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Summary. 
Results of propeller whirl analyses in four degrees of freedom are presented for a typical turbo-prop 

aircraft power-plant installation consisting of a rigid engine supported with elastically restrained freedoms 
in pitch and yaw at the end of a flexible nacelle cantilevered from a rigid support structure. Calculations 
were made for a range of structural and aerodynamic parameters. Only one of the four modes was found 
to become unstable within the airspeed range covered, the critical whirl airspeed being very sensitive 
to engine-mount damping and to the nacelle and engine-mount stiffnesses. 

The interaction between power-plant whirl and wing flutter was investigated by extending the calcula- 
tions to include twelve degrees of freedom, four normal modes of vibration of the half wing plus four 
modes for each of two power-plant installations on the half wing. The results suggest that the stability 
of the power-plant whirl modes is not adversely affected by motion of the wing, but that in certain 
circumstances the critical airspeed for wing flutter may be reduced slightly by a coupling with an unstable 
power-plant whirl mode of comparable frequency. 
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Detachable Abstract Cards 

1. Introduction. 
It is well known that a flexibly mounted propeller/power-plant installation can develop a self-excited 

motion characterised by a precession of the shaft with the propeller hub describing an elliptical path. 
This type of motion, known as 'propeller whirl', involves a coupling between the gyroscopic and aero- 
dynamic forces acting on the propeller and rotating engine parts and the inertial, elastic and damping 
forces contributed by the power plant, nacelle and aircraft wing. 

Under unfavourable combinations of aerodynamic excitation and inertia, flexibility, and damping of the 
engine mounts and nacelle structure, this whirl motion may become divergent, leading to failure of the 
engine-support structure and possibly to premature flutter of the entire wing. Such instability was not 



encountered with the older piston-engined aircraft, but in recent turbo-prop engine configurations with 
large propellers and long overhanging nacelles, coupled with the higher airspeeds of turbo-prop aircraft, 
an unstable whirl motion is more liable to develop. 

Reed and Bland x have presented a stability analysis of a flexibly mounted engine-propeller installation 
in  two degrees of freedom only, namely pitch and yaw about a gimbal mounting. No allowance was made 
for nacelle flexibility or response of the wing. The results indicated that stability of the power-plant 
whirl motion is strongly dependent on the stiffness and damping in the mount system. Wind-tunnel 
tests 3 on a model of a typical turbo-prop power plant, with freedoms in pitch and yaw only, have shown 
good agreement for whirl-mode frequencies and critical whirl airspeeds with calculated values using 
measured propeller aerodynamic derivatives. Further wind-tunnel tests 4 on a complete model of a four- 
engined turbo-prop aircraft suggested that the flexibility of the wings may have a stabilizing effect on the 
whirl motion of the individual power plants, especially the inboard installations. 

The present investigation was undertaken with the following objectives: 
(1) To extend the whirl analysis of a power-plant installation to four degrees of freedom by including 

nacelle flexibilities as well as the engine mount freedoms, and to compare the results with those obtained 
from binary analyses. 

(2) To examine the influence of nacelle and engine-mount stiffnesses and structural damping on the 
critical whirl airspeed of a power plant installation mounted on a rigid structure. 

(3) To investigate the interaction between the flutter of a flexible half-wing and the whirl motions of 
two power-plant installations mounted on it by analysing the complete system in twelve degrees of 

:freedom, four for each power plant and four for the half-wing. 
The analyses were carried out on a Mercury digital computer using a standard flutter analysis pro- 

gramme. Basic data for the problem, such as the stiffness, inertia and aerodynamic matrices for the wing, 
were taken from a typical four-engined turbo-prop aircraft. The stiffnesses and structural dampings of 
the nacelle structures and engine mountings were varied over a range typical of values for modern 
turbo-prop aircraft. 

2. Theory. 

2.1. Form of the Flutter Equations 
The equations of motion of the system are derived from Lagrange's equation: 

a ( o . ~ ]  a~ ~ ou 
dt \ OglJ --~q~+-~q~ +-~qi = Qi 

(1) 

where 

U 

Qi 

qi 

is the kinetic energy 

is the potential energy 

is the energy dissipated in damping 

is the generalised force in the i th mode 

is the generalised co-ordinate in the i th mode. 
The final equations of motion in the n degrees of freedom may be expressed in matrix form : 

[A] {4} + ~o V [B] + [D]) {~} +(p V 2 [C] + [e]) {q} = 0 (2) 

where [A] is the inertia matrix of order n x n 

[/3] is the aerodynamic damping matrix containing contributions from the wing and propellers 

[C] is the aerodynamic stiffness matrix 

[D] is the damping matrix containing terms arising from structural damping and engine gyro- 
scopic effects 
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[E] is the structural stiffness matrix 

{q} is a column matrix of the n generalised co-ordinates 

p is the air density (slug/ft a) 

V is the true airspeed (ft/sec) 
The dot notation is used to represent differentiation with respect to time. 

2.2. System of Generalised Co-ordinates. 

For the analysis of the complete half-wing of a typical four-engined turbo-prop aircraft twelve degrees 
of freedom are considered, four for each of the two engine installations and four for the wing structure 
itself. 

In the installation upon which the analysis is based the engine itself is mounted on a tubular frame 
carried on a monocoque nacelle structure cantilevered from the wing. The engine is attached to the 
tubular frame by flexible rubber mounts which allow it to rotate in pitch and yaw relative to the frame 
as if it were mounted in gimbals. The geometry of the engine-nacelle installation is shown in Fig. 1. 

The modes of deformation assumed for the complete nacelle-engine installation are shown in Fig. 2. 
The two degrees of freedom chosen for the engine are the pitching and yawing rotations (~a and fll 
respectively) of the engine about an effective gimbal mounting, measured relative to the tangent at the 
nacelle tip. The two freedoms allowed to the nacelle are the vertical and horizontal displacements (z~ 
and Yl) of the gimbal point G, relative to the tangent at the nacelle root. The nacelle is assumed to behave 
as a cantilever and to deflect both vertically and horizontally into parabolic curves. This introduces 
pitching and yawing rotations at the nacelle tip which augment the rotation.s of the engine and thus 
introduce inertia and aerodynamic coupling between the engine and nacelle freedoms. The additional 
displacements Zw and 0,~ (Fig. 2) are, respectively, the vertical deflection of the wing flexural axis and the 
pitching rotation of the wing about it, measured a t  the engine station relatively to a datum at the wing 
root. 

The four generalised co-ordinates allocated to the wing are associated with four of the antisymmetric 
normal modes of the aircraft calculated with the aerodynamic and gyroscopic forces arising from the 
propellers and engines neglected. The four wing mode shapes considered will be described later in Section 
5. 

The twelve generalised co-ordinates associated with the half-wing and two power-plant installations 
may be written as a column matrix partitioned thus : 

Iqwt {q} = qNI 

qNo 

{q,,} is a column matrix composed of the four wing co-ordinates. 

Zl 

{qm} = 

Yt 

fll 

where zl, ~1, Yt and fl~ are the four generalised co-ordinates associated with the inboard power plant 
installation. 



{qno} is a column matrix composed of the four generalised co-ordinates associated with the outboard 
power plant. 

2.3. Partition of the Matrices. 
Following the system of partitioning adopted for the twelve generalised co-ordinates the matrices are 

partitioned in the same way. For example the inertia matrix [A] may be written 

[ A ]  = 

I Aww; Aw~ :Awo 
- -  - -  - -  l - -  - -  - - I  I - -  - -  

L Aow Am i Aoo 

where the subscripts W, I and O refer to the wing, inboard engine installation and outboard engine in- 
stallation respectively. 

With this system of co-ordinates there is no coupling between the two engine installations, i.e. Am = 
Am = 0. Coupling does however exist between the wing and engine freedoms, with both installations 
contributing to the sub-matrix Aww, as shown in Section 3.1.1. The other matrices B, C, D and E are 
partitioned in a similar manner. 

2.4. Scaling of the Flutter Equations. 
The following form of overall scaling is adopted, the factors being applied to every term in the appro- 

priate matrices. 

[ a ]  = [A]/po c 2 

[b] = [B]/c., 

[~] = [ C ]  

[d] = [D]/po go cm 

[ e ]  = [E]/po V2o 

(3) 

In addition the following dimensionless quantities are introduced : 

Dimensionless airspeed v = V/V o 

Dimensionless air density a = P/Po 

Dimensionless time ~ = t VO/Cm 

wherep0 is the air density at sea level 

Vo is a reference airspeed 

cm is a reference length such as the wing mean chord. 
After substituting these expressions into equation (2) the flutter equation is obtained in the matrix form 

[a] {~} +(a v [b] + [d]) {//} +(a v 2 [c] + [el) {q} = 0 (4) 

where the dash notation here represents differentiation with respect to dimensionless time ~. 



2.5. Solution of the Flutter Equations. 
The flutter equations may be solved numerically for given values of v and a by means of a programme 

written for the digital computer Mercury. The results obtained are the real and imaginary parts P'r and 
co'r of the complex latent roots 2~ of the scaled flutter determinant formed from equation (4). 

The frequency and decay rate of the r 'h mode of vibration are then given by : 
Frequency 

~o, = o)'r (Vo/cm) rad/sec (5a) 

Decay rate, as a fraction of the critical value 

5 = ~/(dr  2 + ~0'r2) ~ (5b) 

Using the values of kt~ and (,)', obtained from the flutter programme the complex ratios between the 
vectors associated with each of the degrees of freedom contributing to the r 'h mode of vibration can be 
found from a subsidiary programme. From the amplitude ratios and phase relationships between the 
vectors the displacements of the various parts of the structure may be determined for each mode. 

3. Assembly of the Matrices. 

3.1. Inertia Matrix [A]. 

The inertia matrix is made up of contributions from the engines, nacelles and aircraft wing. 

3.1.1. Inertia effects of enoines. The kinetic energy of an engine, arising from its vertical and 
horizontal translations and its pitching and yawing rotations about the gimbal mounting, may be ex- 
pressed in matrix form in terms of its mass and moments of inertia and the displacements of its c.g. 

~E = ½ [£e, 0, .re, ~j  [Mr] {£E, 0, .gE, 6} (6) 

where •ME] is the diagonal matrix 

mE 

Io 

mE 

0 

and [ J denotes a row matrix, { } a column matrix. 

(7) 

I 0 

The displacements of the engine c.g. are related to the generalised co-ordinates associated with the 
nacelle-engine installation and the displacements of the wing flexural axis by the matrix transformation. 

{zE, O, Ye, ~b} = [TwE [ TE] Izw, Ow qx} 

where {qN} is the column matrix {zl, el, Yl,/71}. 
The matrices [Twe] and [TE] may be written down from inspection of Fig. 2. 

(8) 

[ T w , : ]  = 1 - - X  E 

0 I 

0 0 

0 0 

(9) 



[T~] = (1 + r o IE) -- I E 0 0 

--r o 1 0 0 

0 0 (1 + rg, lg) 1~ 

0 0 r o 1 

(lO) 

The displacements zw and Ow are related to the generalised co-ordinates associated with the wing by 
the transformation 

{zw, Ow} = [ A w l  { q w }  (11) 

The numerical values of the coefficients of the 2 x 4 matrix [Awl may be found by interpolation from 
the modal column matrices of wing displacements in the four wing modes selected. 

After combining equations (6), (8) and (11) and substituting into equation (1) the contribution of the 
engine installation to the Lagrangian equation is found to be 

~ k--~qi ] a q i  = 

[Aw]'[TwE]'[ME] [Twe] [Aw] : 
i 

! 

I 

[T~]'[M~] [T~] [A~] 

[A~]'[T~]'[M~] [T~] 

I 
! 

.: [~] ' [M~][~]  qN 

(12) 

The resulting matrix is of order 8 x 8 and may be partitioned into the four wing freedoms and the four 
freedoms of the engine-nacelle installation as shown. The inertia contributions from both engine installa- 
tions are calculated from equation (12) and are added into the full 12 x 12 inertia matrix according to 
the partitioning scheme described in Section 2.3. 

3.1.2. Inertia effects of  the nacelles. Each nacelle is represented by a set of concentrated masses 
distributed along its length, and is assumed to vibrate in parabolic modes in the (x,z) and (x,y) planes, 
as described in Section 2. 

The kinetic energy of the nacelle may be written in matrix form as 
I I 

~N = ½ k~ ,, ~1  [MN] {~N : YN} (13) 

{YN} and {ZN} are column sub-matrices whose n th elements represent the displacements of the n 'h con- 
centrated nacelle mass in the y and z directions respectively. 

[MN] is the diagonal matrix whose elements are the concentrated nacelle masses associated with the 
elements of the displacement matrices {YN} and {zN}. 

The displacement column matrix {z, YN} may be expressed in terms of the displacements Zw and 
Ow at the wing flexural axis, and the column matrix {qN} of the nacelle freedoms by the transformation 

{ZN,  YN} = [TwN : TN]{Zw, Ow : q N j  • (14) 

From inspection of Fig. 2 the transformation matrices may be written as 

[T,, ,N] = I ,  X~ 

1, X 2 

i, Xn 

0 

(15) 



and 

[ T,,,,] = 

° 

X n _ X L  ) 2  

\ I / '  

0 

0 0 

0 0 

0 0 

o 

o 

0 

0 

6 

(16) 

where x, is the distance of the n th concentrated mass from the wing flexural axis, 
and XL is the distance of the nacelle 'root' from the flexural axis• 

After combining equations (13), (14) and (I 1) the contribution of the nacelle to the Lagrangian equation 
becomes 

"l [rwN] [Aw] 0., 

d r \  OCh] 8ql " - -  I 

[TN]'FMN] [TwN] [aw] [TN]'rMN] [TN] /iN| 
J 

(17) 

This is a matrix of order 8 x 8 and is added into the full 12 x 12 inertia matrix in a similar manner to 
the engine contribution. 

3.1.3. Inertia effects of wing. The wing is treated as a set of concentrated masses and moments of 
inertia distributed along its span. Four generalised co-ordinates, each associated with an antisymmetric 
normal mode of vibration, are allocated to the wing. 

The contribution of the wing tO the inertia matrix is evaluated in a similar manner to that of the nacelles, 
by forming the matrix products from the wing mass and moment of inertia matrix and the displacement 
matrix derived from the four modal columns. In this case however the elements of the modal columns 
were obtained from previous normal mode calculations carried out on the wing, plus engine installations 
having freedom in the vertical plane only. 

3.2• The Structural-stiffness Matrix [E]. 

The structural-stiffness matrix is made up of contributions from the wing structure itself and from the 
two engine installations. 

3.2.1. Wing stiffness. The original stiffness data, obtained from a typical turbo-prop aircraft, was 
in the form of a diagonal matrix derived from a normal mode analysis of the complete wing, plus the two 



original engine installations having freedoms in the vertical plane only. To allow for subsequent varia- 
tions in the engine mount and nacelle stiffnesses, and the introduction of additional degrees of freedom 
into the engine installations, it was necessary to separate the stiffness effects of the original installations 
from the complete diagonal stiffness matrix, leaving the contribution arising from the wing itself. 

For this purpose the following data were obtained: 
EEr] The original diagonal stiffness matrix for the complete wing plus engine installations, expressed 

in terms of the four generalised co-ordinates {qw}. 
[En] The stiffness matrix for each engine installation in terms of the arbitrary 'branch mode' co- 

ordinates {qB}, originally used in the calculation of EEr]. 
[Z0] The matrix composed of the four modal columns giving the displacement amplitudes of points 

on the wing and engines in the four normal modes of vibration, in terms of the co-ordinates {qw}. 
The displacements of n arbitrarily chosen points on the engine installation may be expressed in terms 

of the co-ordinates {qw} by extracting the n relevant rows from the modal matrix [-Zo]. 
Thus 

(z.} = [Z,,] {qw} (18) 

The same displacements may also be written in terms of the displacements Zw and Ow of the wing 
flexural axis at the engine station, and of the branch mode co-ordinates {qB} 

{z.} = [Tw I T~]{zw, Ow I qn} (19) 

The matrices [Tw] and [T~] may be determined directly from the geometry of the installation. Com- 
bining equations (18) mad (19) we have: 

{Zw, Ow '~ qB} = [Tw t T1] -~ [ Z J  {qw} (20) 

It must be stressed that for this equation to have any meaning it is necessary for the matrix [Tw ~ 7"1] 
to be square. This condition may be satisfied by taking n to be greater by two than the number of branch 
mode co-ordinates {qB}. 

The co-ordinates {qn} and {qw} are related by a transformation matrix [TB], yet to be found 

{qn} = [Tn] {qw} (21) 

After combining equations (11) and (21) the left hand side of equation (20) can be written in the partitioned 
form: 

{Zw, Ow] qB} = AI--T~BI {qw} (22) 

Hence by comparison of equations (20) and (22) the following identity is obtained: 

AI~ ] - [Tw *~ 7"1]-1 [Z,] (23) 

The matrix [Aw] is thus simply the first two rows of the expanded matrix product [Tw I 7"1]- 1 [Z.], 
while the transformation matrix [TB] is given by the remaining rows. 

As a check on the accuracy of the above matrix manipulations the elements of [Aw] obtained from 
equation (23) may be compared with the values obtained by interpolation from the modal columns 
contained in [Zo]. If agreement is poor, for example because of ill-conditioning in the matrix inversion, 

the calculations may be repeated using a different set of displacements z., provided of course that sufficient 
data are available from the modal matrix [Zo]. 



The transformation matrix [TB] having been found, the stiffness effects of the engine installations 
may be split off from the original diagonal stiffness matrix, to leave the contribution arising from the 
wing alone : 

E wwl : EE I-IET ]'EE.] ET ]'EE ] [TAIo (24) 

where the subscripts I and 0 refer to the inboard and outboard installations respectively. 

3.2.2. Stiffness of  the engine-nacelle installations. The stiffness sub-matrix for the inboard engine 
installation in terms of the four generalised co-ordinates {qN}~ may be written as 

[Eu] = Kz 0 

K~ 

Kr 

(25) 

0 K0 

The stiffness matrix [Eoo] for the outboard installation is similar in form. 
The coefficients may either be calculated from a structural analysis of the installation or obtained 

experimentally. K, and Kp represent the effective spring stiffnesses restraining pitching and yawing 
rotations of the engine about its gimbal mounting. K= and K~. are the translational stiffnesses of the 
nacelle cantilever in the vertical and horizontal planes, referred to the gimbal point G. 

With the co-ordinate system employed there is no stiffness cross-coupling between the engine freedoms 
and the nacelle freedoms. In fact the choice of the degrees of freedom was partly influenced by the desire 
to obtain a stiffness matrix free from cross terms. In addition there is no coupling between the two engine 
installations and the wing. 

The complete 12 x 12 stiffness matrix for the system may be written in the form 

[E] = 0 ~, 0 (26) 

[ o  -o-  . . . . . . .  

3.3. Damping Matrix [D]. 

The damping matrix is made up of terms arising from structural damping inherent in the structure 
or deliberately introduced at the engine mountings, and terms arising from the gyroscopic effects of the 
propeller and rotating engine parts. 

3.3.1. Structural damping. Viscous damping (i.e. damping force proportional to vibrational 
velocity) is assumed to act in the degrees of freedom of the engine installations only. The structural 
damping matrix for each installation is diagonal in form, the damping term in the i °' degree of freedom 
being 

d~i = 2 ( i  (au eii) ~ (27) 

where a ,  and % are the direct inertia and stiffness terms in the i th freedom, and (, is the viscous damping 
coefficient expressed as a fraction of the critical damping. 

3.3.2. Gyroscopic' effects of  propellers and engines. Due to the rotation of the propeller and moving 
engine parts an additional term appears in the expression for the kinetic energy of the system 
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Ie COp ~ = t 2 (28) 

where Iv is the effective polar moment of inertia of the propeller and rotating engine parts, and ~oe is the 
total angular velocity of the propeller about the displaced axis of the propeller shaft. 

With zero rolling motion, and for small total pitching and yawing rotations 0 and ~b of the shaft (Fig. 2) 
we may write 

COp -~ f~ + 0 sin tp 

~- ff~ + 0 ~9 (29) 

where CI is the propeller rotational speed relative to the engine. 
Therefore 

½1p (f 2 + 2 0 4,) (30) 

the term in ~O 2 being neglected. 
The displacements of the c.g. of the engine plus propeller may be written as a column matrix {6} 

where {6} = {zE, 0, YE, 0)- 
The contribution to the Lagrangian equations may be evaluated in terms of these displacements as 

follows: 

Displacement 6 

ZE 

0 

Yn 

q, 

d (a-~9~ 0.~o 

0 0 

Ip fl~ 0 

0 0 

0 --Ie 0 0 

In matrix form 

dt 

where 

0~o (31) 

[G'I = Ip 0 0 0 0 

0 0 0 1 

0 0 0 0 

0 - 1  0 0 

(32) 

The transformation matrices given in equations (9), (10) and (11) may now be used to express equation 
(31) in terms of the generalised co-ordinates {qw} and {qN} 

11 



d: [aZ~) aZ~_ [aw]'[Tw~]'[G] [T.,~] [A~] i [a~] [T.~] [a] [T~ ~., 
dt , \ c~, J Oq, II (33) 

' [Te]'EG] [TwE] [Aw] ' [ [TE]'[G] [rE] 
It may be noted that the kinetic energy of rotation of the engine and propeller gives a contribution to 

the Lagrangian equations in the form of a damping matrix rather than an inertia matrix. The same result 
would have been obtained by considering the work done by the gyroscopic moments arising from the 
pitching and yawing velocities 0 and t~ of the rotating parts, but the above approach via the kinetic 
energy of the system is simpler and less liable to errors in sign than an analysis using the classical equations 
of the gyroscope. 

3.4. Aerodynamic Dampin9 and Stiffness Matrices [B] and [C]. 

3.4.1. Aerodynamic forces and moments actin 9 on propeller. The forces and moments acting upon 
a propeller rotating at incidence to the airstream may be resolved into the components F=, Fr, Mo and 
Mq,, the positive directions of which are shown in Fig. 2. Each of these forces and moments consists of 
a steady value upon which is superimposed a small order fluctuating component depending on the 
number of propeller blades and other factors. 

The steady parts of these forces and moments are given by the following expressions~ : 

F~ = ½p V 2 S(Czo O+C,q, ~+C~, ~ R/V) 

Mo = p V 2 S R (Cmq , ~ +  Cmq 0 R~ V) 

Fy = ½p v ~ s (cy~ ~; + c .  0 + crq 0 R~ V) 

My = p V 2 S R (C.o 0 + C., ~ R~ V) 

where 0 and ff are the effective pitch and yaw angles of the propeller relative to the airstream' 

0 = O+~v/V "~ 

f i~ = ~ - P d v  

(34) 

(35) 

R = propeller radius 
S = area of propeller disc. 

After substituting the above expressions for 0 and ff equations (34) may be written in matrix form as 

I Fz t ze z'e Mo 0 ] 0 
= P V 2 [Fc], !~ +p V [FB]* 

Fy Ye[ Ye 
(36) 

where 

[Fc] = S 1 0 ½ C=0 0 ~ Cz~, 

0 0 0 R C~,~ 

1 0 ½ Cyo 0 -~ Cy~ 

0 R C,,o 0 0 

(37) 
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and 

EFt] = S ½C~o 0 s½C~o ½RC~, 

0 R 2 Cmq - R  Cm~, 0 

} Cro , ½ R Crq - ½ Cy 0 0 

R C.o 0 0 R 2 Cnr 

(38) 

The terms in ~e and J)e have been omitted since equations (34) are only applicable to steady flow and 
it is doubtful whether the acceleration terms arising from the differentiation of 0 and i~ have any validity. 
It~is known however that such aerodynamic inertia effects are very small compared with the structural 
inertias and their omission is therefore justifiable. 

The displacements of the propeller may be expressed in terms of the generalised co-ordinates by 
transformations similar to those of Section 3.1, i.e. 

where 

and 

{z,. o. y,.. ¢,} = [Tw~ i T,] {zw. 0., i q,,} 

[T.,,,] = [ 1 - ~ p  

[ 0 1 

0 O, 

0 0 

(39) 

(40) 

[r~] = (l+role) - Ip  0 0 

- r  o 1 0 0 

o o (1 + r o b,) Ip 

0 0 re, 1 

(41) 

Hence in terms of the co-ordinates {qrv} and {qn} the generalised forces on the right hand side of the 
Lagrangian equation become: 

(2.. 
• _~.pV2 

QN 

I [A,d'['r.-,,]'Efc] [r,,,,,,] [A.,] 

[ :r,] ' [ fc] [:r,,,,,,] EA,,,,] [ r , ] ' [ fc ]  [7,] 

  wt42 
[T,] ' [F,] [T.~,] [a.,] i [T,] ' [F,] [T,] L ~" 3 

The first and second terms on the right hand side of equation (42) represent, after a change in sign, the 
contributions of the propeller to the aerodynamic stiffness and damping matrices respectively of equation 
(2). 
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3.4.2. Evaluation of the propeller aerodynamic derivatives. The derivatives Czo, C~, etc are cal- 
culated from the equations given by Ribner 2. The derivatives depend mainly on airspeed and propeller 
rotational speed, but are most conveniently calculated as functions of the advance ratio J = V/2NR. 

Since the effect of propeller thrust on the values of the derivatives is known to be small ~ they are 
evaluated for a non-thrusting (windmilling) propeller. Numerical values are given in Table 2. 

3.4.3. Aerodynamic effects of the wing. The aerodynamic damping and stiffness submatrices in 
terms of the four degrees of freedom of the wing were available from previous flutter calculations and 
were added directly into the matrices [B] and [C]. 

4. The Motion of a Nacelle-Engine Installation Mounted on a Rigid Win 9. 

Stability analyses in up to four degrees of freedom were carried out on a typical installation in order to 
examine the possibility of an unstable motion developing above a certain airspeed. All dimensions and 
mass data used were taken from an installation employed on a typical four-engined turbo-prop aircraft. 
The stiffness matrix coefficients were derived from early estimates of the stiffness of the nacelle and 
engine mounts of the installation. Structural damping of the 'viscous' type (force proportional to velocity) 
was assumed to act in the pitching and yawing freedoms of the engine relative to the nacelle. (Section 
3.3.1). Aerodynamic and gyroscopic forces and moments arising from the propeller and rotating engine 
parts were evaluated at the maximum r.p.m, of the propeller at take-off for three values of the advance 
ratio J, as described in Section 3.4.1. 

4.1. Engine Whirl in Two Degrees of Freedom. 

In this analysis only the pitching and yawing rotational freedoms of the outboard engine relative to 
its nacelle were considered. A viscous-damping coefficient of 2 per cent of critical was assumed for each 
degree of freedom. 

The frequencies and decay rates of the two resulting modes of vibration are shown in Fig. 3 as functions 
of the dimensionless airspeed v at sea level (~ = 1) for three values of advance ratio J. The modes are 
numbered in ascending order of frequency. 

The nature of the motion in each of the modes is best understood by considering the complex vectors 
associated with the two latent roots of the binary flutter equations. The complex vectors for v = 0 are 
shown alongside their respective curves in Fig. 3, the usual right-handed vector sign convention being 
used. 

In mode 1 the vector ill, (yawing rotation) lags vector ~ (pitching rotation) by approximately 90 deg. 
With the sign convention adopted here the resulting motion of the propeller hub is an elliptical orbit in 
the y,z plane in an anticiockwise direction when viewed from ahead. This is in the opposite sense to the 
propeller rotation in this case and thus may be identified as the backward whirl mode of Appendix A. 

In mode 2 the vector fl~ leads vector o~ 1 by approximately 90 deg, the resulting motion of the propeller 
hub being an elliptical orbit in the y,z plane in the same sense as the propeller rotation, i.e. a forward 
whirl mode. 

From equation (A.8) it is seen that in the absence of structural damping and aerodynamic forces the 
phase angle between the vectors ~ and fla is exactly 90 deg in both whirl modes. When structural 
damping in the engine freedoms and the aerodynamic excitation from the propellers are taken into 
account the phase angle differs slightly from 90 deg. The ratios between the vector amplitudes are not 
quite equal to unity in either mode, the reason being that the engine mount stiffness in the pitching 
plane is slightly greater than that in the yaw plane, (KJK~ = 1-02). 

The frequencies and amplitude ratios of the two whirl modes obtained from numerical solution of 
the binary flutter equations with v = 0 are in close agreement with the theoretical values calculated 
from equations (A.7) and (A.10) of Appendix A, thus affording a check on the functioning and accuracy 
of the computer flutter programme. 

From Fig. 3 it appears that the frequencies of both whirl modes decrease slightly with increasing 
airspeed and show only a small dependence on the advance ratio J. 
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The stability of the whirl motion may be deduced from the curves of decay rate against airspeed. The 
forward whirl motion, mode 2, becomes increasingly stable as the airspeed rises, with the decay rate at 
any given airspeed decreasing with increasing J. The backward whirl mode, on the other hand, becomes 
unstable above a certain critical airspeed, when the decay rate becomes negative. The critical whirl 
airspeed shows a fairly marked dependence on J, the lowest value of vcri, = 0.25 being obtained with 
J = 2 .  

Although J is treated here as an independent variable it is actually a function of propeller r.p.m, and 
airspeed. For a fixed r.p.m. J is in fact directly proportional to v. The true variation of decay rate with 
v at maximum take-off propeller r.p.m, is given by the dashed curves labelled J = 4.24 v in Fig. 3. These 
curves are derivedby interpolation between the curves for J = 1, 2 and 3. 

Both whirl modes remain practically unchanged in form, as determined by the phase angles and ampli- 
tude  ratios between the vectors, over the whole airspeed range covered, even though the decay rate 
varies considerably. This behaviour may be contrasted with that of 'classical' flutter, in which two or 
more basic modes combine to produce a flutter mode of a new form. 

4.2. Whirl of the Nacelle in Two Degrees of Freedom. 
A binary analysis similar to that described in Section 4.1 was carried out in the vertical and horizontal 

translational freedoms of the outboard nacelle alone, the engine being considered as rigidly fixed to the 
nacelle. Structural damping was assumed to be absent from the nacelle freedoms. 

The frequencies and decay rates of the two resulting modes are shown in Fig. 4 as functions of dimen- 
sionless airspeed v, together with the vector diagrams obtained with v = 0. With the sign convention 
used mode 1 is seen to be a backward whirl motion, while mode 2 is a forward whirl motion. The motion 
of the propeller hub in each mode is a highly elliptical orbit, unlike the modes derived from the engine 
freedoms only in which the hub orbit is practically circular. The reason for this is that the bending stiffness 
of the nacelle in the vertical (x,z) plane is considerably greater than that in the horizontal (x,y) plane, 
(Kz/Ky = 1.45). In the backward whirl mode the major axis of the hub orbit lies parallel to the y-axis, 
while in the forward whirl mode it lies parallel to the z-axis. 

The whirl mode frequencies lie closer together than those derived from the engine freedoms, but 
similarly decrease only slightly with rising airspeed, and are virtually independent of the advance ratio J. 

The decay rate in the forward whirl mode increases with airspeed and decreases with increasing J. 
The curves of decay rate for the backward whirl mode are very flat, and in the absence of structural 
damping the mode becomes unstable at v = 0"35 for J = 2. From the shape of the curves it appears that 
the backward whirl mode in the nacelle freedoms could be stabilized over a wide range of airspeed by 
the addition of a relatively small amount of structural damping. 

4.3. Whirl of the Complete Engine-Nacelle Installation in Four Degrees of Freedom. 
The complete outboard installation, consisting of the engine mounted in gimbals at the end of a flexible 

cantilever nacelle, was analysed in four degrees of freedom. As described in Section 2.2, motion of the 
nacelle in parabolic modes in the y and z directions gives rise to yawing and pitching rotations of the 
gimbal mountings which introduces inertia and aerodynamic coupling between the engine and nacelle 
freedoms. The damping matrix also contains cross-terms arising from the engine gyroscopic effects; 
the stiffness matrix on the other hand is diagonal in form, with no coupling. 2 per cent of critical structural 
damping was assumed to act in the engine freedoms only. 

Details of the four modes of vibration calculated for v = 0 and J = 2 are given in Fig. 6, which shows 
the amplitude ratios and phase relationships between the vectors associated with each of the four degrees 
of freedom considered. Also shown are the loci of the propeller hub and gimbal point in their respective 
y,z planes in each mode. Numbered points on each locus denote successive positions of the hub and 
gimbal when viewed from ahead, starting from an arbitrary origin. 
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The y and z co-ordinates of the gimbal point and propeller hub are related to the generalised co- 
ordinates by the following equations : (see Fig. 2). For the gimbal point G : 

YG ----- Y l 

for the propeller hub P: 

=G : =1 

yp = (1 + ro lp) Yl + le fll 

Zp = ( l + r  O1P) z l - lPO~ 1. 

It should be noted that each vector diagram in Fig. 6 is drawn to an arbitrary amplitude scale, con- 
sequently the mode shapes derived from them are all to different amplitude scales. The four modes are 
numbered in ascending order of frequency and are described below. 

Mode 1. In mode 1 vector Yl leads vector zl by nearly 90 deg, which indicates a backward whirl motion 
of the gimbal point G at the end of the nacelle (compare with vector diagram of Fig. 4). Superimposed 
on this motion is a backward whirl in the engine freedoms, with vector ~1 leading vector/~1 by nearly 
90 deg. The phase angles between ya and zl and between ~1 a n d / ~  differ from 90 deg because of the 
presence of 2 per cent critical structural damping in the engine freedoms. The effect of this is to rotate 
the major and minor axes of the elliptical orbits traced by G and P slightly away from the y and z axes. 

The phase relationship between the nacelle whirl and engine whirl motions is such that the rotations 
of the engine relative to the gimbal tend to augment the amplitude of the propeller motion arising from 
the translations of the gimbal and the slopes at the nacelle tip. The total motion of P relative to the 
x-axis is thus a backward whirl, of large amplitude. These engine and nacelle whirl motions may be 
regarded as being 'in-phase'. 

Mode 2. In mode 2 vector y~ lags vector z~ by nearly 90 deg, giving the gimbal a highly elliptical 
forward whirl motion (compare with Fig. 4). Vector ~ leads/~a by nearly 90 deg, which denotes a backward 
whirl motion of the engine relative to the tangent to the nacelle at point G. However the engine rotations 
are of such small relative amplitude that the total motion of the propeller hub P is a forward whirl domina- 
ted by the nacelle freedoms. 

Mode 3. In this mode a backward whirl motion of the engine is superimposed on a backward whirl 
of the nacelle. Unlike mode 1, however, the phase relationship between the vectors is such that the 
rotations of the engine relative to the nacelle oppose the displacements and rotations of the nacelle tip 
so as to reduce the total displacements of the propeller hub. These engine and nacelle whirl motions 
may be regarded as 'out of phase'. 

Mode 4. This is a forward engine whirl superimposed on a forward nacelle whirl, with the engine 
rotations again opposing the nacelle displacements. In this case the engine rotations are sufficiently 
large actually to reverse the sign of the total displacements of the propeller hub P, causing it to lead the 
gimbal point G by approximately 180 deg. 

The behaviour of the modes with increasing airspeed is illustrated in Fig. 5, which shows the frequencies 
and damping rates as functions of v for values of J = 1, 2 and 3. 

The frequencies of modes 1 and 4 decrease very slightly as v increases, while those of modes 2 and 3 
remain nearly constant. All frequencies show a very slight decrease with increasing J, this effect being 
more marked at the higher airspeeds. 

Modes 2 and 4 are stable, and become increasingly stable with rising airspeed. In each of these modes 
both the gimbal and propeller hub exhibit forward whirl motion. The decay rate at v = 0 in mode 2 is 
slight, due to the small part played by the engine freedoms, which contain the only structural damping 
present in the system. The decay rate decreases with increasing J at moderate airspeed. 

Mode 3, in which both gimbal and propeller hub exhibit backward whirl motion, is stable over the 
whole range of airspeed investigated, though the increase in stability with airspeed is not so pronounced 
as in modes 2 and 4. 
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Mode 1 on the other hand becomes unstable as airspeed increases, with the decay rate becoming zero 
at a critical value of v = 0-20, with J = 2. 

From these results and those of the previous two sections the following conclusions may be drawn as 

to the stability of whirl motion. 
(i) In two degrees of freedom, either those of the engine or of the nacelle, the forward whirl motion 

appears to be inherently stable, while the backward whirl motion becomes unstable above a certain 

critical airspeed. 
(ii) With four degrees of freedom in play those modes in which both the gimbal and the propeller 

hub exhibit forward whirl motion are stable. 
(iii) The stability of modes in four degrees of freedom in which both the gimbal and propeller hub 

exhibit backward whirl motion depends on the phase relationship between the engine and the nacelle 
motions. If this is such as to produce large amplitude displacements of the propeller (e.g. mode 1) the mode 
may become unstable with increasing airspeed owing to the large excitation provided by the aerodynamic 
forces and moments acting on the propeller. On the other hand, if, the phase relationship is such that the 
amplitude of the propeller motion is small, the aerodynamic excitation may not be great enough to 
overcome the structural damping and stiffness of the system, and the motion will remain stable. 

(iv) The form of the whirl modes and their frequencies show very little change with airspeed, right 

up to and beyond the critical airspeed. 

4.4. Whirl in Four Degrees of Freedom with Gyroscopic Effects Neglected. 
The analysis in four degrees of freedom described in Section 4.3 was repeated with the terms arising 

from the engine gyroscopic moments omitted from the flutter matrices, and with no structural damping. 
The aerodynamic forces and moments acting on the propeller were evaluated as before for J = 2. The 
frequencies and decay rates of the resulting modes are shown in Fig. 7, together with schematic representa- 

tions of the mode shapes at zero airspeed. 
At v = 0 the modes 2 and 4 arise from inertia coupling between the freedoms zl and ~l in the x,z plane. 

In mode 2 vector zl leads vector ~1 by exactly 180 deg, giving rise to large displacements of the propeller, 
while in mode 4 zl and ~1 are in phase, with a correspondingly small propeller amplitude. In a similar 
manner modes 1 and 3 result from inertia coupling between the freedoms Yl and fl~ in the x,y plane, 
with mode 1 having the large propeller amplitude. In the absence of gyroscopic terms no coupling exists 
at zero airspeed between the vertical and horizontal freedoms. 

As the airspeed is raised aerodynamic forces acting on the propeller provide this coupling, until at 
v - 0.50 the frequencies of modes 1 and 2 tend to approach each other and two new modes emerge, 
similar in form to the whirl modes of Section 4.3. One of these modes, the forward whirl mode, becomes 
very stable, while the backward whirl mode becomes unstable at v = 0.48. 

It therefore appears that an unstable whirl motion may be brought about solely by aerodynamic 
forces and moments acting on the propeller in the 'classical' flutter manner, with two basic modes com- 
bining to produce a new and unstable flutter mode. 

On the other hand, although gyroscopic moments can provide the coupling necessary to produce 
whirl motions, even in the absence of aerodynamic forces, it is shown in Appendix A that these are always 
neutrally stable. Gyroscopic moments acting alone cannot lead to instability as they do not feed energy 
into the system; they do however exercise a considerable influence on the frequencies and forms of the 

whirl modes. 

4.5. The Effect of Engine Mount and Nacelle Stiffnesses on the Whirl-mode Shapes and Frequencies. 
Flutter analyses in four degrees of freedom were carried out on the outboard engine-nacelle installation 

over a range of engine mount and nacelle stiffnesses. Aerodynamic and gyroscopic forces and moments 
were evaluated as before at maximum engine take-off r.p.m, at sea level for an advance ratio of J = 2. 
6 per cent of critical structural damping was assumed for the engine freedoms, the nacelle freedoms 
were considered to be undamped. 

The independent variables chosen were the uncoupled natural frequency of the engine pitching freedom 
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(~o,) and the uncoupled frequency of the nacelle vertical freedom (toz). For convenience it was assumed that 
~ = o~ and e~y --- ~o z. It should be noted that each of the uncoupled natural frequencies is proportional 
to the square root of the direct stiffness in the associated degree of freedom. 

The zero airspeed frequencies of the four modes are shown in Fig. 8 as functions of ~o,, for three values 
of~o z. The frequencies are all reduced to a non-dimensional form by dividing by the parameter ~ = ~ I e 
(Io I~,) -~. As shown in Appendix A, this is a useful parameter in the frequency equations since it incor- 
porates the effects of the propeller r.p.m, and of the engine inertias. For comparison the theoretical 
values of the forward and backward whirl frequencies of a binary system in the engine freedoms are also 
plotted on Fig. 8, together with the theoretical nacelle binary whirl mode frequencies which form the 
asymptotic limits to the quaternary whirl frequencies as ~o, tends to infinity. These theoretical frequencies 
are derived from equation (A.17), with ~1 = 5.84 cycles/second. 

The zero airspeed frequency of mode 1 is shown in Fig. 9 as a function of co, and ~oz, a carpet plot 
being used to facilitate interpolation. The asymptotic limits set by the theoretical frequencies of the 
backward binary engine and nacelle whirl motions are included. 

The vector diagrams associated with the four whirl modes at zero airspeed are shown in Fig. 10 for 
four combinations of ~o~ and wz. The decay rates of the four whirl modes are shown as functions of the 
dimensionless airspeed v in Fig. 11 for each combination of co s and ~o z. 

With a relatively stiff nacelle and flexible engine mounts (e.g. case (a) of Fig. 10), the engine freedoms 
dominate modes 1 and 2, while the nacelle freedoms dominate modes 3 and 4. 

In modes 1 and 3 a backward whirl of the engine about the gimbals is superimposed on a backward 
whirl of the nacelle. In mode 1 these constituent whirl motions are 'in phase', while in mode 3 they are 
'out of phase' (see Section 4.3). In modes 2 and 4 both engine and nacelle exhibit forward whirl motions; 
in mode 2 they are in phase, while in mode 4 they are out of phase. 

From the frequency plots of Fig. 8c it is seen that with the engine freedoms playing the dominant role 
at low values of ~o,, the frequencies of modes 1 and 2 lie close to the theoretical backward and forward 
whirl frequencies respectively of a binary system in the engine freedoms alone. Similarly, with the nacelle 
freedoms dominating modes 3 and 4 their frequencies approximate to the theoretical nacelle binary-whirl 
frequencies. 

If the engine mount stiffnesses (i.e. e~ and ~o~) are increased, with the nacelle stiffnesses remaining 
unchanged, the nacelle freedoms play increasingly large parts in modes 1 and 2 (Fig. 10, case (b)). Their 
frequencies approach the limits set by the theoretical nacelle binary backward and forward whirl fre- 
quencies respectively, (Fig. 8c). Modes 3 and 4 on the other hand show very little change, their frequencies 
rising slightly with increasing ~%. It should be noted that the directions of the component engine and 
nacelle whirl motions in all four modes, and also the phase relationships between them, remain un- 
changed over the whole range of ~o~ considered, for this particular value of ~oz. 

If the nacelle stiffnesses are decreased (Fig. 10 case (c)) the nacelle freedoms play a much greater part 
in mode 1 and completely dominate mode 2. Mode 1 retains the character of a backward engine whirl 
in phase with a backward nacelle whirl. Mode 2, however, shows unexpected behaviour in that while 
the nacelle whirl remains forward the engine whirl component reverses its direction and becomes back- 
ward. Mode 3 remains virtually unchanged, while the engine freedoms play a larger part in mode 4. At 
low values of o~, the frequency of mode 1 lies close to the engine binary backward whirl frequency. The 
frequency of mode 2 lies just below the limit set by the nacelle binary forward whirl frequency, (Fig. 8a). 
The closeness of the separate engine and nacelle binary whirl frequency limits for this particular com- 
bination of co, and ~o: probably accounts for the unusual behaviour of mode 2. As e~ is increased modes 
! and 2 both become dominated by the nacelle freedoms and their frequencies approach those of the 
nacelle binaries. Modes 3 and 4 remain practically unchanged in form, their frequencies increasing almost 
linearly with ~o,. 

From Fig. 9 it appears that the zero airspeed frequency of mode 1 is always less than the lower of the 
two backward binary-whirl frequencies in the engine or nacelle freedoms alone. . Each of these binary- 
whirl frequencies forms an asymptotic limit to the frequency of the quaternary mode 1 as the stiffness 
in the other pair of freedoms becomes infinitely great. 
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The variation with airspeed of the decay rates of the four whirl modes is illustrated in Fig. 11, in which 
the decay rates (, (equation (5b)) for each of the modes are plotted against dirhensionless airspeed v. 

Those modes in which the engine freedoms play only a small part decay slowly at zero airspeed ; this 
is because no structural damping was included in the nacelle freedoms. Of the four modes only the low 
frequency backward whirl mode (mode 1 in all cases) becomes unstable over the airspeed range covered. 
This mode is composed of the backward nacelle and engine binary whirl motions in phase, Mode 3, 
which is the out of phase combination of the backward binary whirl motions, shows a slight falling off 
in decay rate with rising airspeed in case (d). This mode does, however, remain stable over the range 
covered, and a spot check at v = 2-0 showed a levelling out in the slope of the decay rate curve, with the 
mode remaining stable. The two forward whirl modes 2 and 4 show a marked rise in stability with in- 
creasing airspeed in all cases. 

The frequencies of modes 2, 3 and 4 show very little change over the whole range of airspeed covered. 
The shapes of the modes, as indicated by the relative amplitudes and phase angles of the vectors, remain 
virtually unchanged over the airspeed range. This is also true of mode 1, for which the frequency and 
vector diagram shows little change up to and beyond the airspeed at which the mode becomes unstable. 

It appears that the frequencies and shapes of the whirl modes are determined by the characteristics of 
the installation, such as mount stiffness and propeller r.p.m., rather than by airspeed. Whirl motion of 
an engine installation thus differs from the classical flutter instability, in which aerodynamic forces 
provide coupling between normal modes of a structure to give rise to a new flutter mode above a critical 
value of the airspeed. 

Since it is the behaviour of mode 1 that determines the stability of the engine-nacelle installation, 
attention will now be concentrated on the critical value of airspeed at which this mode becomes unstable, 
and the manner in which this critical value is influenced by other parameters. 

4.6. The Effects of Engine-mount Stiffness and Damping on the Critical Whirl Airspeed. 
The critical whirl airspeed vcrlt is here taken to be the value of dimensionless airspeed above which 

mode 1 becomes unstable, i.e. its decay rate becomes negative. 
The effects of engine mount and naceUe stiffnesses on vcrit are shown in Fig. 12, in which vcrit is plotted 

as a function of o~ and co z. Structural damping equal to 6 per cent of the critical value was introduced 
into the engine freedoms, and none into the nacelle freedoms. As before, propeller aerodynamic and 
gyroscopic forces were evaluated at maximum r.p.m, at sea level and with J = 2. 

As shown in Section 4.5, if a relatively flexible engine-mount system is combined with a stiff nacelle 
structure the engine freedoms dominate mode 1. Under these conditions vcrjt tends towards the value 
obtained for a binary system in the engine freedoms alone. Thus with low values of o9~ little increase in 
ocrit is gained from a !arge increase in oz. Conversely, if the nacelle is lowly damped and very flexible 
(o9~ low), little gain in V¢rit is to be had from an increase in engine-mount stiffness, (Fig. 12). 

The effect on vorit of damping in the engine mounting is shown in Fig. 13, in which vcrit is plotted as 
a function of o9~ and (~ for a fixed value of ogJ27r = 4"78 cycles/second. This corresponds to a relatively 
flexible nacelle with no structural damping, v~it is always raised by an increase in engine-mount damping 
coefficient (~, and may also be raised up to a certain limit by increasing 09~. The damping in the whirl 
mode arising from the structural damping in the engine mount is lost if o~ is increased to such an extent 
that the mode becomes dominated by the nacelle freedoms. Under these conditions v¢rit may actually 
decrease as the engine-mount stiffness is raised. Eventually, as o9~ is increased still further, v,it tends to 
the value obtained for a binary in the nacelle freedoms only, which is naturally independent of ~. 

5. The Whirling Motion of a Nacelle-Engine Installation Mounted on a Flexible Wing. 
In order to investigate the influence of wing flexibility on the whirling of an engine installation, and 

also the effect of engine whirl on the stability of the wing itself, further flutter analyses were carried out 
in twelve degrees of freedom. Four freedoms were assigned to the wing and four to each of two engine 
installations similar to that considered in Section 4. 

Mass and stiffness data for the two installations are given in Table 1. The outboard installation is 
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identical to that of Section 4.3, while the inboard installation has approximately 40 per cent greater 
nacelle stiffnesses. 

The wing freedoms chosen are four of the antisymmatric normal modes of the wing of a typical modern 
turbo-prop aircraft. These were derived from calculations based on arbitrary branch modes, and include 
the effects of flexible nacelles and engine mountings with freedom in the vertical planes only, but exclude 
terms arising from propeller aerodynamic and gyroscopic effects. These four normal modes of the wing 
are illustrated in Fig. 14 and are described below in terms of their component branch modes. For this 
purpose the wing is divided into three regions, namely, inner wing (root to inboard engine), mid-wing 
(inboard engine to outboard engine) and outer wing (outboard engine to tip). The bending and twisting 
deflections of each section, forming the branch modes of the original analysis, are measured relative to 
the end of the adjacent section on the inboard side. 

Freedom 1. 

Positive fuselage roll (anticlockwise viewed from ahead); positive fundamental bending of inner, mid 
and outer wing; positive torsion (nose up) of inner and mid wing. 

Freedom 2. 

Negative fuselage roll; positive fundamental bending of inner, mid and outer wing; positive torsion 
of inner wing and negative torsion of mid-wing. 

Freedom 3. 

Negative fuselage roll; positive fundamental bending of inner, mid and outer wing; negative torsion 
of inner wing. 

Freedom 4. 

Negative bending of mid wing, positive bending of outer wing; slight positive torsion of inner and mid 
wing, high degree of positive torsion of outer wing. 

5.1. Flutter oJ'the Wing with Rigid Engine Installations. 
A flutter analysis was performed in the four undamped wing freedoms with the engine and nacelle 

freedoms suppressed, i.e. the installations considered to be infinitely stiff. The frequencies and decay rates 
of the four resulting modes are shown in Fig. 15 as functions of airspeed. Also shown are the mode vectors 
at zero airspeed. 

The damping in all four modes (arising from the wing aerodynamics only) increases up to v = 0.5, 
beyond which the stability of modes 2 and 4 shows a sharp drop. By v = 0.685 a new and unstable mode 
has appeared, composed mainly of freedoms 3, 2 and 1. This new mode can also be regarded as the result 
of coupling between modes I and 2, whose frequencies approach each other at about v = 0.68. Another 
new mode appears in this range of airspeed, consisting mainly of freedoms 4, 2 and 3, with a small con- 
tribution from l, and becomes unstable at v = 0.72. From the vector diagrams this new mode appears 
to be a combination of modes 2 and 4. 

5.2. F•utter •f the Wing plus Flexible Engine •nstallati•ns• with Pr•peller Aer•dynamic and Gyr•sc•pic 
Effects Neglected. 

The results of a flutter analysis in all twelve degrees of freedom of the wing and two engine installations 
are presented in Figs. 16 and 17. The aerodynamic and gyroscopic forces arising from the propellers and 
engines were omitted from the flutter matrices, the only excitation coming from aerodynamic forces 
acting on the wing itself. No structural damping was included. The modes derived from the analysis are 
numbered in ascending order of frequency at zero airspeed. 

Modes 4 and 9 consist of horizontal translation of the inboard nacelle coupled with yawing of the 
inboard engine. Modes 2 and 8 are similar modes of the outboard installation. In the absence of propeller 
and gyroscopic effects these modes are not coupled with the others, and remain undamped and constant 
in frequency over the airspeed range. 

Of the other modes only modes 1, 3 and 7 become unstable within the airspeed range covered. The 
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vector diagrams for these three modes are presented in Fig. 17 for v = 0, and also for those values of 
v at which each mode becomes unstable. For clarity the vectors for the wing and the two engine installa- 
tions are shown separately; for interpretation of relative amplitudes and phase angles they should be 
regarded a s having a common origin. 

Mode 1. At v = 0 this mode consists mainly of wing freedoms 1 and 3 plus vertical translation and 
pitching of the outboard nacelle and engine (freedoms 9 and 10). In effect this is similar to mode 1 of 
Fig. 15, plus a contribution from the outboard installation. At v = 0-73 the mode becomes unstable and 
also changes its character, with wing freedoms 2 and 3 coming into play and with a phase change of about 
165 deg in the inboard installation motion. In addition the frequency shows an increase of 18 per cent 
over the value at v = 0. Under these conditions (i.e. flutter) the mode appears to be similar to mode 2 
of Fig. 15, with the addition of the outboard installation motions. 

Mode 3. At v = 0 this mode consists mainly of wing freedoms 2 and 3 (compare with mode 3 of Fig. 
15), coupled with vertical freedoms of the inboard installation, with a smaller contribution from the 
outboard installation. The mode becomes unstable at v = 0.86, with a slight change in character arising 
from an increase in the contribution from wing freedom 3 and a phase advance of 195 deg in the motion 
of the outboard installation. 

Mode 7. At v = 0 this consists of wing freedom 3, plus small contributions from both engine installa- 
tions. The mode becomes unstable at v = 0.74 without appreciable change in character apart from the 
phase shifts in the low amplitude motions of the engine installations. 

5.3. Flutter of Wing plus Flexible Engine Installations, with Propeller Aerodynamic and Gyroscopic 
Effects Included. 

The full twelve degree of freedom system was re-analysed with the propeller aerodynamic and gyro- 
scopic terms included in the flutter matrices. These were evaluated as before, at maximum propeller 
r.p.m, at sea level and with J = 2. Viscous damping (2 per cent of critical) was introduced into the pitching 
and yawing freedoms of both engines relative to their nacelles. The resulting modes are presented in 
Figs. 18 and 19. The three modes which become unstable in the airspeed range are described :below. 

Mode 1. At v = 0 this is composed of wing freedoms 1 and 3 (compare mode 1 of Fig. 17) coupled with 
a large scale backward whirl motion of the outboard engine installation and a small scale backward whirl 
of the inboard installation. The backward whirl of the outboard installation is practically identical witla 
that of the same installation mounted on a rigid structure (compare with mode 1 of Fig. 6), and the 
frequency of the mode is only slightly less than that of mode 1 Fig. 6. The mode becomes unstable at 
v = 0.22, with no change in the power-plant whirl motions and only a slight drop in frequency. When 
mounted on a rigid structure the outboard installation backward whirl mode becomes unstable at 
v = 0.20 (Section 4.3). 

Mode 2. This consists mainly of a backward whirl of the inboard power plant coupled with wing free- 
doms 3, 2 and 1. The mode becomes unstable at v = 0.23 with virtually no change in character apart 
from a phase lag of about 75 deg in freedom 1. 

Mode 5. At v = 0 this consists mainly of an out of phase combination of a backward whirl of the outer 
nacelle and a backward whirl of the outer engine, somewhat similar to the mode 3 described in Section 
4.3 (see Fig. 6). This is coupled with a small amplitude forward whirl of the inboard nacelle (freedoms 5 
and 7), and also with a small contribution from wing freedoms 3 and 2. The mode becomes unstable at 
v = 0.82, when the wing freedoms 3, 2 and 4 combine to produce a mode similar to mode 7 of Fig. 17. 
The whirl motion of the outboard installation continues with little change. The inboard installation 
exhibits a distorted form of whirl motion with highly elliptic orbits inclined to the y and z axes. 

Of the other modes of Fig. 18, modes 11 and 12 are similar to modes 11 and 12 of Fig. 16. Since their 
frequencies are well above any of the whirl frequencies of the power plants they are unaffected by the 
propeller aerodynamic and gyroscopic forces. Mode 10 may be identified with the forward whirl motion 
of the outboard power plant installation (mode 4 of Fig. 6), and mode 9 with the corresponding motion 
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of the inboard installation. With their frequencies lying outside the main frequency spectrum of Fig. 16 
they appear to be unaffected by the wing motions. The remaining modes, 3, 4, 6, 7 and 8 are all formed 
by coupling between the modes of Fig. 16 and the intermediate frequency whirl modes of the power 
plants, i.e. those similar to modes 2 and 3 of Fig. 6. None of these modes become unstable within the 
airspeed range. 

From all these results it appears that wing flexibility has no appreciable effect on a whirl motion of 
either power plant whose frequency lies outside the frequency spectrum of the modes obtained in the 
absence of propeller aerodynamic and gyroscopic forces. On the other hand an unstable flutter motion 
of the wing may be stabilised up to a higher flutter speed by a stable power-plant whirl motion of com- 
parable frequency. The results, however, give no indication of the effects of interaction between an 
unstable, wing-flutter mode and an unstable power-plant whirl mode of comparable frequency. 

5.4. The Effect of Frequency Coincidence between Wing Modes and Power-plant Whirl Modes. 
The conclusions drawn in the previous section may only hold in cases where the frequencies of the 

critical whirl modes of the power plants are well removed from those of the wing modes. With stiffer 
nacelles and engine mounts than those previously considered the possibility arises of frequency co- 
incidences and coupling between the power-plant whirl modes and one or more of the wing modes, which 
may have a destabilizing effect on a whirl mode or even precipitate wing flutter. 

In order to investigate this possibility the twelve degrees of freedom system considered in Section 5.3 
was re-analysed with the structural stiffnesses of the outer nacelle and engine mounts increased by a 
factor of four, which has the effect of doubling the uncoupled natural frequencies ~o~, co z etc. From the 
results of Section 4.5 this would be expected to raise the frequency of the unstable backward whirl mode 
from 2 cycles/second to around 5.5 cycles/second, thus bringing it within the band of wing mode fre- 
quencies. The inboard installation was left unchanged. 

As a check the stiffened outboard nacelle-engine installation was itself analysed in four degrees of free- 
dom. The frequencies, vectors, and damping rates for these four whirl modes are shown in Fig. 20. The 
new backward whirl mode I has a zero airspeed frequency of 5.45 cycles/second and becomes unstable 
at v = 0.48. 

The results of the analysis in all twelve degrees of freedom are presented in Figs. 21 and 22. Four  
modes become unstable in the airspeed range covered and these are described below; their vector 
diagrams are shown in Fig. 23. 

Mode 1. This is almost identical with mode 2 of Fig. 19, obtained with the original outboard installa- 
tion, and consists mainly of a backward whirl motion of the inboard nacelle and engine, which becomes 
unstable at L' = 0.23 as before. Changes in the outboard installation have no effect on this mode. 

Mode 2. At v = 0 this consists mainly of wing freedoms ! and 3, coupled with a backward whirl of 
the inboard and outboard nacelles. At about v = 0.55 the mode undergoes a complete change in character 
and shows a drop in decay rate leading to instability at v = 0.66 (Fig. 22). This appears to be brought 
about by a frequency coincidence and coupling with mode 3. The situation is comparable with that 
occurring in Fig. 18 between modes 3 and 4 (which correspond to modes 2 and 3 of the present case), 
in which mode 4 shows a sharp drop in decay rate, without however actually becoming unstable. The 
outboard installation continues in its backward whirl motion while the motion of the inboard installation 
becomes heavily distorted. The instability of the mode 2 thus appears to be primarily a wing flutter, 
aggravated but not precipitated by whirl of the power plant installations. 

Mode 4. At t" = 0 this comprises a backward whirl of the outboard installation, comparable with 
mode 1 of Fig. 20, plus a forward whirl of the inboard installation and also contributions from wing 
freedoms 3, 4 and 2. 

At v = 0.92 the mode becomes unstable, with wing freedoms 1 and 2 becoming prominent. This change 
in mode shape probably results from a frequency approach and consequent coupling between modes 
4 and 3 (see Fig. 21). At the same time the backward whirl of the outboard installation grows in amplitude 
and may itself become unstable. When mounted on a rigid structure, however, it becomes unstable at 
v = 0-48 (see Fig. 20). 
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Mode 8. At v = 0 this consists of wing freedoms 1, 4 and 3, with a forward whirl of the inboard in- 
stallation and a stable whirl of the outboard installation (compare with mode 2 of Fig. 20). As v increases 
the mode changes shape, with wing freedoms 3 and 4 playing larger parts and the amplitude of the engine 
installation whirl motions increasing, until instability occurs at v = 0-75. 

The large drop in frequency of mode 8 with rising airspeed suggests that the instability of the mode 
is a true flutter behaviour brought about by a coupling with another mode. Mode 6 appears to be the 
likely partner in this case, since it shows a rise in frequency towards that of mode 8 and also a sharp 
increase in stability after mode 8 has become unstable. 

From these results it appears that, if the frequency of a normally unstable backward whirl mode of 
an installation lies within the frequency band of the wing modes, then the whirl mode may be stabilised 
by the wing motion. On the other hand the behaviour of mode 2 suggests that the stability of a wing 
flutter mode may be reduced by an approaching frequency coincidence with a critical backward whirl 
mode. 

6. Conclusions. 

6.1. The Nature of Whirling Motion. 
(1) A typical installation consisting of a turbo-prop engine supported at the end of a long nacelle 

cantilevered from an aircraft wing may in certain circumstances exhibit a precessional type of motion 
commonly referred to as 'whirling'. In this motion, which should not be confused with the whirling 
instability of rotating flexible shafts, the engine and propeller hub describe elliptical orbits in a plane 
perpendicular to the propeller shaft axis, at frequencies differing from the propeller rotational frequency. 
Two types of whirl motion have been observed, a forward precession in the same direction as the propeller 
rotation and a backwardprecession against the direction of the propeller rotation. 

(2) Whirl motion results from coupling between pitching and yawing motions of the engine and 
propeller. Such coupling is provided by the gyroscopic moments arising from the rotating engine and 
propeller masses and by aerodynamic forces and moments acting on the propeller at incidence to the 
airstream. 

(3) Pitching and yawing motions of the engine can be considered as arising in two ways, either from 
pure rotations of the engine about an effective gimbal mounting or, as in the case of an engine rigidly 
attached to a nacelle structure, from the slopes at the tip of the nacelle resulting from its deflections as 
a cantilever. For simplicity the complete engine-nacelle installation may be analysed as a binary system 
in either the two engine freedoms or the two nacelle freedoms. In a typical installation, however, the 
engine and nacelle freedoms are coupled through inertia and aerodynamic effects and it is generally 
necessary to analyse it as a quaternary system in all four degrees of freedom simultaneously. 

6.2. Whirling Motion of an Engine Installation in Two Degrees of Freedom. 
(1) It is shown in Appendix A that, in the absence of aerodynamic forces, the equations of motion for 

the binary systems in either the engine or nacelle freedoms are of a similar form when expressed in terms 
of suitable parameters. The two systems may therefore be regarded as equivalent. 

(2) The'zero-airspeed frequencies of the binary whirl modes in either the engine or nacelle freedoms, 
as obtained from numerical solution of the flutter equations, are in close agreement with the theoretical 
values derived in Appendix A. 

(3) The zero-airspeed frequency of the forward whirl mode is always greater than the higher of the two 
uncoupled natural frequencies of the system, and increases with rising propeller r.p.m. The frequency 
of the backward whirl mode is always less than the lower of the uncoupled natural frequencies and 
decreases with rising propeller r.p.m. The frequencies of both modes decrease slightly with increasing 
airspeed but are virtually independent of the advance ratio J. 

(4) The damping in the whirl modes arises only from structural damping inherent in the system, e.g. 
direct damping at the gimbal mounts, and from aerodynamic forces acting on the propeller at incidence 
to the airstream. The engine gyroscopic torques do not themselves contribute to the damping in the 
whirl modes (see Appendix A). 
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(5) The stability of the whirl modes may be judged from the curves of decay rate against airspeed. 
The forward whirl modes in either the engine or nacelle freedoms appear to be inherently stable, with 
the stability increasing steadily as the airspeed rises. In the backward whirl modes, however, the stability 
at first increases and then decreases with rising airspeed, until above a critical value of airspeed the decay 
rate becomes negative and the motion unstable. 

6.3. Whirling Motion of an Engine Installation in Four Degrees of Freedom. 

[1) The modes obtained in the quaternary system may be regarded as combinations of the two pairs 
of binary modes from the engine and nacelle freedoms. Two forward whirl modes and two backward 
whirl modes may be identified. In one of the forward and one of the backward modes the nacelle and 
er~gine freedom vectors are in phase, resulting in relatively large displacements of the propeller hub. 
In the other pair of modes the nacelle and engine-freedom vectors are very nearly 180 deg out of phase, 
producing small propeller displacements. 

(2) The frequency of the quaternary 'in-phase' forward whirl mode is always less than the lower of the 
two binary forward mode frequencies obtained by suppressing the cross-coupling between the engine and 
nacelle freedoms. Each of the binary forward whirl mode frequencies becomes the asymptote to the 
quaternary 'in-phase' forward whirl mode frequency as the other binary forward mode frequency becomes 
relatively great. A similar relationship holds between the frequencies of the 'in-phase' quaternary back- 
ward whirl mode and the binary backward whirl modes. 

(3) The frequency of the 'out-of-phase' forward quaternary whirl mode is higher than the greater of 
the two binary forward whirl modes, and similarly for the 'out-of-phase' backward quaternary mode 
and the backward binary modes. Thus the theoretical binary mode frequencies as calculated from the 
equations given in Appendix A serve as useful bounding values for the quaternary mode frequencies. 

(4) Both the forward quaternary whirl modes are stable over the airspeed range covered. The 'out-of- 
phase' backward whirl appears to be stable over the airspeed range covered, though with certain com- 
binations of engine mount and nacelle stiffnesses the stability in this mode shows a slight drop as the 
airspeed increases. The 'in-phase' backward whirl mode becomes unstable at a critical airspeed which 
may be below the critical value for either of the two binary backward whirl modes. 

(5) The critical value of airspeed at which the 'in-phase' backward whirl mode becomes unstable 
depends largely on the amount of structural damping present and on the stiffness of the nacelle and engine 
mounts. The critical whirl airspeed may be raised considerably by introducing damping into the engine 
mounts. A similar result could probably be obtained by introducing structural damping into the nacelle 
structure, although as this is much more difficult to achieve in practice its effect was not investigated here. 

The critical whirl airspeed may be raised by increasing the stiffnesses in either the engine or the nacelle 
freedoms, although the effect of this is slight if the stiffnesses in the other pair of freedoms are relatively 
low. Under certain conditions, e.g. a heavily-damped engine mounting in combination with a flexible, 
lightly-damped nacelle structure, an increase in the engine-mount stiffness beyond a certain point may 
lead to a drop in the critical whirl airspeed. 

6.4. The Interaction between Wing-flutter Modes and Power-plant Whirl Modes. 
From the results obtained from a system consisting of a flexible wing with four degrees of freedom 

plus two engine-nacelle installations, the following tentative conclusions may be drawn as to the effect 
of wing flexibility on the whirl of the engine installations. 

(l) If the frequency of the critical backward whirl mode of an installation lies well below the band 
of wing mode frequencies at zero propeller r.p.m., then the mode shape, frequency and stability of the 
whirl motion are unaffected by the wing motions. 

(2) If the frequency of the critical backward whirl mode lies within the band of wing frequencies, the 
whirl mode may be stabilized up to a higher critical airspeed. 

(3) A stable whirl mode of an installation, e.g. a forward whirl mode or the out-of-phase backward 
whirl mode, does not appear 'to be destabilised by wing motion, even in a wing mode of comparable 
frequency. 
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Since in no case is the stability of a power-plant whirl mode adversely affected by motion of the wing, 
the analysis of power-plant whirl may in general be limited to the four degrees of freedom of the installa- 
tion itself with the wing being considered rigid, although this may lead to a pessimistic result. As to the 
influence of power-plant whirl motion on the flutter of the wing itself, it appears that a wing-flutter mode 
may be stabilized up to a higher flutter speed by coupling with a stable whirl mode of comparable fre- 
quency. On the other hand the stability of a wing flutter mode may be reduced by coupling with an 
unstable power-plant whirl mode of comparable frequency, leading to a decrease in the flutter speed. 

It should be borne in mind that the above tentative conclusions have been drawn from the results of 
a strictly limited range of cases calculated for a system with only four degrees of freedom allowed to the 
wing. Because of the many variables involved, and of the difficulties of interpreting the results of flutter 
calculations in many degrees of freedom, it is not practicable to cover a range of conditions wide enough 
to enable general conclusions to be drawn as to the effects of power-plant whirl motion on wing flutter. 
It is therefore advisable when investigating wing flutter to include the power-plant pitching and yawing 
freedoms, with their associated gyroscopic and propeller aerodynamic terms, in the original analysis. 
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LIST OF SYMBOLS 

[A-I 
[BI 
[C1 
I-E] 

a, b, c, e 

Cm 

C~, C~,, etc 

F~, Fy 

I o, I~ 

Iv 

J 

K~, K# 

K~, Kr 

I, l~, lv 

M o, M~, 

~Mg], ~MN3 

mE 

N 

qi 

to, r~ 

R 

S 

[TEl, [TwN], etc 

U 

V 

Vo 
V 

Inertia matrix 

Aerodynamic-damping matrix 

Aerodynamic-stiffness matrix 

Structural-stiffness matrix 

Scaled forms of the above matrices, as defined in equation (3) 

Reference wing chord (ft) 

Propeller aerodynamic derivatives in equation (34) 

Aerodynamic forces acting on the propeller in the z and y directions respectively 
(lb) 

Moments of inertia in pitch and yaw respectively of the engine plus propeller, 
measured about the gimbal mount point (slug/ft z) 

Polar moment of inertia of propeller and rotating engine parts, referred to the 
propeller rotational speed (slug/ft z) 

Advance ratio V/2NR 

Effective rotational stiffnesses of the engine gimbal mounts in pitch and yaw 
(lb ft/rad) 

Effective stiffnesses of nacelle cantilever, referred to displacements in the z and 
y directions (lb/ft) 

Dimensions of engine/nacelle installation fit), (see Fig. 1) 

Aerodynamic moments acting on propeller in pitch and yaw respectively (lb/ft) 

Diagonal matrices of engine and nacelle masses respectively 

Mass of engine plus propeller (slug) 

Propeller rotational speed (rev/sec) 

i 'h generalised co-ordinates in Lagrange's equation 

i th generalised force in Lagrange's equation 

Ratios of tip slopes to tip deflections of nacelle cantilever in the pitch and yaw 
planes respectively 

Propeller radius fit) 

Area of propeller disc (ft 2) 

Transformation matrices defined in Section 3 

Kinetic energy (lb ft) 

Potential energy (lb ft) 

True airspeed (ft/sec) 

Reference airspeed in flutter equation (ft/sec) 

Dimensionless airspeed = V/V o 

26 



LIST OF SYMBOLS (contd.) 

X, y,  Z 

Xp~ XE, X G 

Xn 

YE, ZE 

yp, Zp 

Zw 

Y l ,  z l  

0~i, ~I 

~, ~p 

~r 

P 

Po 

t7 

"C 

f l  

~2  

(.Op 

03~, 09# 

£Oz, f.Dy 

L/ 
{} 

Orthogonal co-ordinate system (Fig. 1) 

Dimensions of engine/nacelle installation (ft) 

Distance of n th concentrated nacelle mass from wing flexural axis (ft) 

Displacements of engine c.g. (ft) 

Displacements of propeller 

Displacement of a point on the wing flexural axis (ft) 

Displacements of gimbal mount point relative to tangents at nacelle root fit) 

Rotations of engine relative to nacelle in pitch and yaw respectively (rad) 

Transformation matrix defined in equation (11) 

Viscous-damping coefficients in the engine freedoms, expressed as a percentage 
of the critical damping 

Decay rate in the r th mode, defined in equation (5b) 

Angular displacements of propeller relative to airstream in pitch and yaw re- 
spectively, (rad) 

Effective angular displacements of propeller, as defined in equation (35) 

r th complex root of flutter determinant 

Real part of 2, 

Air density (slug/ft 3) 

Air density at sea level (slug/ft 3) 

Air density ratio = P/Po 

Dimensionless time = tVo/Cm 

Propeller rotational speed, (rad/sec) 

Reduced propeller rotational speed, defined in equation (A.4) (rad/sec) 

Reduced propeller rotational speed, defined in equation (A. 14) (rad/sec) 

Total angular velocity of propeller about the displaced shaft axis, (rad/sec) 
Frequency in fh mode of vibration, (the imaginary part of 2,), (rad/sec) 

The natural frequencies of the uncoupled, undamped vibrations of the engine 
plus propeller about the gimbal mounting, in pitch and yaw respectively, 
(rad/sec) 

The natural frequencies of the uncoupled, undamped vibrations of the engine 
plus propeller mass at the end of the cantilever nacelle with the gimbals 
locked, in vertical and horizontal translation respectively, (rad/sec) 

Brackets denoting a row matrix 

Brackets denoting a column matrix 
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APPENDIX A 

Analysis of the Whirl Motion of an Engine Installation in Two Degrees of Freedom. 

A.1. Engine mounted on fixed gimbals. 

Equations of motion. 
In this system the degrees of freedom allowed are the pitching and yawing rotations of the engine 

about a gimbal mounting fixed in space, (Fig. 24a). 
In the absence of propeller aerodynamic forces, and with zero structural damping in the mounting, 

the Langrangian equations of motion are 

Write 

l s# , l+f~Ir /~I+K~I  = 0 

l¢ f l l - ~  Ipdq + K# fll = O. 

K J I  0 = CO 2 and K#/I¢ = 0~ 

(A.1) 

where 09, and a~# are the uncoupled natural frequencies of the system in pitch and yaw respectively. 
Assuming solutions of the form ctl = ~1 e at and fix = fll eat the equations of motion may be written 

in matrix form as 

[ .(c02+22) 2f~ ( ) I/} 1 = 0 ~  (A.2) 
• L - -2  f~ Ip/l¢, IP/lO] 

(~ + 22)_] 

Whirl mode frequencies. 
For non-trivial solutions the determinant of the square matrix must vanish, which yields the following 

characteristic equation for 2: 

4- 2 2 2 2 2 2 +2 (oJ~+o~#+f~l)+co~ o9~ = 0 (A.3) 

where 

~"]I - ' '~ ~ .  (A.4) 

Solutions of equation (A.3) are 

22 1 = - ~1 (0~2+0~ +f~l)H-i ~/(eo, +co~ +f~2~)2-4 0~, w ~ 2  1 2 2 • (A.5) 

l 

The term inside the square root is always positive, hence 22 is real and negative. 2 is therefore imaginary 
and may be written as 2 = ia~. 

The system performs undamped simple harmonic motion in two modes, the frequencies of which are : 

(D2 l 2 2 2 - -1  2 2 2 2  2 2" = ½ (oJ, + o~# + f~l) + ~ ~/(co~ + ~#  + f21) - 4 w~ w# (A.6) 
l o,I 
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The product of the frequencies reduces to the simple form 

col CO2 ~--- ---+co, co# 

The expressions for cox and o9 2 may be simplified as follows: 

(cox + o2) 2 - o~ + co2 2 + 2 ox co2 = (eg, + coa) 2 + f ~  

Similarly 

( o , - o 2 )  2 - o ~ + c o ~ - 2  ox o2 = ( o ~ - o p ) ' + f ~  

Hence by addition and subtraction of these expressions we get 

O91 = +½ --N/(O0t--O)f)2-F~'~ 2 
(A.7) 

CO2 ---- + ½ [ N/(CO, + CO#)2 -1- ['~2 + ~/(O, -- O#)2 -F Q21 

Mode shapes. 

The ratios of the amplitudes of the two degrees of freedom in each of the whirl modes may be found 
from equations (A.2). For  mode r, putting 2 = io,  the first of equations (A.2) yields 

f } fll = i o ~ - - o r  
, f~ o9, le/Io (A.8) 

while from the second of equations (A.2) 

r 60# -- O r J (A.9) 

Assuming that cop > o~, equation (A.7) indicates that in mode 1, col < co~, and the motion is then a 
backward whirl in which the propeller hub describes an elliptical orbit in the y,z plane in a direction 
opposite to the propeller rotation. In mode 2, o92 __> o~ and the motion is a forward whirl in the same 
sense as the propeller rotation. 

The amplitude ratio may be expressed in a form independent of f~ by multiplying together equations 
(A.8) and (A.9) and taking the square root : 

, • / 0 ( o ~ - o , )  
---- -rt -- 7~.2 -"S~..2 r ~/ l0 (O#--O, (A.10) 

When expressed in this form the mode shapes, as determined from the amplitude ratios of the separate 
degrees of freedom, are seen not to be directly dependent on f~ and le. 
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A.2. Engine mounted on a cantilever nacelle. 

Equations of  motion. 
In this system the engine is assumed to be rigidly attached to the end of a nacelle structure which is 

encastr6 at the root and free to deflect in the vertical and horizontal planes in the fundamental cantilever 
bending modes. The slopes at the end of the nacelle are assumed to be proportional to the relevant 
displacements, (Fig. 24b). 

The Langrangian equations of motion may be written as: 

(mE + Io r 2) zt --~1 le ro r~0 Ya + K= z t = 0 l (A. 1 
1) 

2 " J (rnE+Iq, r q , ) y t + ~ I r r ,  r o z , + K r y  x = 0 . 

Now let 

2 Kz/(m E + I 0 r 2) = ¢.0 2 and Kr/(mr + I¢, r~) = coy 

where coz and coy are the uncoupled natural frequencies of the system in the vertical and horizontal planes. 
Then assuming solutions of the form 

zt = ~1 e~' and Yl = J~t e a' , 

the equations of motion may be written in matrix form as: 

( m E + I ° r  = 0. (A.12) 

I v r o r~ 

Whirl mode frequencies. 
The characteristic equation for 2 is 

24+22 2 2 2 2 2 = 0 (A.13) (coz +coy + f~2)+co~ coy 

where 

( C(m  + xo d)  + I,  j " 
(A.14) 

Equation (A.13) is identical in form to equation (A.3), with coz and coy replacing co~ and coo and with ~')2 
replacing f~l. With these substitutions the binary whirl mode frequencies are given by equations (A.7). 

Mode shapes. 

From equations (A. 12) the amplitude ratio of the degrees of freedom in each whirl mode may be written 
a s  

1" (Dz -- ('Dr 

~ CO r I p  r o rq, 

~ coy -- or mE + I ,  r~o J 
(A.15) 
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Assuming that ~o r > O)z then equation (A.7) indicates that 091 < co= and equations (A.15) show that the 
mode 1 is a backward whirl motion, with the tip of the nacelle tracing an elliptical path in the y,z plane 
against the direction of the propeller rotation. Conversely 092 > mr, and mode 2 is a forward whirl motion. 

The amplitude ratio may be expressed in a form not directly dependent on f~ or I e : 

I t  ' '  ) --  2 2 = + i v r \ m E  + Io  re 
(A.16) 

A.3. General expression for binary whirl mode frequencies. 

In the absence of aerodynamic forces on structural damping the equations of motion for the binary 
systems in either the engine or the nacelle freedoms are identical in form when expressed in terms of 
suitable parameters. The two systems may therefore be regarded as equivalent. 

The whirl mode frequencies may be written in the following dimensionless forms: 

_ _ F  =½ 1+ (l+k)2-T - 1+ ___L (k_De  (A.17) 

o r  

.."l f / J  ~min ~ 2 
~ ( k -  1) 2 + / = ½ (k+ 1)2+ 

where o91 and co 2 are the frequencies of the backward and forward whirl modes respectively 

O)mi n is the lesser of the two uncoupled natural frequencies of the system with f~ = 0 

COma x is the greater of the two uncoupled frequencies 

k = 09maJ(.Omi n 

= f~l for a binary in the engine freedoms 

and ~ = f~2 for a binary in the nacelle freedoms 

Equations (A. 17) and (A. 18) are plotted in Fig. 25. 

(A.18) 
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T A B L E  1 

Basic Data for Engine-nacelle Installations, used in Forming the Flutter Matrices. 

Quant i ty  

mE 
Io 
I ,  
Iv 
XG 
XE 
Xp 
XL 

Ip 
ro 
re 
Cra 

£21 
~2 
Kz 

Ky 
K~ 

Units 

slugs 
slugs ft 2 
slugs ft 2 
slugs ft 2 

Inboa rd  
installation 

100-6 
780 
780 
280 

O u t b o a r d  
installation 

100.6 
780 
780 
280 

ft 
ft 
ft 
ft 
ft 
ft 

rad/ft 
rad/ft 

ft 

14-33 
14.46 
17.11 

3"08 
0-125 
2.78 
0.178 
0'178 

12.96 

12-71 
12.84 
15.49 
2-71 
0-125 
2.78 
0.200 
0.200 • 

12.96 
rad/sec 
rad/sec 
rad/sec 

lb/ft 
lb ft/rad 

lb/ft 
lb ft/rad 

- 102-2 
- 36.65 

- 7'25 
21"1 × 104 
60-0 × 104 
14"9 × 104 
63.3 × 104 

- 102.2 
- 36.65 

- 8.70 
15.5 x 104 
61-5 × 104 
10.7 × 104 
60.2 × 104 
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TABLE 2 

Propeller Data and Aerodynamic Derivatives. 

Propeller  diameter  = 14.5 ft 

Engine  rota t ional  speed = - 15 250 rev/min 

Propeller  ro ta t ional  speed N = - 16.25 rev/sec 

f~ = - 102,2 rad/sec 

N.B. Positive ro ta t ion  is in accordance with the right hand  rule, i.e. clockwise when viewed from aft. 

Derivative J = 1 J = 2 J = 3 

Cy~ 
C z~, 
Cmq 
Cm~, 

0.310 
- 0.067 
- 0 . 1 4 3  
- 0 . 1 2 6  

0.364 
- 0.071 
- 0.072 
- 0 . 1 2 7  

0.410 
- 0.075 
- 0.040 
-0 .111  

Cyq 
Czo 
Cro 
Cnr 
Cno 
Czr 

0.243 
- 0 . 3 1 0  
- 0-067 
-0"143 

0"126 
0.243 

0.246 
- 0 . 3 6 4  
- 0"071 
- 0.072 

0"127 
0-246 

0.220 
- 0 . 4 i 0  
- 0.075 
- 0-040 

0.111 
0.220 

V 
J = - -  = 0.00424 V (with V in ft/sec) 

2NR 

The above derivatives are for a non- th rus t ing  propeller. 
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