmetrical damping (G = 1.O)

and asymmetrical stiffness (7 = 1.4). Other parameters used are pre-

sented in figure 5 and table I. If for a given set of conditions the

system damping is less than that indicated by the appropriate g_

stability boundary in figure 7, the system will be unstable. Since

the damping in an actual physical system is always positive, the fig-

ure shows that propeller whirl, if encountered, will stem from the
backward whirl mode.

In order to gain a better understanding of the significance of

various terms in the stability boundary equation, it is instructive

to make further approximations to arrive at a considerably simpler

expression for _@. For this purpose consider the special case of

equal stiffness and damping in the pitch and yaw directions, that is,

7 = 1.O and G = 1.O. If in the frequency equation (eq. (22)) all

aerodynamic terms are neglected and an angular momentum ratio, defined

as E = Ix_ is assumed to be less than unity, the frequency relation
Iy%

reduces to

(24)

When these relations for Z are substituted into equation (23) and

the aerodynamic terms of lesser importance dropped, the following

approximate expressions for ge are obtained

Forward whirl:

(25)

Backward whirl:

g% : - al+ (26)
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Where, as in equation (19),

IC_ 2

a I :%q+ff._/Cz s

L

I

2

9
_7

i Z

bo : Cm$ 2 R CZ_

Figure 8 indicates that these approximate expressions for _1,2

and Tel,2 agree very closely with the more exact equations (eqs. (22)

and (23)) for the case under consideration, that is, a symmetrical

distribution of stiffness and damping in the system.

Note that for the aerodynamic coefficients and gimbal axes loca-

tion used (see fig. 5 and table I) the term aI is always negative

and the term b0 is always positive. Therefore, equations (25) and (26)

show that for these conditions the damping required for neutral sta-

bility can become positive only for the backward mode. This result

indicates that, if an instability occurs, it must develop in the back-

ward whirl mode, a conclusion consistent with wind-tunnel results and

the theory in reference i.

Subcritical and Supercritical Response

The equation for g9 defines only the boundary between stable

and unstable operation of the system and does not necessarily indicate

the degree of stability or the severity of an instability when the

actual damping is other than ge"

As a qualitative indication of the behavior of the system for

conditions on either side of the boundary, figure 9 illustrates some

typical transient motions of the system for three values of damping.

These curves_ obtained on an analog computer, represent the paths

traced by the propeller hub after being released from an initial lateral

displacement. The cases shown are for equal stiffness and damping in

the pitch and yaw directions. Note that the oscillatory motion is

= = 0.06,
damped when g9 0.08, neutrally stable when g9 = go 2

and divergent when g9 = 0.04.

The path described by the propeller hub may be considered as the

superposition of two rotating vectors. One vector rotates about the
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origin of the Ys,Zs coordinates in a clockwise direction at the fre-
quency of the forward whirl modeand the other vector rotates in a
counterclockwise direction at a lower frequency corresponding to the
backward whirl mode. For the particular initial condition used in fig-
ure 9 a corner occurs in the path each time the two rotating vectors
point in the samedirection. Note that in each case the backward whirl
(counterclockwise) is the predominant modeand that the forward modeis
heavily damped.

Generalized Stability BoundaryPlots

Description.- Figure I0 gives the effects of varying some of the
nondimensional parameters considered in this analysis. These charts

show _e 2 plotted against the parameter V/l%ne for a range of values

of J, _, and G. Only 38 values for the backward whirl mode are

presented because in all cases considered this was the mode in which

the instability occurred. In these calculations the following condi-

tions were assumed: windmilling propeller, incompressible flow, fixed

pitch, and y_w rotation axes at the position of the model gimbal axes

(Z/R = 0.3778), and inertia parameters corresponding to the system at

a flight altitude of 15,O00 feet standard atmosphere. (See fig. 5 and

table I for numerical values.)

Before utilizing these nondimensional plots it is of interest to

consider trends that might be expected when conditions are different

from those assumed in figure 10. Specifically, the effects of varying

the _ir density, Mach number, propeller thrust, gimbal axes location,

and the assumed nature of the damping in the engine mounts are discussed.

Air density.- First consider the effect of air density on the sta-

bility boundary. For the case of symmetrical stiffness and damping it

is seen from the approximate relation given by equation (26) that ge

is simply proportional to the nondimensional moment of inertia param-

_DR 5
eter K = _. Thus, in order to determine approximately the sta-

Iy

bility boundary for altitudes other than that assumed in the figure,

the value of g82 read from figure i0 can be multiplied by the ratio

of the air density at the desired altitude to the density used in this

analysis (15,000 feet).

Mach number.- The effect of Mach number on the stability boundary

is indicated in figure ll for J = 2.6, G = 1.0, and 7 = 1.0. These

results were obtained by applying the Mach number correction shown in

figure 6 to the propeller aerodynamic derivatives. Note that for a
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given mount dampingand stiffness (stiffness is proportional to _e2)
the effect of increasing Machnumber is to reduce the velocity for which
the system becomesunstable. The higher the Machnumberthe more sensi-
tive the system becomesto this unfavorable effect.

Propeller thrust.- Shown in figure 12 is a comparison of the cal-

culated stability boundary for a thrusting and a windmilling propeller.

The propeller coefficients used for the thrusting case are those plotted

in figure 5 and correspond to cruising thrust at 15,000 feet altitude
with an advance ratio J = 2.22. Note that the differences between these

two stability boundaries are hardly discernible in the figure. Conse-

quently, there appears to be good justification for using windmilllng

in place of thrusting propellers in the wind-tunnel tests (unpublished).

Gimbal axes location.- The stability boundaries shown in figure l0

are for gimbal axes located 0.3778 propeller radius behind the propeller

plane of rotation. In order to examine the sensitivity of these boundaries

to gimbal axes location, the parameter Z/R was varied in figure 13 over

a range from 0 to 0.80. In these calculations it was assumed that only

the aerodynamics were affected by changes in Z/R, the moments of inertia

remaining fixed. These results indicate that increasing the distance

between the propeller plane and the gimbal axes has a stabilizing effect.

Note also from equations (25) and (26) that as this distance is increased

beyond about 2 propeller radii the sign of b0 changes from positive to

negative. In this case, whirl instability would be expected to develop

in the forward whirl mode; however, limited calculations indicate that

before reaching this condition, which occurs at very large values of

V/R_e, the system would probably suffer a static aeroelastic divergence.

Dampin_ concept.- As pointed out earlier_ the type of damping con-

sidered for the system produces a force proportional to the amplitude

of displacement but independent of the velocity of motion. This concept

of damping has been found to give a better description of damping meas-

ured on aircraft structures than does viscous damping which produces a

damping force proportional to velocity. It is of interest, however, to

compare the stability boundaries determined for these two familiar types

of damping. For a sinusoidal pitching motion of frequency _, it can be

shown that, for a given amplitude of oscillation, structural damping and

viscous damping dissipate the same energy when

ge : (27)

where
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is the viscous damping coefficient relative to critical damping. In
this equation _e is the undampednatural pitching frequency of the
system with a nonrotating propeller and _ represents the dampednatural
frequency. If the propeller is not rotating and the system is lightly
damped, _ =_8 and therefore from equation (27) structural and viscous

damping are simply related as g8 = 2_e" When the propeller is spinning,

however, because of gyroscopic coupling, _ may be considerably dif-

ferent from _8' in which case the damping forces will depend on whether

the damping is of a viscous or of a structural nature.

An indication is given in figure 14 of the shift in the stability

boundary due to using a viscous rather than a structural description

of the damping in the engine mount. The viscous damping curve was com-

puted by replacing ge in equation (9) by the equivalent expression

given in equation (27) (similarly for g_). As is evident in the fig-

ure, viscous damping is not as effective as structural damping in the

prevention of instability since the unstable mode, being the backward

whSrl mode, has a frequency less than that for the case of a nonrotating

propeller. Therefore, to absorb a given amount of energy, the viscous

damping coefficient 2_e must be greater than the structural damping

coefficient ge"

Effects of Unsymmetrical Stiffness and Damping

Experimental results for the stability boundaries of systems having

different relative lateral and vertical stiffnesses are sometimes cor-

related by an effective stiffness defined as the root mean square of the
two stiffnesses

2 + s_ 2Srms = 2 (28)

Thus, within the accuracy of this criterion, the stability char-

acteristics of systems having arbitrary relative stiffness in pitch

and yaw can be inferred from the behavior of a symmetrical system having

the same root-mean-square stiffness. It is of interest to determine the

scatter that might be expected when using this method of correlation.
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These results would provide an indication of the range of stiffness

ratios over which the previously developed simplified stability boundary

equation for a symmetrical system (eq. (26)) would be applicable.

Figure 15(a) presents a family of stability boundaries showing the

variation of root-mean-square stiffness with equivalent airspeed for

various ratios of yawing stiffness to pitching stiffness. A structural

damping of 0.03 was assumed in both pitch and yaw and a propeller speed

of 1,020 revolutions per minute was used. These plots were determined

graphically from the nondimensional working charts in figure i0. Fig-

ure 15(a) indicates that at the lower root-mean-square stiffness values,

the root-mean-square stiffness criterion is a reasonable criterion to

use in defining the stability boundary over the range of stiffness

ratios shown. Also, the figure points up the interesting fact that,

for a given root-mean-square stiffness, it is the symmetrical system

(S_ = 1.01 that has the lowest critical for

\

airspeed. Thus, a given
S8 /

root-mean-square stiffness, engine-mount stiffness asymmetries appear

to produce a beneficial effect; however, the range of parameters for

which this conclusion applies has not been established.

The structural damping in figure 15(a) was assumed to be equal for

both modes. In order to illustrate the effect of unsymmetrical damping

on the stability boundary, the average damping

ge + g_ (29)
gay = 2

was held constant at 0.03 and the damping ratio G was varied from 0.5

to 2.0. The results are presented in figure 15(b) which shows stability

boundary plots of stiffness ratio against equivalent airspeed for a

root-mean-square stiffness of 7.36 x 106 and 12.3 × 106 in-lb/radian.

The G = 1.0 curve represents a cross plot of figure 15(a). If the

stiffness is symmetrical, the average damping is a good measure of the

effective damping of the system since the stability boundary for each

damping ratio shown intersects at S_ = 1.0. However, when the stiff-

S8

hess ratio is different from unity and the average damping held con-

stant, it is seen that the critical speed is increased when the damping
in the less stiff direction exceeds that in the more stiff direction.
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COMPARISON OF THEORY WITH EXPERIMENT

General Trends

In the present sections, a comparison is made between the results

of this analysis and experimentally determined propeller whirl char-

acteristics. Although the analysis shows the same trends as the experi-

mental data, close agreement is not to be expected since the theory

considers only an isolated nacelle, and thus neglects wing motion and

aerodynamic effects of the wing and adjacent propellers. It should also

be noted that the actual structural damping present during the experi-

mental tests could not be precisely determined because, in order to

obtain consistent results, it was necessary to measure damping with the

nacelle system mounted to a rigid backstop rather than to the flexible

wing structure. Also aerodynamic drag loads on the gimbal bearing may

tend to increase the damping above that measured in still air.

Whirl Frequency

A comparison of calculated and measured whirl frequencies against

propeller speed is shown in figure 16 for two stiffness ratios. Aero-

dynamic forces have a small effect on the frequency of whirl and were

neglected in determining the theoretical curves shown. The figure

clearly indicates that the measured whirl frequencies stem from the
backward whirl mode.

Propeller-SpeedIAirspeed Stability Boundary

Figure 17 shows the measured and calculated effects of propeller

speed on the stability boundary. The stiffness is 8.09 x lO6 inch-pounds

per radian and the structural damping is approximately ge _ 0.014. The

two experimental stability boundaries are for the number 4 (outboard)

nacelle and the number 3 (inboard) nacelle. Thus, the three curves in

the figure represent three different levels of flexibility in the nacelle

mount backup structure. Nacelle 4, being located outboard on the wing,
has a less rigid backup structure than nacelle 3. The theoretical curve

is, of course, a limiting case wherein the backup structure is completely
rigid. From these curves, it may be concluded that the effect of

increasing wing flexibility in this case is to increase the airspeed for

which the system becomes neutrally stable. Also, both theory and exper-

iment show that an increase in propeller speed is accompanied by a reduc-
tion in critical airspeed.
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The variation of structural damping required for neutral stability

with airspeed is shown in figure 18 for conditions of a propeller speed

of 1,020 revolutions per minute and a stiffness of 8.09 x lO 6 inch-pounds

per radian. If, for a given airspeed, the structural damping is greater

than that indicated by the stability boundary, disturbed motions of this

system will dampen out. If, on the other hand, the damping of the mount

falls below the stability boundary curve, disturbed motions will develop

into an oscillatory divergence in the backward whirl mode. Here, as in

figure 173 the same indications regarding the effects of wing flexibility

are evident. Note that, for low values of structural damping, the slope

of the stability boundary curve is small (see fig. lO) and therefore,

in this region_ the critical airspeed is very sensitive to changes in
damping.

Stiffness-Damping Stability Boundary

As a final comparison of theory (rigid backup) and experiment

(unpublished), figure 19 shows the variation of root-mean-square stiffness

with damping required for neutral stability at Ve = 304 knots. The

theoretical curve is for a propeller speed of 1,020 revolutions per

minute and symmetrical stiffness and damping. The experimental results,

are for the number 4 nacelle and fall within the band indicated by the

crosshatched area. The apparent scatter in the experimental results

is to be expected since the data shown represent a composite of all

data points irrespective of propeller speed or relative stiffness and

damping in the pitch and yaw directions. The theoretical results are

again conservative in that for a given damping a higher stiffness is

required for stability by the theory than was determined experimentally.

CONCLUDING R_MARKS

An analytical investigation has been made of the dynamic stability

of an aircraft engine-propeller combination flexibly mounted to a rigid

backup structure. The conditions for which the system undergoes self-

excited precession (propeller whirl) are examined. Results are pre-

sented in the form of nondimensional plots from which stability bound-

aries for various combinations of stiffness of the power-plant mount,

structural damping, and propeller speed can be readily determined. Sta-

bilSty is found to depend strongly on the damping and stiffness in the

system. It is found that the theoretical results, which do not account
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for the effects of wing response, show the same trends as observed in

wind-tunnel tests of an aeroelastic model but indicate instability for

lower velocities than do the model tests. Thus_ wing flexibility appears

to increase the damping of the system.

Langley Research Center 3

National Aeronautics and Space Administration,

Langley Field_ Va., November 14, 1960.
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APPENDIX

PROPELLER VERTICAL FORCE DUE TO YAW DERIVATIVE CZ,_,

The existence of the derivative Czar can be attributed to phase

lags of aerodynamic forces acting on the propeller. When the propeller

axis is deflected relative to the free-stream direction_ as in yaw, the

angle of attack of a blade element varies harmonically at a fundamental

frequency corresponding to that of the propeller rotational speed.

Because of an aerodynamic phase lag associated with these angle-of-

attack oscillations, the total force vector in the plane of rotation

due to a yaw angle has a small vertical component as well as the usual

horizontal component. _us, if the side force due to yaw undergoes a

lag _, the vertical force due to yaw may be expressed as

CZ _ : Cy¢ tan
(AI)

A rough estimate of the magnitude of _ can be obtained by simply

modifying the slope of the section lift curve of the propeller blade

element by Theodorsen's C(K) function (ref. 4) for oscillatory flow

C(k) = F(k) + iO(k) (A2)

The lag angle _ is given by the expression

: tan-i [_ 1
(AJ

This expression for _ must, at best, be viewed as a very approximate

one since C(k) is derived on the assumption that the shed vortices be

in a plane whereas in the case of a propeller the wake is shed in a

helical pattern.

The real and imaginary parts of C(k) are functions of a reduced

_b

frequency k = 2-_ which, of course, varies along the propeller radius.

For the present purpose assume an effective reduced frequency for the

propeller to be that of the blade element at 0.75R. It can be shown

that the velocity of this blade element along a helical path expressed

in terms of the rotational speed and the advance ratio is

(A4)
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Hence, the effective reduced frequency becomes

bo.
k = 75R (AS)

From tabulated values of C(k) the phase lag and thus CZ$ (eq.(Al))

can be determined for specified values of J. It is found that the phase

lag varies from 11.9 ° to 9.4 ° over a J range of from 1.8 to 4.2.
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TABLEI

SUMMARYOFNACELLE-PROPELLERCHARACTERISTICSUSEDIN ANALYSIS

IX, slug-ft2 ......................... 175
Iy, slug-ft 2 ...... ................... l, 375
R_ ft ............................ 6.75
bo.75R' ft .......................... 1.458
0_ slug/ft } ......................... O.001496
7,/R ............................. 0.3778*

(_ .............................. 0.1834

c _ ............................. 2_

Spinner-nacelle fineness ratio ................ 6.0**

Spinner radius/Propeller radius ............... O. 181**

*In figure 13 Z/R is varied.

**Values assumed for use in reference 5.
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52

Xa

Ys Xs

!

tO
kD

(a) e rotation.

°

Zs

(b) _ rotation.

Figure 2.- Coordinate system showing Euler axis transformation.



5B

33

h-

_4

_D

O

+)

1.0 --

G9
.H

.8-

o

o6 m

o2 --

O--

28

2O

" _0.7_R' relative

geometric angle

- _O " _0.7_R' relative/
zer o

16 / angle for lift

/-- Relative blade
width

12

J \

-8

0 .2 o_ .6 .8 1.O

Radial distance along blade

Propeller radius

Figure 3.- Distribution of propeller twist angle and blade width for the

airplane propeller of this analysis. Propeller dimensions: blade

tip width, 1.458 ft; propeller radius, 6.75 ft; number of blades, 4.



34

4.4

4.0

3.6

3.2

2.8

2.4

2.0

/
./

/
/

/
/

/

/

/
/

/

!

1.6

32 36 40 _4 48 _2 _6 60

_O. 7_R_' deg

Figure 4.- Variation of advance ratio with geometric blade angle at

three-quarter blade radius for windmilling propeller.



3_

.2

.i

I I I F

_Windmilling (CT = O)

© Thrusting (CT = O.017)

-_... ______ CZ

Cm_

[.._
c_
cu
r--I

0

-.1

c_

"cs

o go2

0

--e3

v

_v

I

J

• Cmq

_- CZr

_ CZe

-.6

32 36 40 _ 48 _2 _6 60

_0.7_2, deg

Figure _.- Variation of propeller aerodynamic derivatives with geometric

blade angle at three-quarter blade radius. M = O.



36

\

\
\

1.1

.4

!

fO
_0

.9
32 36 40 4_ 48 _2 _6 60

_0. VSR' deg

Figure 6.- Variation of Mach number correction factor for propeller

aerodynamic derivatives with geometric blade angle at three-quarter

blade radius.



37

2.0

z.6

k1 £orward whirl J

_ 1.8

_ _ 3.l*

1.2

.-t
I
q

.8

-___ k2 backward whirl j
__ ___ 4.2

_ _ 3.4
-_ 2.6

1.8

.4

N

ge

.o_

-.02

-.08

-.12

Stable region

0 I 2 3

v

1.8

_ _ 2.6\l

_4.2

Figure 7.- Typical plots of frequency and damping required for neutral

stability for various propeller advance ratios. S_/S 8 = 1.96;

G = 1.0; 7 = 1.4.



58

1.6

J

1.2 ___I f

.4

"Exact"

-- -- Approximate

I I

Forward whirl

Backward whirl

0

.08

.oh

O __

-.o_

-.08

Stable region

\

-.]2

0 i 2 3

V

R_ e

\
\

/%2

/
/

Backward whirl

k Forward whirl

1, 5

Figure 8.- Comparison of "exact" and approximate expressions for whirl

frequencies and stability boundaries. J = 2.6; G = 1.O; 7 = 1.O'

b
!

kC



39

J
q
!

Y

z z

(a) Stable; ge = 0.08. (b) Neutrally stable; ge = 0.06.

\

Start

Y

(c) Unstable; ge = 0.04.

Figure 9.- Analog computer results showing typical paths of propeller

hub following an initial lateral displacement for G = 1.0 and

7 = 1.0. Arrows indicate direction of precession.
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