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PROPELLER-ROTOR WHIRL FLUTTER:

A STATE-OF-THE-ART REVIEW

NASA Langley Research Center
Langley Station, Hampton, Va., U.S.A.

\

~ ABSTRACT ;1 9/\’0(\

The basic phenomenon of propeller whirl instability in connection with
conventional and V/STOL alrcraft is described; theoretical and experimental
investigations of the problem from the time it first became of concern on con-
temporary turboprop alrcraft to the present are summarized; and some considera-

tion is given to possible future configurations having hinged or highly flex-~

ible propeller-rotors. O)}x%» //;;/

INTRODUCTION

Although the phenomenon known as propeller whirl flutter - a dynamic
instability that can occur in a flexibly mounted aircraft engine-propeller
combination - was discovered analytically by Taylor and Browne in 1938 (ref. 1),

it was not until its "rediscovery".in 1960 that it became a problem of practi~

cal concern. —
Following the loss of two turboprop aircraft in fatal accidents it was
established in wind-tunnel investigations (ref. 2) that propeller whirl flutter
could have occurred if the nacelle stiffness was severely reduced, say by a
structural failure. In the undamaged condition the aircraft had an adequate

margin of safety from whirl flutter. In addition to this wind-tunnel
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investigation for a specific configuration some generalized trend studies were
also conducted at NASA-Langley in order to identify and study the baslc param-
eters involved in propeller whirl flutter (refs. 3 through 6).

As a result of these experiences on a turboprop aircraft, and the fact
that VIOL configurations are likely to have unconventional propeller-rotor
systems, whirl flutter has now become a design consideration on new propeller-
driven aircraft. These considerations are reflected in recent amendments to
U.S. Civil Air Regulations (ref. 7) which require that whirl flutter be included
as a part of the dynamic evaluation of transport aircraft, and that no flutter
shall occur as a result of failure of any single element of an engine mount
structure.

The purpose of this paper is to revliew some progress that has been made in
the area of propeller whirl flutter since the time the phenomenon became the
subject of intensive study in 1960. Following a description of the basic
mechanism of propeller whirl flutter, the paper summarizes some principal
findings of generalized trend studies for idealized systems, and then illus-
trates how these results can be altered by the use of propeller-rotors with
hinged blades and with highly flexible twisted blades. In addition, the paper
reviews the status of propeller aerodynamic coefficients used for the prediction
of whirl flutter on conventional and VIOL aircraft; discusses some effects of
wing flexibility on whirl flutter; and, finally, cites an example wherein whirl
flutter of a specific VIOL configuration is studied by means of an aercelasti-

cally scaled wind-tunnel model.
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propeller in propeller radii
Cp thrust coefficient, -—-T—Qr—lil-r—gﬁf‘———u
p(a) (2R)
c propeller chord
cla lift-curve slope
Cos Cy nacelle viscous damping factors in pitch and yaw directions
e hinge offset distance on flapping-blade propeller
F + 1iG oscillating 1lift function
iV
H propeller-tip-speed ratio, =
I total moment of inertia of system about pivot
R
I, = %‘- f mredr
N R
Ip =3 f mr(r - e)dr
e
R
Iz = % M/\ m(r - e)2dr
e
Ix mass moment of inertia of propeller about rotation axis, 2I;
1= V1
J advance ratio, %
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K==
Mg, My aerodynamic moments about nacelle pivot point
m propelier blade mass per unit length
N number of blades
R propeller radius
r local blade radius

R
S = % b/\ m(r - e)dr

e
Se,SW rotational spring constants of nacelle
\'s flight velocity

=
I
EEEir
2]«
N’
n
+
T
=] L
'

€ %, hinge offset

4 viscous-damping relative to critical damping of engine mount system

0,V pitch and yaw angles of propeller shaft relative to static thrust

axis

A=p+1iv root of characteristic equation

7 damping ratio (+ unstable, - stable)

Vv = % whirl frequency ratio (+ for forward mode, - for backward mode)
w

vo = 22

o] air density

Q propeller rotational frequency

w propeller whirl frequency

wy, cantilever fundamental frequency of nonrotating propeller blade
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Wy, @y uncoupled pitch and yaw frequencles of system with nonrotating

propeller

p uncoupled wing bending frequency for rigid nacelle and nonrotating
propeller

n fundamental wing coupled tending-torsion frequency for rigid nacelle

and nonrotating propeller

MECHANISM OF PROPELLER WHIRL FLUTTER

In order to introduce the basic ingredients of propeller whirl flutter it
1s convenient to reduce the problem to its most elementary form as was done in
references 3 through 6. In figure 1 the sketch represents an idealized system
in which the power plant or nacelle is assumed to be restrained by a set of
springs and dampers at a pivot located behind the propeller disk. If the
propeller blades and the nacelle structure are considered to be rigid, the
dynamic behavior of the system can be described in terms of 6 and V¥ which
represent small angular deflections in pitch and yaw of the propeller axis
relative to the static equilibrium position. The equations of motion, also
shown in figure 1, indicale the nature of the varicus forces invelved. Note
that, in addition to the usual dynamic forces assoclated with inertia, damping,
and elastic properties of the system, gyroscopic and aerodynamic forces are
introduced by the rotating propeller.

The dynamic behavior of this system can be illustrated with the aid of
the sketches in figure 2. The sketches on the left indicate that with a non-
rotating propeller and with aerodynamic forces neglected, natural vibrations
can occur independently in either the pitch plane or the yaw plane. There is

no coupling between these two modes. However, with a rotating propeller
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(center sketch) the original pitch and yaw modes no longer occur independently,
but are coupled by gyroscopic action of the spinning propeller. The natural
modes in this case are referred to as "whirl" (or precession) modes in refer-
ence to the manner in which the propeller hub whirls about the static thrust
axls. As the rotational speed of the propeller increases, the frequency of one
whirl mode increases while that of the other decreases. The higher frequency
mode 1s known as the "forward whirl mode" because the direction of whirl 1s the
same as that of the rotating propeller. Similarly, the lower frequency mode is
known as the "backward whirl mode" because its rotational direction is opposite
to that of the propeller.

It can be shown that if the propeller blades are rigid and there are no
aerodynamic forces on the propeller this mechanical system is always stable.
However, since whirl modes produce angle-of-attack changes on blade elements
of the propeller, aerodynamic forces are generated, and it is these forces that
provide the mechanism for an instability. Thus, Jjust as in classical wing
flutter, if the forward velocity of the system exceeds a certain critical value
a dynamic instability can be encountered. This instability for rigid-blade
systems invariably occurs in the backward whirl mode.

The sketches on the right-hand side of figure 2 give an example of the
manner in which the system would respond in the backward whirl mode following
a disturbance such as a gust. When the airstream velocity is less than the
whirl flutter velocity, V,.ii, the path traced by the propeller hub is a
spiral that converges to the original static equilibrium position. When the
flutter speed is exceeded, however, a small disturbance will result in a
diverging spiral motlon of the hub which will continue to build up until the

structure fails or its motion becomes limited due to nonlinearities.
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PROPELLER-ROTOR SYSTEMS: RIGID AND NONRIGID BLADES

The generalized studies of classical propeller whirl flutter in refer-
ences 3 through 6 were restricted to rigid propellers. This is a reasonable
assumption for conventional propeller-driven aircraft; however, V/STOL designs
often incorporate flexible and articulated propeller-routors that arc comproe-
mises between the long flexible blades of a helicopter rotor and the short stiff
blades of an aircraft propeller. It is therefore of interest to consider the
manner in which whirl flutter might be altered by the use of nonrigid propeller-
rotors. Of equal interest here is also the question of how rotor mechanical
instability - an instability fed by energy of the rotating rotor rather than by
the airstream - might be altered by the inclusion of propeller-whirl-type
aerodynamic forces.

For this purpose we will investigate some stability characteristics of the
three systems shown schematically in figure 3. These systems each consist of
a four-bladed propeller-rotor mounted, for convenience, on an axisymmetrical
nacelle (in which stiffness and inertia properties are the same in the pitch
and yaw directions). The first system to be considered here has rigid blades;
the second system is like the first except the blades are hinged so as tc allow
flapping in the direction normal to the propeller disk plane; and the third is

a system with a flexible twisted propeller-rotor. The vibration modes of

importance for each of these systems are indicated by the sketches in figure 3.

Résumé of Rigid-Blade Cases
The basic phenomenon of propeller whirl flutter for systems that comprise
a rigid propeller and a flexibly mounted power plant, such as that illustrated

in figure 1, is now reasonably well understood. The stability characteristics
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of such systems have been investigated analytically over a rather broad range
of parameters by Reed and Bland (ref. 3), Houbolt and Reed (ref. 4), and

Sewall (ref. 5). In addition, wind-tunnel studies have been conducted by Bland
and Bennett (ref. 6) to evaluate the theoretical prediction of propeller aero-
dynamic derivatives as well as whirl flutter stability boundaries.

A general finding of these studies is that whirl flutter is strongly
dependent on three basic system parameters: the stiffness, the damping, and
the pivot location. The influence of these parameters on whirl flutter is
typically as shown in figure 4. For example, figure 4(a) illustrates the
effect of the ratio of pitch stiffness to yaw stiffness on the stability of a
system. Note in particular that the whirl flutter boundary is extended along
the diagonal ray Sg = SW; this indicates that if a system had equal pitch and
yaw stiffnesses it would be more prone to flutter than if one of the stiff-
nesses was appreclably reduced. The shape as well as the location of this
curve, however, mey be altered appreciably by the amount of structural damping
in the system (see ref. 4). The lines that intersect each end of this boundary
denote the stiffnesses required to prevent static divergence of the system.

Figure 4(b) 1s presented to illustrate the powerful stabilizing influence
of mechanical damping on whirl flutter. It is interesting to note that 1f
structural damping were assumed to be zero in whirl flutter analyses, as may be
done frequently in wing flutter analyses, the stiffness required to prevent
flutter would, in many cases, be grossly overestimated. As has been remarked
by A. L. Head in a discussion of propeller whirl considerations on the XC-1L2,
"a 1ittle damping goes a long way."

Finally, figure 4(c) shows that the further the pivot point is moved from

the propeller disk the more stable the system becomes. This fact, incidentally,
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can be attributed to the aerodynamic damping associated with transverse veloc-
ities of the propeller hub. The effects of the parameters indicated in fig-
ure 4 and other parameters, such as advance ratio, thrust, propeller rotational
frequency, air density, etc., are investigated in detail in the previously

mentioned generalized trend studies.

Flapping Blades

The effects of flapping hinged blades on whirl flutter have been examined
in several recent studies. The most comprehensive of these is the study by
Richardson and Naylor (ref. 8) in which a considerable number of parametric
variations were investigated analytically and some complementary test data pre-
sented for a low-speed wind-tunnel model. Wind-tunnel experiments of this type
have also been conducted by E. F. Baird of Grumman Aircraft (unpublished) and
by Reed and Bennett in reference 9. In addition, a whirl flutter analysis for
a specific V/STOL configuration which utilizes flapping-blade propellers is
presented by Gallardo and Flannelly in reference 10.

The results which follow are based on a whirl flutter analysis of the
model tested by Reed and Bennett in reference 9. This model shown in figure 5
consisted of a windmilling propeller mounted on a spring restrained rod which
could rotate in pitch and yaw about a set of gimbal axes behind the propeller.
The blades are attached to the hub by means of pins in a manner such that they
can be either fixed relative to the hub (the rigid-blade case) or allowed to
flap about one of two possible hinge locations. The hinges are oriented so
that the blades flap in the direction perpendicular to the plane of the propel-

ler disk.



The theoretical analysis used is based on equations developed in refer-
ence 8 wherein the dynamics of the system are expressed in terms of four
degrees of freedoms: pitch and yaw of the propeller disk about the gimbal axis
and cyclic flapping of the blades in the pitch and yaw directions normal to the
propeller plane. For an axisymmetric system, such as the one treated herein,
the number of degrees of freedom conveniently can be reduced from four to two.
This simplification is made possible by the use of two complex coordinates to
represent the circular whirl modes of the system in place of four real coordi-
nates to represent separately the pitch and yaw modes involved. For the sake
of completeness, the final form of the flapping-blade system characteristic
equation, based on derivations in reference 8, is presented in the appendix of
this paper. The physical parameters of the model tested in reference 9 are
given in table T.

Theoretical results for the model with rigid blades are presented in fig-
ure 6. This figure shows in a nondimensional form the variation of natural
frequency and damping of the system (obtained from the roots A =pu + iv of
the characteristic equation in the appendix) as a function of the frequency
ratio Q/wg, where @ 1s the propeller frequency and g the nacelle pitech or
yaw frequency with a nonrotating propeller. Since the propeller is wind-
milling,  is proportional to the airstream velocity. In the plots of fre-
quency ratio, obtained from the imaginary part of a root, positive values
denote forward whirl modes and negative values, backward whirl modes; in the
plots of damping ratio, obtained from the real parts of the roots, a negative
value indicates a stable system and a positive value, an unstable system.
These results illustrate some characteristic features of propeller whirl

flutter: the instability develops in the backward whirl mode and there is no
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evidence of coupling between the two whirl modes involved. Because of this

latter feature, it has been observed in reference 8 that propeller whirl may be

regarded as a type of single-degree-of-freedom fiutter so long as the mode con-

sidered is a whirl mode. For the system shown in figure 6 whirl flutter is

predicted when the parameter é&-z 2.9. The corresponding whirl flutter fre-
]

quency is seen to be about O.5me.

Consider next the dynamic characteristics of the system when the blades
are free to flap normal to the propeller rotation plane. A plot of the type
shown in figure 6 for rigid blades is shown in figure 7 for the same model
hinged blades. The hinge offset is 0.13R from the propeller rotation axis.
Motion of the system is now characterized by four vibration modes. 1In all but
one of these modes the stability increases continuously with increasing speed.
The mode in which the instability develops 1s, as 1in the case of rigid blades,
a backward whirl mode; however, the flutter velocity is about two and one-half
times higher than it was for fixed blades (Q/we = 7.5 as compared with 2.9).
Also shown in figure 7 are the natural vibration mode shapes of the system at
the flutter speed. Note that there is relatively little blade flapping present
in the flutter mode which is identified as (é) in the figure. (These modes
were calculated for the propeller speed corresponding to flutter but with aero-
dynamic and damping forces ignored.)

Figure 8 shows a comparison between theory and experiment for the model
tested in reference 9. For the rigid-blade case and for the 1l3-percent hinge
offset case flutter occurred in the backward whirl mode both in the theory, as
indicated in figures 6 and 7, and in the tests. However, in the experiment the

model with the 8-percent hinge offset fluttered in the forward whirl mode at a

much lower velocity than did either of the other configurations. This forward
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whirl flutter was not predicted by the analysis, however nonlinearities may have
been involved since the motion was amplitude limited and could only be initiated
when the disturbing force exceeded a certain threshold level. It should be
noted that Richardson's model with flapping blades also encountered forward
whirl instabilities (ref. 8). The only way that the analysis could be made to
predict such an instability was to introduce large phase lags between the dis-
placements of the propeller axis and the associated aerodynamic forces on the
blades. (These aerodynamic lag effects are related to the unsteady helical
wake behind the propeller.) For example, the assumption of a 30° phase lag
resulted in forward-whirl flutter for the configuration tested in reference 8.
For the configuration considered in this paper, however, aerodynamic phase

lags as high as 45° were assumed but an instability in the forward whirl mode
could never be predicted. (The phase lag assumed in the calculations for

fig. 6 was 15°.)

Flexible-Twisted Blades

Bending deformations of a twisted propeller blade differ from those of
the previously discussed flapping blade in a fundamental way. Whereas the
flapping motion of a hinged blade was assumed to be normal to the propeller
plane, the bending motion of a flexible blade with twist has components of dis-
placement in the propeller plane as well as components normal to the plane.
The relative contribution of these two components to a bending vibration mode
of a blade will depend on such factors as its geometric pitch angle and the
spanwise location of the root chord (i.e., the hub diameter).

These in-plane motions permitted by blade flexibility make possible the
occurrence of another class of self-excited vibrations which, unlike propeller

whirl flutter, is purely mechanical in origin. This phenomenon, popularly
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called "ground resonance," has received considerable attention in helicopter
studies (e.g., refs. 11 and 12) and has also been recognized as a potential
problem on tilt-wing V/STOL configurations {ref. 13).

A recent study of the lnteraction between propeller whirl flutter and
mechanical instabilities on systems having flexible-twisted propellers has been
conducted by Richardson, McKillop, et al. (ref. 14). 1In this study, as in
reference 8 for hinged propellers, a considerable number of parametric varia-
tions were analyzed theoretically and wind-tunnel tests were conducted on a
simple low-speed wind-tunnel model.

The mathematical and physical models considered by Richardson consisted
of an axisymmetrical nacelle, and a flexible twisted propeller having a rigid
hub and three or more uniform constant-chord blades. The relevant blade
bending modes which can couple with whirl flutter are shown to be cyclic "pitch"
and cyclic "yaw" type motions in which the tip path plane is pitched or yawed
due to blade bending. Each of these modes has associated with it an in-plane
component of displacement. The flexible-blade mode illustrated in figure 3,
for example, is the "pitch" mode accompanied by in-plane bending. It is
remarked that coning motions of the blades do not couple with the modes
involved in the whirl instabilities and consequently this mode was not
included in the analysis.

Some principal findings of the studies in reference 14 are presented in
figures 9 and 10 of this paper. Figure 9 shows the stability characteristics
of one of the configurations analyzed for a condition of zero damping and
without aerodynamic forces (e.g., as in a vacuum). There is close similarity
between these plots and frequency diagrams for mechanical instability obtained

by Coleman (ref. 11). As the propeller rotational speed  increases a point
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is reached where two of the frequencies coalesce, resulting in two modes at
the same frequency, one of which is damped and the other unstable. This point,
denoted by A 1n the figure, marks the beginning of a region of mechanical
instability in a forward whirl mode.

Figure 10 shows the effects of adding aerodynamic forces to the stability
analyses by progressively increasing air density from zero, the value assumed
in figure 9. (Point A in fig. 9 lies on the zero density curve in fig. 10.)
Stability boundaries are presented in figure 10 as plots of blade frequency
against nacelle frequency for both forward and backward whirl modes. Boundaries
for the forward mode originate from a mechanical instability, and those for the
backward mode originate from a whirl flutter instability.

Note that in the forward whirl mode as ailr density increases two regions
of instability develop. The region that has the higher values of wQ/Q is
not of practical significance because the rate of growth of the unstable
motions involved was found to be extremely low and would be eliminated by a
small amount of structural damping. The other region of instability in the
forward whirl mode is initlally made worse as density increases, but with
further increase in density the area of instability 1s reduced and eventually
eliminated. It 1is interesting to note from this figure that the system
encounters mechanical instabilities only if the nonrotating blade natural fre-
quency, Wy, is less than the rotational frequency of the propeller.

With regard to propeller whirl flutter - indicated by the stability
boundaries for the backward mode - it appears that blade flexibility has rela-
tively little effect except in a region where the blade frequency parameter is
near unity. The asymptotic boundaries for a rigid propeller are also shown

for comparison.
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PROPELLER AERODYNAMICS

As has already been mentioned in a previous section of the paper the
pltching and yawing oscillations that accompany propeller-nacelle whirl motions
produce aerodynamic forces on the propeller which in turn provide the driving
mechanism for instability. Several methods are available for predicting the
aerodynamic forces and moments required in a whirl flutter analysis. Ribner's
analysis of yawed propellers (ref. 15) has long been used in studies of air-
craft stability and is equally useful in propeller whirl flutter studies (see,
for example, ref. 3). Houbolt's strip theory analysis in reference L4 lacks
some of the refinements of Ribner's method, but is simpler to apply and appears
to give comparable results. Both of these theories are based on the assump-

tion that the inflow angle is small and the aerodynamic forces are '"quasi-

static,” i.e., oscillating wake effects are ignored.

Measured. Derivatives

To evaluate theoretical methods for predicting propeller whirl flutter,
Bland and Bennett (ref. 6) have conducted an experimental investigation on a
model which resembles the simple mathematical models previously studied. The
wind-tunnel model consisted of & windmilling propeller mounted on an isolated
nacelle which had symmetrical stiffness in pitch and yaw. Measurements of
static aerodynamic propeller derivatives and whirl flutter boundaries for the
same propeller system were obtalned over a range of test conditions. Typical
results from the study are presented in figure 11 which shows the nacelle
damping required to prevent flutter plotted against a nondimensional velocity.
The calculated flutter boundaries were determined on the basis of three sets

of aerodynamic derivatives: +the theoretical derivatives derived by the methods
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of references 4 and 15, and the actual derivatives as measured on the model.
Note that the calculations based on measured derivatives are in excellent agree-
ment with the experimental data, whereas those based on theoretical derivatives

follow the same trends but tend to underestimate the observed flutter speed.

Unsteady Flow

These differences in the flutter boundaries based on theoretical and meas-
ured derivatives may in part be due to unsteady aerodynamic effects. It has
been shown (e.g., ref. 3) that aerodynamic phase lags associated with the
oscillatory wake have a stabilizing effect on the usual backward-mode whirl
flutter. The theoretical derivatives used in figure 11 were modified to account
for phase lags on the basis of the Theodorsen circulation function F + iG for
two-dimensional airfolls. This is a good approximation for very large advance
ratios; however, for smaller advance ratios, the circulation function is sig-
nificantly altered due to the helical pattern of the wake.

In reference 16 Loewy derives modified F + iG function for a propeller
with a helical wake. These results indicate that for low advance ratios the
phase lag for a propeller can be much larger than would be predicted by the
classical F + iG function for two-dimensional airfoils. It is interesting
to note that for lowest advance ratios investigated by Bland and Bennett in
reference 6 (J = 1.3) the measured phase lag was 24° as compared with a theo-

retical value of 13° based on Theodorsen's function.

Thrust
It has been established theoretically that propeller thrust has a rela-
tively insignificant effect on whirl flutter stability for conventional rigid

propellers under high-speed flight conditions. This fact greatly simplifies

- 16 -




the construction and testing of wind-tunnel models in that it permits the use

of windmilling rather than thrusting propellers. In a theoretical 1nvestigation

2 _

of the effects of propeller thrust on whirl flutter, Ravera {

)

17\
41

H

that thrust causes large deviation in the propeller derivatives at low-speed
high-thrust flight states, such as take-off. However, at higher forward speeds
where whirl flutter normally occurs, the deviation between aerodynamic coeffi-
cients for thrusting and windmilling propellers is usually less than 5 percent.
Similar conclusions are found in reference 9 on the basls of experimental coef-
ficients obtained on a thrusting propeller.

It is pointed out in reference 17 that before drawing general conclusions
regarding the effects of thrust on whirl flutter, one should examine the thrust
characteristic curve of the propeller in question. If it is found, for example,
that at high forward speeds the thrust is small relative to maximum thrust, the
effects of thrust on the propeller coefficients may be ignored. This case,
which is typical of most propellers, is illustrated in figure 12(a). On the
other hand, if the propeller delivers a significant percentage of maximum'
thrust at high forward speeds, such as is illustrated in figure 12(b), thrust

may well have an important influence on whirl flutter.

High Inflow Angles
In the transition maneuver of VIOL aircraft from vertical to horizontal .
flight the inflow angle - i.e., the angle between the thrust axis and the
alrstream - may be as large as 90°. At these high inflow angles the propeller
aerodynamic derivatives are likely to have values that differ markedly from
those corresponding to high-speed flight conditions (see refs. 18 and 19).

Since whirl flutter is usually considered to be a relatively high-speed flight
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phenomenon it is of interest to explore the possibility of encountering whirl
flutter in low-speed flight during transition. This question was briefly
examined in reference 9. On the basis of whirl flutter calculations which
utilized experimental propeller derivatives and a simple axisymmetric nacelle,
angle-of-attack effects were found to be stabilizing in that the stiffness
required to prevent flutter at high inflow angles was slightly less than that
required at low angles. These results are summarized in figure 13 for a wind-

milling and a thrusting propeller.

WING FLEXIBILITY

The propeller-nacelle systems considered in previous sectlions of the paper
were assumed to have been flexibly mounted to a rigid wing or backup structure.
This simplifying assumption is very useful, especially in preliminary design
studies, In that it permits one to readily isolate the effects of various basic
parameters. However, dynamic coupling between the propeller-nacelle system
and the wing on which it is mounted can alter the whirl flutter boundaries
predicted for a rigid wing. In general it has been found that wing aeroelastic
effects have a stabilizing influence on whirl flutter.

This general trend and an exception to it can best be illustrated with the
ald of figure 1l4. Stiffness boundarles of this type show the combination of
pitch and yaw nacelle stiffﬁgsses that would be required to avoid whirl flutter
of a system for a given set of flight conditions. When the nacelle stiffnesses
are greater than the minimum values indicated by these boundaries, propeller
whirl flutter would not be encountered by the system. The curves presented in

figure 14 are based on results obtained by Zwaan and Bergh in an analog com-

puter study of whirl flutter (ref. 20). These curves show the influence of
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wing flexibility on whirl flutter for three cases: (a) a rigid wing, (b) a
wing having freedom to translate vertically, and (¢) a wing having freedom to
translate and rotate about an elagtic axis. In the latter twc cascs, aerc-
dynamic forces are assumed to act on the wing as well as on the propeller.

Consider first the case of a rigid wing. Features of this stability
boundary are typical of those found in reference 4 and discussed here in
figure 4(a). Again, it is to be noted that the boundary is extended along the
diagonal ray Sg = Sy such that the symmetrical system, indicated by point A,
is the most critical from the standpoint of whirl flutter. The points at which
this curve, as well as other curves in the figure, terminate are the static
divergence boundaries for the system.

When the wing has freedom to oscillate in vertical translation it can be
seen that its effect on whirl flutter is always stabllizing. This increased
stabllity can be attributed to aerodynamic damping forces on the wing. It is
of particular interest to note the "necked down" portion of the curve where the
stabilizing influence of the wing is most pronounced. At the points labeled B,
the whirl frequency w coincides with the wing bending frequency wy so that
whirl motions of the propeller-nacelle tend to drive the wing at a resonant
amplitude. Thus, Zwaan and Bergh suggest that the wing in this case may be
considered as a type of tuned damper which absorbs greatest energy when the
system frequency is close to the tuned frequency of the damper.

In the third case shown in figure 1k the wing vibration mode involves
coupled bending and torsion motions. The frequency of the first coupled wing
mode w; 1in this case is approximately the same as the uncoupled bending fre-
quency ay discussed previously, but the mode shape indicates strong coupling

between the bending and twisting motions h and ao. The stability boundary
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for this condition illustrates an exception to the generally observed trend
that wing flexibility stabilizes whirl flutter. It should be noted that the
maximum stiffness Sg required occurs in the vicinity of point C where the
wing fundamental coupled frequency w, and the nacelle yaw frequency Wy are
the same. Since the wing mode involves pitching of the propeller, point C may
be regarded as a coincidence of "pitch" and yaw frequencies for the flexible
wing just as point A was for the rigid wing. In both cases the region of
instability is extended at these points where the pitch and yaw frequencies
coincide.

Thus, a general conclusion reached in reference 20 is that a flexible wing
has a stabilizing effect on propeller whirl flutter except possibly in a region
where the uncoupled yaw frequency is close to a wing torsion frequency. Benefi-
cial effects of a wing on whirl flutter have also been reported in references 21

and 22.
AFEROELASTIC MODELS

Simplified mathematical and physical models, such as those discussed in
this paper, provide valuable aids for galning insight into a complex phenomenon
and are useful in guiding the course of preliminary design. However, as the
final design of an aircraft evolves, it is customary to employ more refined
analytical and experimental techniques to insure that the flutter margin is
adequate for any flight condition within the flight envelope. The analytical
’fechniques used may Involve separate consideration of whirl flutter and wing
flutter, or the propeller-nacelle system may be included as additional ingredi-

ents In an aercelastic stability analyses of the complete system. Similarly,
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‘ model testing techniques may vary in complexity from an isolated propeller-
nacelle to an aerocelastically scaled model of the complete aircraft.

A specific example wherein propeller whirl flutter was a design considera-
tion from the outset is provided by the XC~142A - a VTOL aircraft. A review of
the wind-tunnel investigation of aeroelastic stability for the XC-142A is
reported by Head and Smith in reference 22. This investigation involved an
aeroelastic model in which each of four engine-gearbox-propeller systems was
dynamically scaled. The propellers were nonpowered but were shafted together
to insure that all turned at the same speed. The remarkable degree of detail
achleved in the dynamic simulation of the engine-gearbox system 1s apparent
in figure 15. The gearbox is connected to the engine by a multiredundant strut
arrangement on the model in the same manner as it is on the aircraft. The
flexiblity of each strut as well as the overall flexibility between the engine
and the gear box are accurately scaled in the model. The authors of refer-
ence 22 stated that the simulation of this component represented the most dif-
ficult design problem on the model.

A flutter design requirement for this aircraft is that no flutter shall
occur as & result of failure of any single structural element (e.g., see
ref. 7). Therefore, in the model tests a failure of various strut members was
similated by simply removing the strut in question. The strut failure condi-
tions that were actually simulated on the dynamic model were selected on the

basis of analysis. It is interesting to note that 1n some cases the calculated

whirl flutter speed was increased as a result of a strut failure.
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CONCLUDING REMARKS

This paper has attempted to review the state-of-the-art of propeller whirl
flutter and some recent contributions to it. On the basis of this review the
followlng observations can be made:

l. Classical propeller whirl flutter in the backward whirl mode 1s
amenable to analysis providing the propeller aerodynamic coefficients and the
damping of the engine mount are known with reasonable accuracy. In most
instances strip-theory methods appear adequate for determining the propeller
aerodynamic coefficients.

2. The use of nonrigid propeller-rotors can have a significant influence
on the whirl stability of a system. For instance, flapping blades introduce
the possibility of flutter in the forward mode and flexible blades give rise to
mechanical instabilities, however it was found that the propeller aerodynamic
forcés which create whirl flutter tend to mitigate mechanical instabilities.

3. The effects of high inflow angles and large thrust coefficients asso-
clated with VIOL transition maneuvers are relatively unimportant from the
standpoint of whirl flutter.

k. Wing flexibility generally has a stabilizing effect on whirl flutter
except when the nacelle uncoupled yaw frequency is close to the wing torsion
frequency.

Finally, it should be remarked that the particular parameters selected for
discussion in this paper, although representative, are not necessarily the only
ones of significance with regard to whirl flutter. On specific configurations
such factors as the interaction of whirl modes with thrust-control system
dynamics, the operation of propeller-rotors as "pushers" which would have

upstream pivot locations, or the coupling between whirl modes and in-plane

- 22




wing bendling modes are likely to be important. If these factors are not impor-
tant the dynamicist concerned with propeller-rotor systems should have no dif-

ficulty in discovering some others that are.
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APPENDIX

STABILITY DETERMINANT FOR WHIRL FLUTTER

OF PROPELLERS WITH HINGED BLADES

The equations used to calculate stabllity of the hinged-blade propeller
model in figures T and 8 are based on derivations by Richardson and Naylor in
reference 8. The equations of motion for the system are expressed in terms of
four degrees of freedom: pitch and yaw of the propeller hub about a point aft
of the hub, and cyclic (antisymmetric) flapping of the blades in the pitch and
yaw directions. When the system has axial symmetry, as does the model under
consideration, the whirl modes are circular (i.e., pitch and yaw motions are
90° out of phase and are of equal amplitude). For such conditions the equa-
tions of motion can be reduced from a set of four equations with real coeffi-
cients to a set of two equations with complex coefficlents.

The stability determinant of the system in the notation of reference 8 is:

)\2A+)\(B+D)+<C +E+vNﬁ)l=o

where A = pu + iv is a solution (eigenvalue) of the equation. The sign of p
determines whether the system is stable (-) or unstable (+), and the sign of
v (the nondimensional whirl frequency v = w/Q) determines the direction of
vhirl. A positive sign represents forward whirl and a negative sign, backward
whirl. The coefficients A, B, C, etc., are matrices that contain the inertia,
gyroscoplc, and aerodynamic parameters of the system. For the axisymmetric

system under consideration these matrices are defined as follows:
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(]- i Iz—l
T2 53]
1 —(2ng13, - 1211) -12121
L= 121, -1215_J
_ o o
LE] ) 10 ed
VOQI 0
vt | -
IR
F(aPEh + A5) F(As - en,) + GaHl (A5 - €Ap)
o] - x - 16(a282 + As) + 1[FaB(As - eAp) - G(A5 - eAQ]
F(A5 - efy) - GaH(Az - eAp) Ae(F - 16)
- i[Fa.H(A3 - ehp) + (A5 - eAq):l’
~Fal’Ay + GHEoAs Fal(h3 - ehp) - G(As - ey)
] - x + i(FH2A3 + GaH3Al) - 1[F(As - em,) - CeH(As - ehp)]
CGHZ(A3 - eAp) -Ac(F + 16G)
+ iFH2(A3 - €A2)

The above matrices are of the form of those presented in reference 8; how-
ever additional terms, not explicitly given in reference 8, have been included

here to represent unsteady aerodynamic effects (F + 1G) and viscous-type
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structural damping . The parameters that make up the matrix elements are
defined in the list of symbols and the numerical values of parameters used in

the present calculations are given in table I.
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TABLE I.- SYSTEM PARAMETERS USED IN CALCULATIONS
OF FLAPPING-BLADE MODEL FLUTTER BOUNDARIES

(SEE FIGS. 5 AND 8)

ft .00 0000

0.25

0.083%5

. 0.0495 x 10°%
. 0.67 - 1 0.18
... 1.10
1.310 x 10~

. 0.3816 x 1074
. 0.2586 x 107*
. 0.2090 x 107%
L

0.50

0.137

. 0.04

e« « o « Varied

iG functions employed here combine aspect ratio and phase lag

The phase lag is based on experimental data.
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